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Abstract

This paper investigates both the H∞ and robust H∞ reduced order unbiased filtering problems for
respectively a nominal bilinear system and a bilinear system affected by norm-bounded structured un-
certainties in all the system matrices. First, an algebraic framework is used to solve the unbiasedness
condition and second, a change of variable is introduced on the inputs of the system to reduce the con-
servatism inherent to the requirement of exponential convergence of the filter. Then the reduced order
filtering solution is obtained through LMI with an equality constraint by transforming the problem
into a robust state feedback in the nominal case and a robust static output feedback in the presence
of uncertainties. In the last case, an additional bilinear matrix equality must also be solved.

Keywords : Bilinear systems, Structured uncertainties, Robust reduced order filtering, Unbiasedness,
H∞ optimization, LMI.

1 Introduction

In the last decades, due to the fact that many physical processes may be appropriately modeled as bilin-
ear systems when linear models are inadequate, great interest has been accorded to the state estimation
of bilinear systems. Most work on state estimation of bilinear systems has been done on observers design
(Funahashi, 1979; Tibken and Hofer, 1989; Derese et al., 1979; Wang and Kao, 1991). The H∞ filtering
for linear systems has been deeply visited in the full order case (Nagpal and Khargonekar, 1991; Shaked
and Theodor, 1992b; Shaked and Theodor, 1992a) and even in the reduced order one (Grigoriadis and
Watson, 1997; Watson and Grigoriadis, 1998). The reduced order filtering problem presented by (Watson
and Grigoriadis, 1998) is an unbiased one and considers only the nominal case. The full order H∞ fil-
tering for nonlinear systems has been studied by (de Souza et al., 1993; Reif et al., 1999) and is also
shown to be equivalent to an L2 gain attenuation problem for the mapping between the disturbances
and the estimation error. The robust full order filtering for uncertain linear systems has been treated in
(Fu et al., 1992; Li and Fu, 1997; Pãlhares and Peres, 2000; Sayed, 2001). The robust filtering gets its
importance from the necessity to still keep good performances even if parameter uncertainties affect the
system.
In this paper, a reduced order H∞ functional filtering method is proposed to reconstruct a linear combi-
nation of the states of a bilinear system by exploiting the nonlinearities in the nominal and the robust
cases as ‘structured uncertainties’. This is achieved through the design of a filter whose dynamics has
the same dimension as this linear combination. In addition to the exponential convergence and L2 gain
attenuation requirements, the filter must also be unbiased, i.e. the estimation error does not depend
explicitely on the states of the system. The proposed approach is based on the resolution of algebraic
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Sylvester equations to find conditions for the existence of the unbiased reduced order filter. Then the
exponential convergence and L2 gain attenuation problems are reduced to a robust state feedback in the
nominal case. It is shown that the robust functional unbiased filtering problem for uncertain bilinear
systems subjected to time-varying norm-bounded uncertainties can be seen as a particular case of a static
output feedback one under some conditions. This problem requires to solve Linear Matrix Inequalities
(LMI) with an additional non convex Bilinear Matrix Equality (BME) constraint.
The paper is organized as follows. The conditions for the unbiasedness, exponential convergence and L2

gain attenuation of a reduced order H∞ functional filter for continuous-time nominal bilinear systems
are studied in section 2. It is shown through section 3 that the robust filtering problem for bilinear
systems affected by structured norm-bounded time-varying uncertainties can be solved as a static output
feedback problem. An illustrative example is given in section 4. Then, some conclusions are presented
in section 5.
Notations. ‖x‖ =

√
xT x and ‖A‖ =

√
λmax(ATA) are the Euclidean vector norm and the spectral

matrix norm respectively where λmax(AT A) is the maximal eigenvalue of the symmetric matrix ATA. A†

is a generalized inverse of matrix A satisfying A = AA†A. bdiag(A1, . . . , Ak) denotes a block-diagonal
matrix with A1, . . ., Ak as block-diagonal ‘elements’ and herm(A) = A+AT . L2[0,∞) is the space of
signals with bounded energy.

2 Reduced order unbiased H∞ filtering in the nominal case

2.1 Problem Formulation

Consider the nominal bilinear system described by

ẋ = A0x +
m∑

i=1

Aiuix + Bw (1a)

y = Cx + Dw (1b)
z = Lx (1c)

where u(t) = [ u1(t) . . . um(t) ]T ∈ IRm is the known control input vector, x(t) ∈ IRn is the state vector,
y(t) ∈ IRp is the measured output and z(t) ∈ IRr is the vector to be estimated where r ! n. The vector
w(t) ∈ IRq represents the disturbance vector. A0, Ai, B, C, D and L are known constant matrices.
Without loss of generality, it is assumed that rankL = r. The problem is to estimate the vector z(t) from
the measurements y(t) and the inputs u(t). For many physical processes, disturbances are continuous
and inputs are continuous and bounded, which is reflected in the following assumption for bilinear system
(1).

