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Abstract. – In a two-dimensional microwave chaotic cavity ohmic losses located at the
contour of the cavity result in different broadenings of different modes. We provide an analytic
description and establish the link between such an inhomogeneous damping and the complex
(non-real) character of biorthogonal wave functions. This substantiates the corresponding
recent experimental findings of Barthélemy et al. [Europhys. Lett. 70, 162 (2005)].

Open wave-chaotic systems in the presence of energy losses (absorption) are nowadays
under intense experimental and theoretical investigations, see [1, 2] for recent reviews as well
as [3] for a general discussion. Most of the works concerns the case of uniform absorption which
is responsible for homogeneous broadening Γhom of all the modes (resonance