Assumption 1. The disturbance signal w(t) is continuous. The control inputs, u(t), are continuous and
bounded, i.e. u(t) ∈ Ω ⊂ IRm, where

Ω :={u(t)∈ IRm |ui,min !ui(t)!ui,max, i = 1, . . . ,m}. (2)

The proposed reduced order functional filter is given by

η̇ = H0η +
m∑

i=1

Hiuiη + J0y +
m∑

i=1

Jiuiy (3a)

ẑ = η + Ey (3b)

where ẑ(t) ∈ IRr is the estimate of z(t).
The estimation error is given by

e = z − ẑ = Lx− ẑ = e− EDw (4)
e = Ψx− η (5)
Ψ = L− EC. (6)
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The generalization of the well-known H∞ attenuation in the linear case to the nonlinear systems is the
L2 gain attenuation defined as follows (van der Schaft, 1992).

Definition 1. Let γ > 0, the mapping from w(t) to e(t) is said to have L2 gain less than or equal to γ if
∫ ∞

0
‖e(t)‖2 dt ! γ2

∫ ∞

0
‖w(t)‖2 dt (7)

∀w(t) ∈ L2[0,∞), and with zero initial conditions.

In this paper, the problem of the filter design is to determine H0, Hi, J0, Ji and E such that :

(i) the filter (3) is unbiased if w(t) = 0 (see (Seron et al., 1997), p. 176), i.e. the estimation error is
independent of x,

(ii) the filter (3) is exponentially convergent for u(t) ∈ Ω and w(t) = 0,
(iii) the mapping from the disturbance input w(t) to the estimation error e(t) has L2 gain less than a

given scalar γ for u(t) ∈ Ω.

2.2 Unbiasedness condition fulfillment

From (4), notice that the time derivative of the error e is function of the time derivative of the disturbances
w. To avoid the use of ẇ in the dynamics of the error e, consider e as a new ‘state vector’. Then the L2

gain from w to e has the following state space realization

ė = (H0 +
m∑

i=1

uiHi)e + (ΨA0 −H0Ψ− J0C)x (8a)

+
m∑

i=1

(ΨAi −HiΨ− JiC)uix + (ΨB − J0D −
m∑

i=1

JiDui)w (8b)

e = e− EDw (8c)

and the unbiasedness of the filter is achieved if and only if the following Sylvester equations

ΨAi −HiΨ− JiC = 0 i = 0, . . . ,m (9)

hold. As L is of full row rank, (9) is equivalent to

(ΨAi−HiΨ−JiC)
[
L† In−L†L

]
=0 i = 0, . . . ,m (10)

and since rankL = r, one has LL† = Ir. Using the definition of Ψ, (10) is equivalent to

0 = ΨAiL
†−HiΨL†−JiCL† i = 0, . . . ,m (11a)

0 = ΨAi + HiEC − JiC i = 0, . . . ,m (11b)

where

Ai = Ai(In − L†L), i = 0, . . . ,m (12a)
C = C(In − L†L). (12b)

Using (6), relation (11a) can be rewritten as

Hi = Ai −KiCi i = 0, . . . ,m (13)

where, for i = 0, . . . ,m,

Ai = LAiL
†, Ci =

[
CAiL†

CL†

]
, (14a)
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Ki =
[
E Ki

]
with Ki = Ji −HiE (14b)

Then relation (11b) can be expressed in the following compact form

KΣ = LA (15)

where

A =
[
A0 . . . Am

]
(16a)

Σ =

[
CA

bdiag(C, ..., C)

]
(16b)

K =
[
E K0 . . . Km

]
, (16c)

and a general solution to (15), if it exists, is given by

K=
[
E K0 . . . Km

]
=LAΣ†+Z(I(m+2)p−ΣΣ†) (17)

where Z = [ ZE Z0 . . . Zm ] is an arbitrary matrix.

Lemma 1. The unbiasedness of the filter (3) is achieved if and only if the following rank condition holds

rank





LA

CA

bdiag(C, ..., C)

bdiag(L, ..., L)




= rank





CA

bdiag(C, ..., C)

bdiag(L, ..., L)



 (18)

where
A =

[
A0 . . . Am

]
. (19)

Proof. Using the previous developments, filter (3) is unbiased, i.e. relation (9) holds, if and only if there
exists a solution K to (15), that is if and only if

LA(In − Σ†Σ) = 0, (20)

which is equivalent to

rank

[
LA

Σ

]
= rankΣ. (21)

The rest of the proof can be obtained from (Darouach et al., 2001).

2.3 Unbiasedness condition under ED = 0

The mapping from w to e, given by (8a), becomes

ė =

(
H0 +

m∑

i=1

uiHi

)
e +

(
ΨB −K0D −H0ED −

m∑

i=1

ui (KiD + HiED)

)
w (22a)

e = e− EDw (22b)

or equivalently
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ė=

(
A0+

m∑

i=1

uiAi−
(
LAΣ†−Z(I(m+2)p−ΣΣ†)

)
Λ1(u)

)
e

+
(
LB−

(
LAΣ†−Z(I(m+2)p−ΣΣ†)

)
Λ2(u)

)
w

+

(
A0+

m∑

i=1

uiAi−
(
LAΣ†−Z(I(m+2)p−ΣΣ†)

)
Λ1(u)

)
EDw (23a)

e = e− EDw (23b)

where

Λ1(u) =




CA0L†+

m∑

i=1

uiCAiL†

ψC(u)



, Λ2(u) =

[
CB

ψD(u)

]
(24)

with ψC(u) =
[
L†T

CT u1L†T
CT ... umL†T

CT
]T

and ψD(u) =
[
DT u1DT ... umDT

]T .

Due to the term Z(I(m+2)p − ΣΣ†)Λ1(u)E, the error is bilinear in the gain parameter Z in system (23).
This bilinearity is intrinsically linked to the unbiasedness condition (9). Indeed, the ‘bilinearity’ HiΨ in
(9) yields a gain Ki (see (14b)) containing the term HiE. In order to avoid this bilinearity, we consider
ED = 0 in the sequel; this allows to have an LMI tractable formulation for the problem instead of a
bilinear matrix inequality intractable one. Adding the constraint ED = 0, relations (15), (16) and (17)
become

KΣ =
[
0 LA

]
(25)

where

Σ =

[
D CA

0 bdiag(C, ..., C)

]
(26)

and a general solution to (25), if it exists, is given by

K =
[
0 LA

]
Σ† + Z(I(m+2)p − Σ Σ†). (27)

Then, the following lemma is derived from lemma 1.

Lemma 2. The unbiasedness of the filter (3) is achieved under ED = 0 if and only if

rank





0 LA

D CA

0 bdiag(C, ..., C)

0 bdiag(L, ..., L)




= rank





D CA

0 bdiag(C, ..., C)

0 bdiag(L, ..., L)



 . (28)

Now, assume that condition (28) in lemma 2 holds. Then relation (9) is verified with K given by (27)
and, hence, e(t) = e(t) in (23), i.e.

ė=

(
A0+

m∑

i=1

uiAi−
([

0 LA
]
Σ†−Z(I(m+2)p − Σ Σ†)

)
Λ1(u)

)
e

+
(
LB −

([
0 LA

]
Σ†−Z(I(m+2)p − Σ Σ†)

)
Λ2(u)

)
w. (29)

As the item (i) of the design objectives has been solved, it remains to treat the points (ii) and (iii) of
these objectives.
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2.4 Exponential convergence and L2 gain attenuation

Here, a change of variables is introduced by considering each ui(t) in equation (29) as a ‘structured
uncertainty’. Notice that the definition of the ‘uncertainty set’ Ω in relation (2) can lead to some
conservatism (see (Boyd et al., 1994)) since, in the general case, |ui,min| (= |ui,max| with |ui,min| (= 1 and
|ui,max| (= 1. To reduce this conservatism, each ui(t) can be rewritten as follows

ui(t) = αi + σiεi(t) (30)

where αi ∈ IR and σi ∈ IR are given by

αi =
ui,min+ui,max

2
, σi =

ui,max−ui,min

2
i = 1, . . . ,m, (31)

α0 = 1 and σ0 = 0. The new ‘uncertain’ variable is ε(t) ∈ Ω ⊂ IRm where the polytope Ω is defined as

Ω := {ε(t) ∈ IRm | εi,min = −1 ! εi(t) ! εi,max = 1 for i = 1, . . . ,m} . (32)

By using relations (30)-(32), the dynamics of the error e(t) in (29) can be rewritten as follows

ė =
(
A− ZC +

(
Ã− ZC̃

)
∆e(ε)He

)
e +

(
B− ZG +

(
B̃− ZG̃

)
∆w(ε)Hw

)
w (33)

with

A =
m∑

i=0

αiAi −
[
0 LA

]
Σ†

[∑m
i=0 αiCAiL†

αC

]
, C = (I(m+2)p − Σ Σ†)

[∑m
i=0 αiCAiL†

αC

]
, (34a)

Ã =
[
σ1A1 . . . σmAm

]
−

[
0 LA

]
Σ†Γ, B̃ = −

[
0 LA

]
Σ†D, G̃ = (I(m+2)p − Σ Σ†)D, (34b)

C̃ = (I(m+2)p − Σ Σ†)Γ, B = LB −
[
0 LA

]
Σ†

[
α0CB

αD

]
, G = (I(m+2)p − Σ Σ†)

[
α0CB

αD

]
. (34c)

and

Γ =





σ1CA1L† . . . σmCAmL†

0 . . . 0
bdiag(σ1CL†, ...,σmCL†)



, D =

[
0

bdiag(σ1D, ...,σmD)

]
, (35a)

αC =
[
α0L†T

CT ... αmL†T
CT

]T
,αD =

[
α0DT ... αmDT

]T
. (35b)

From (32), the ‘uncertain’ matrices ∆e(ε) and ∆w(ε) are bounded as

‖∆e(ε)‖ ! 1 and ‖∆w(ε)‖ ! 1 (36)

where ∆e(ε) = bdiag(ε1Ir, . . . , εmIr ∈ IRmr×mr, ∆w(ε) = bdiag(ε1Iq, . . . , εmIq) ∈ IRmq×mq, He =
[ Ir . . . Ir ]T ∈ IRmr×r and Hw = [ Iq . . . Iq ]T ∈ IRmq×q.
According to the previous developments, the error dynamics (33) can be rewritten as the following system

ė=(A−ZC) e+
([

Ã B̃ B
]
−Z

[
C̃ G̃ G

])



pe

pw

w



 (37a)




qe

qw

e



 =




He

0
Ir



 e +




0 0 0
0 0 Hw

0 0 0








pe

pw

w



 (37b)
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connected with [
pe

pw

]

︸ ︷︷ ︸
ep

=

[
∆e(ε) 0

0 ∆w(ε)

] [
qe

qw

]

︸ ︷︷ ︸
eq

. (38)

At this step, the H∞ reduced order unbiased filtering can be solved as a particular case of a dual robust
state feedback problem with structured uncertainties. The following theorem ensures the exponential
convergence of the filter (3) and the L2 gain attenuation from w(t) to e(t).

Theorem 1. Suppose that assumption 1 and condition (28) hold. If there exist P = P T > 0, Se =
bdiag(µ1,eIr, . . . , µm,eIr)>0, Sw =bdiag(µ1,wIq, . . . , µm,wIq) > 0, Y and a scalar ρ > 0 such that (‘•’ is
the transpose of the off-diagonal part)





Υ • • • • 0
ÃT P−C̃T Y −Se 0 0 0 0
B̃T P−G̃T Y 0 −Sw 0 0 0
BT P−GT Y 0 0 −γ2Iq 0 •

SeHe 0 0 0 −Se 0
0 0 0 SwHw 0 −Sw





< 0 (39)

holds with Y = ZT P and Υ = herm(PA − Y T C) + (1 + ρ)Ir, then the reduced order unbiased filter (3)
for the bilinear system (1) is exponentially convergent and has a L2 gain from w(t) to e(t) less than or
equal to γ.

Proof. By considering system (37)-(38) as a diagonal norm-bounded linear differential inclusion, the
following auxiliary system is derived from (37) (Boyd et al., 1994)

ė = (A− ZC) e +
([

ÃS−1/2
e B̃S−1/2

w γ−1B
]
− Z

[
C̃S−1/2

e G̃S−1/2
w γ−1G

])



pe

pw

w



 (40a)




qe

qw

e



=




S1/2

e He

0
Ir



e+




0 0 0
0 0 γ−1S1/2

w Hw

0 0 0








pe

pw

w



 (40b)

where matrices Se = bdiag(µ1,eIr, . . . , µm,eIr) > 0 and Sw = bdiag(µ1,wIq, . . . , µm,wIq) > 0 satisfy
∆e(ε)Se = Se∆e(ε) and ∆w(ε)Sw = Sw∆w(ε) in order to take the structure of ∆e(ε) and ∆w(ε) into
account (Boyd et al., 1994) (µi,e and µi,w, i = 1, . . . ,m, are positive scalars).
Let Y = ZT P , then by using the bounded real lemma (Boyd et al., 1994), system (37)-(38) is exponentially
convergent and has a L2 gain from w to e less than or equal to γ if there exist P = P T > 0, Se > 0,
Sw > 0, Y and a scalar ρ > 0 such that matrices in system (40) satisfy the following inequality





Υ • • • • 0 •
S−1/2

e (ÃTP−C̃TY )−I 0 0 0 0 0
S−1/2

w (B̃TP−G̃TY ) 0 −I 0 0 0 0
γ−1(BTP−GTY ) 0 0 −I 0 • 0

S1/2
e He 0 0 0 −I 0 0

0 0 0 γ−1S1/2
w Hw 0 −I 0

I 0 0 0 0 0 −I





< 0.

Pre- and post-multiplying this inequality by
bdiag(In, S1/2

e , S1/2
w , γIq, S

1/2
e , S1/2

w , Ir) and using the Schur lemma lead to the LMI (39).
Under condition (28), by using Z = P−1Y T and (27), the matrices of filter (3) are given by (13)-(14).
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3 Robust reduced order unbiased H∞ filtering

In this section, the following uncertain bilinear system is considered

ẋ=(A0+∆A0(t))x+
m∑

i=1

(Ai+∆Ai(t))uix+(B+∆B(t))w (41a)

y = (C + ∆C(t))x + (D + ∆D(t))w (41b)
z = Lx (41c)

where x(t), y(t), z(t), w(t) and u(t) have been defined in section 2. The uncertain matrices ∆A0(t),
∆B(t), ∆C(t), ∆D(t) and ∆Ai(t) are given by

[
∆A0(t) ∆B(t)

∆C(t) ∆D(t)

]
=

[
M0,x

M0,y

]
∆0(t)

[
E0,x E0,w

]
(42a)

[
∆A1(t) . . . ∆Am(t)

]
=

[
M1,x . . . Mm,x

]
bdiag(∆1(t), . . . ,∆m(t))︸ ︷︷ ︸

∆(t)

[
E1,x

T . . . Em,x
T
]T

(42b)

where Mi,x ∈ IRn×!i , M0,y ∈ IR p×!0 , Ei,x ∈ IR !i×n and E0,w ∈ IR !0×q (i = 0, . . . ,m) are known constant
matrices which specify how the elements of the matrices of the nominal system are affected by the
uncertain parameters in ∆i(t), i = 0, . . . ,m. The continuous time-varying uncertainties in (42) are
assumed to satisfy :

Assumption 2. There exist ∆i,j(t) ∈ IR!i,j×!i,j ,
j = 1, . . . , si and i = 0, . . . ,m, such that

{
∆i(t) = bdiag(∆i,1(t), . . . ,∆i,si(t)), i = 0, . . . ,m

‖∆i(t)‖ ! I!i
,∀t " 0, i = 0, . . . ,m

(43)

where )i =
∑si

j=1 )i,j.

The constraint ED = 0 in section 2.3 is replaced by

E
[
M0,y D

]
= 0 (44)

in the sequel of section 3. Then equations (25), (26), (27) and (28) must be replaced by

KΣ̂ =
[
0 0 LA

]
, (45a)

Σ̂ =

[
M0,y D CA

0 0 bdiag(C, . . . , C)

]
, (45b)

K =
[
0 0 LA

]
Σ̂† + Z(I(m+2)p − Σ̂ Σ̂†), (45c)

rank





0 0 LA

M0,y D CA

0 0 bdiag(C, . . . , C)

0 0 bdiag(L, . . . , L)




= rank





M0,y D CA

0 0 bdiag(C, . . . , C)

0 0 bdiag(L, . . . , L)



. (45d)

Introducing the following augmented state vector ξ =
[

xT eT
]T , using (29) and the change of variable
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in (30)-(32) enable one to express the system obtained by the concatenation of (3) and (41)-(42) as

ξ̇(t) =

([
M0,x

ΨM0,x−
∑m

i=0 αiJiM0,y

]
∆0(t)

[
E0,x 0

]
+

m∑

i=0

αi

([
Ai 0

0 Hi

]
+

[
Mi,x

ΨMi,x

]
∆i(t)

[
Ei,x 0

])

+
m∑

i=1

σiεi

([
Ai 0

0 Hi

]
+

[
Mi,x

ΨMi,x

]
∆i(t)

[
Ei,x 0

]
+

[
0

−JiM0,y

]
∆0(t)

[
E0,x 0

]))
ξ

+








B

ΨB−
m∑

i=0

αiJiD



+

[
M0,x

ΨM0,x−
∑m

i=0 αiJiM0,y

]
∆0(t)E0,w

+
m∑

i=1

σiεi

([
0

−JiD

]
+

[
0

−JiM0,y

]
∆0(t)E0,w

))
w

(46a)

e =
[
0 Ir

]
ξ (46b)

where Ψ satisfies the unbiasedness relation (9). The uncertain system (46) is equivalent to the following
one

ξ̇(t) =





m∑

i=0

αiAi 0

0 A−ZC



 ξ +

[
B

B−ZG

]
w +

[
Aσ 0 0

0 Ã−ZC̃ B̃−ZG̃

]




px

pe

pw



 (47a)

+

[
M0,x Mα

BM−ZGM BMα
−ZGMα

] [
p0

p

]
+

[
0 Mσ

B̃Mσ
−ZG̃Mσ

BMσ
−ZGMσ

] [
p0

p

]
(47b)

q̂ = Cqξ + Dqww (47c)

e =
[
0 Ir

]
ξ (47d)

connected with

[
pT

x pT
e pT

w pT
0 pT pT

0 pT
]T

︸ ︷︷ ︸
bp

=

bdiag(∆x(ε),∆e(ε),∆w(ε),∆0(t),∆(t),∆0(ε, t),∆(ε, t))︸ ︷︷ ︸
b∆(ε,t)

[
qT
x qT

e qT
w qT

0 qT qT
0 qT

]T

︸ ︷︷ ︸
bq

(48)

where

Aσ =
[
σ1A1 · · · σmAm

]
,Mα =

[
α1M1,x · · · αmMm,x

]
,Mσ =

[
σ1M1,x · · · σmMm,x

]
,

Mα =
[
α0MT

0,y · · · αmMT
0,y

]T
, BM = LM0,x −

[
0 0 LA

]
Σ̂†

[
CM0,x

Mα,y

]
,

GM = (I(m+2)p − Σ̂Σ̂†)

[
CM0,x

Mα,y

]
, BMα

= LMα −
[
0 0 LA

]
Σ̂†

[
CMα

0

]
,

GMα
= (I(m+2)p − Σ̂Σ̂†)

[
CMα

0

]
, BMσ

= LMσ −
[
0 0 LA

]
Σ̂†

[
CMσ

0

]
,

GMσ
= (I(m+2)p − Σ̂Σ̂†)

[
CMσ

0

]
, B̃Mσ

= −
[
0 0 LA

]
Σ̂†M, G̃Mσ

= (I(m+2)p − Σ̂Σ̂†)M,
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M =

[
0

bdiag(σ1M0,y, ...,σmM0,y)

]
, Cq =





Hx 0
0 He

0 0
E0,x 0
Ex 0
E0,x 0
Ex 0





, Dqw =





0
0

Hw

E0,w

0
E0,w

0





,

Hx =
[
In . . . In

]T
∈ IRmn×n, E0,x =

[
ET

0,x . . . ET
0,x

]T
∈ IRm!0×n,

Ex =
[
ET

1,x . . . ET
m,x

]T
∈ IR (!1+...+!m)×n, E0,w =

[
ET

0,w . . . ET
0,w

]T
∈ IRm!0×q,

∆x(ε) = bdiag(ε1In, . . . , εmIn),∆0(ε, t) = bdiag(ε1∆0(t), . . . , εm∆0(t)),

∆(ε, t) = bdiag(ε1∆1(t), . . . , εm∆m(t)).

The following inequalities hold from (32) and the definition of ∆i(t)

‖∆x(ε)‖ ! 1,
∥∥∆0(ε, t)

∥∥ ! 1 and
∥∥∆(ε, t)

∥∥ ! 1. (49)

Note that the unbiasedness condition (9) for the filter (3) is verified for the nominal case. In the system
(47), the determination of gain matrix Z can be transformed into a robust static output feedback control
problem by introducing the following auxiliary system






ξ̇ = Aξ + Bww + Buu

z = Czξ + Dzww

y = Cyξ + Dyww

(50a)

u = −Z y (50b)

where Z is the static output feedback controller to be designed in order to achieve stability and attenua-
tion from the ‘augmented perturbation’ wT (t) =

[
p̂T (t) wT (t)

]T to the ‘augmented controlled output’
zT (t) =

[
q̂T (t) eT (t)

]
. u(t) and y(t) play the role of ‘control input’ and ‘measured output’, respectively.

The matrices of system (50) are given by

Bw =
[
BpS−1/2 γ−1Bw

]
, Dyw =

[
DypS−1/2 γ−1Dyw

]
,Cz =

[
S1/2Cq

Ce

]
,A =

[∑m
i=0 αiAi 0

0 A

]
,

Dzw =

[
S1/2DqpS−1/2 γ−1S1/2Dqw

DepS−1/2 γ−1Dew

]
,Bu =

[
0

Ir

]
,Cy =

[
0 C

]
,

[
Bp Bw

]
=

[
Aσ 0 0 M0,x Mα 0 Mσ B

0 Ã B̃ BM BMα
B̃Mσ

BMσ
B

]
,
[
Dyp Dyw

]
=

[
0 C̃ G̃ GM GMα

G̃Mσ
GMσ

G
]
,

[
Cq

Ce

]
=

[
Cq

0 Ir

]
,

[
Dqp Dqw

Dep Dew

]
=

[
0 Dqw

0 0

]
.

where S is a block-diagonal matrix with the same ‘structure’ as the uncertain matrix ∆̂(ε, t) given in
(48), i.e.

S = bdiag(Sx, Se, Sw, S0
∆, S∆, S

0
∆, S∆) > 0 (51)
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with 




Sx = bdiag(µ1,xIn, . . . , µm,xIn)

Se = bdiag(µ1,eIr, . . . , µm,eIr)

Sw = bdiag(µ1,wIq, . . . , µm,wIq)

S0
∆ = bdiag(µ0,1I!0,1 , . . . , µ0,s0I!0,s0

)

S∆ = bdiag(bdiag(µ1,1I!1,1 , . . . , µ1,s1I!1,s1
), . . . ,bdiag(µm,1I!m,1 , . . . , µm,smI!m,sm

))

S
0
∆ = bdiag(bdiag(µ̃1,1I!0,1 , . . . , µ̃1,s0I!0,s0

), . . . ,bdiag(µ̃m,1I!0,1 , . . . , µ̃m,s0I!0,s0
))

S∆ = bdiag(bdiag(µ1,1I!1,1 , . . . , µ1,s1
I!1,s1

), . . . ,bdiag(µm,1I!m,1 , . . . , µm,sm
I!m,sm

))

where µi,x, µi,e, µi,w, µ0,h, µi,j , µ̃i,h and µi,j are scalars to be chosen (i = 1, . . . ,m, h = 1, . . . , s0 and
j = 1, . . . , si).
Notice that the following relation holds

∆̂(ε, t)S = S∆̂(ε, t). (52)

Then, the gain Z is designed in the following theorem.

Theorem 2. Assume that assumptions 1 and 2 and relation (45d) hold, there exists a robust functional
unbiased reduced order filter (3) for the uncertain system (41) if there exist matrices P = PT > 0,
Q = QT > 0, S > 0 and S > 0 such that (with ) = )1 + . . . + )m, s = m(n + r + q) + )0(m + 1) + 2))

[
Ky 0
0 Ir+s

]T





ATP + PA PBw PBp CT
e CT

q S
BT

wP −γ2Iq 0 DT
ew DT

qwS
BT

p P 0 −S DT
ep DT

qpS
Ce Dew Dep −Ir 0
SCq SDqw SDqp 0 −S





[
Ky 0
0 Ir+s

]
< 0, (53a)

[
Ku 0
0 Iq+s

]T





QAT + AQQCT
e QCT

q Bw BpS
CeQ −Ir 0 Dew DepS
CqQ 0 −S Dqw DqpS
BT

w DT
ew DT

qw −γ2Iq 0
SBT

p SDT
ep SDT

qp 0 −S





[
Ku 0
0 Iq+s

]
< 0, (53b)

In+r = PQ, (53c)

where S = S−1 satisfy (51), and where Ky and Ku are two matrices whose columns span the null spaces
of [Cy Dyp Dyw ] and

[
BT

u 0
]
, respectively. All gains Z are given by

Z = B†
RKC†

L + Z −B†
RBRZ CLC†

L (54)

with

K = −R−1
1 BT

LV1C
T
R

(
CRV1C

T
R

)−1
+ R−1

1 V1/2
2 R2

(
CRV1C

T
R

)−1/2

V1 =
(
BLR−1

1 B†
L −Q

)−1
> 0

V2 = R1 −BT
L

(
V1 −V1C

T
R

(
CRV1C

T
R

)−1
CRV1

)
BL

[
B Q

• C

]
=





−Bu QAT + AQQCT
e QCT

q Bw BpS
0 CeQ −Ir 0 Dew DepS
0 CqQ 0 −S Dqw DqpS
0 BT

w DT
ew DT

qw −γ2Iq 0
0 SBT

p SDT
ep SDT

qp 0 −S
• CyQ SDyp Dyw 0 0
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and R1, R2 and Z are arbitrary matrices satisfying R1 = RT
1 > 0 and ‖R2‖ < 1. BL, BR, CL and CR

are any full rank factors such that B = BLBR and C = CLCR.

Proof. By using the bounded real lemma (Boyd et al., 1994), the problem to be solved has a solution if
there exist S > 0 (given by (51)) and P = PT > 0 such that





herm(P(A−BuZCy)) P(Bw−BuZDyw) CT
z

(Bw−BuZDyw)TP −Iq+s DT
zw

Cz Dzw −Ir+s



 < 0.

or, from the projection lemma (Iwasaki and Skelton, 1994), if there exist matrices P = PT > 0, Q =
QT > 0, S > 0 and S > 0 with P = Q−1 and S = S−1 such that relations (53a), (53b) and (53c) hold.
Pre- and post-multiplying the above inequality by bdiag(Q, Iq+s, Ir+s) give the following inequality

Q + BZC + CT
ZTBT

< 0, (55)

and the relation (54) can be deduced from (55) by using formulas in (Iwasaki and Skelton, 1994).
Since matrix S given by (51) satisfies (52), the structure of ∆̂(ε, t) is taken into account (Boyd et al., 1994).
The robust reduced order filter is finally obtained by using relations (13), (14), (45c) and (54).

4 Illustrative example

Consider the following uncertain bilinear system

ẋ =

([
−0.146 0

−0.1763 −1.197

]
+∆A0(t)

)
x+

([
−0.097 0.09

0.08 0.05

]
+∆A1(t)

)
ux+

([
0.8

0.1

]
+∆B(t)

)
w (56a)

y =

([
0.7 0

0 0.01

]
+∆C(t)

)
x+

([
0.09

0.09

]
+∆D(t)

)
w (56b)

z =
[
−0.3 0.2

]
x (56c)

with umin = −0.1 ! u(t) ! umax = 0.1 and

M0,x =

[
0.1 0.2

0.1 0.32

]
, M0,y =

[
0.04 0.1

0.4 0.8

]
, E0,x =

[
0.1 0.3

0.1 0.2

]
, E0,w =

[
0.1

0.1

]
, (57a)

M1,x =

[
0.1 0.2

0.3 0.21

]
, E1,x =

[
0.1 0.1

0.1 0.21

]
. (57b)

By chosing Sw = 10−2, Se = 10−4 and ρ = 0.1 in the nominal case, the theorem 1 gives P = 36.539413,
Z = [−4.7728522 0 36.710613 0 0 − 0.5195422 ] and γ = 0.9. The nominal filter matrices are given
by

H0 = −1.14558, H1 = 0.00122, J0 = [−0.28542 −1.01853 ], (58a)
J1 = [ 0.04578 −0.51832 ], E = [−0.19293 0.19293 ]. (58b)

Then, apply theorem 2 to obtain a robust reduced order unbiased H∞ filter for the system (56). First
of all, note that the rank condition (45d) is verified. The different matrices of the static output feedback
problem (50a)-(50b) can be computed easily.
The next step is the resolution of relations (53a), (53b) and (53c). Notice that each of relations (53a) and
(53b) are linear in S and S−1, separately. But these inequalities are not jointly linear in S. To overcome
this, choose S = bdiag(10−4I4, 5× 10−4I4, 10.1× 10−4I4).
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The resolution of LMI (53a) and (53b) with P = PT > 0 and Q = QT > 0 gives γ = 25 and P, Q such
that

PQ =





205.03434 447.93402 −1.527× 1011

67.712912 2413.4772 −8.341× 1011

−159.08618 −5637.0533 3.861× 1012



 .

This value is obviously far from the equality (53c) of theorem 2. After running the cone complementary
linearization algorithm (El Ghaoui et al., 1997) three times, the solutions P = PT > 0 and Q = QT > 0
verify

PQ=




1 −3.033× 10−09 1.96×10−12

−3.596×10−10 1 3.632×10−13

3.052× 10−9 5.095×10−09 1



!I.

Matrices BL, BR, CL, CR, Q, R1, R2, V1, V2 and K are then computed using relations in theorem 2. Fi-
nally, choosing Z = [ 1 0 0 0 0 0 ], the gain Z is given by
Z = [ 1 0 −0.002892 0.134976 0.001680 −0.078405 ] (see (54)), and the filter matrices by

H0 = −1.20321, H1 = −0.08111, E = [ 0 0 ], (59a)
J0 = [−0.50346 0.12425 ], J1 = [ 0.02967 −0.07780 ]. (59b)

Since matrix [ M0,y D ] is of full row rank, then from (44), E = 0. The nominal filter (58) obtained
from theorem 1 and the robust filter (59) designed using theorem 2 are applied to the uncertain bilinear
system defined by (56) to (57).
The perturbation w(t) and the control input u(t) are given by figure 1. In figures 2 to 5, the uncertainties
affect the nominal system. Three cases are considered : the case 1 corresponds to the nominal one, the
case 2 to the robust one with ∆0(t) and ∆1(t) given in figures 2 and 3, and the case 3 to the robust one
with ∆0(t) and ∆1(t) given in figures 4 and 5. The estimation error e(t) = z(t)− ẑ(t) is given in figures
6, 7 and 8.
Figures 6, 7 and 8 show that the robust filter is sensitive to the disturbance w(t), and less sensitive to
parametric uncertainties ∆0(t) and ∆1(t). But, on the same figures, it can be noted that the nominal
filter is sensitive to these uncertainties. Moreover, if the uncertainties are time-varying (figure 8), then
the nominal filter is more sensitive. This motivates the importance of taking time-varying uncertainties
in the synthesis of a robust filter into account. For the nominal filter, the tighter optimization on γ may
explain the lack of robustness with respect to parametric uncertainties. Figures 7 and 8 also prove that
the time response of the nominal filter to the initial conditions is smaller than its time response to the
disturbance w(t). On the other hand these time responses are small and appreciably the same for the
robust filter in cases 1, 2 and 3. Note too that the time response of the nominal filter is smaller in case
1 (without uncertainty, figure 6) than that in cases 2 and 3 (with uncertainties, figures 7 and 8) before
the occurrence of w(t).

5 Conclusion

This paper has presented a simple solution to the H∞ unbiased functional reduced order filtering problem
via LMI methods for bilinear systems. The results of the nominal case are extended to the robust filtering
for bilinear systems subject to structured norm-bounded time-varying uncertainties in all system matrices.
After giving conditions for the existence of the unbiased filter in the nominal case, the filter design is
reduced to a robust state feedback problem in the nominal case and to a robust static output feedback
one when the bilinear system is affected by the uncertainties. There is an additional non convex relation
to solve in the robust case.
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Figure 1: Perturbation w(t) and control input u(t).
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Figure 2: Parameter uncertainties ∆0(t) in case 2.
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Figure 3: Parameter uncertainties ∆1(t) in case 2.
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Figure 4: Parameter uncertainties ∆0(t) in case 3.
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Figure 5: Parameter uncertainties ∆1(t) in case 3.
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Figure 6: Robust and nominal filters : estimation error e(t).
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Figure 7: Robust and nominal filters : estimation error e(t).
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Figure 8: Robust and nominal filters : estimation error e(t).
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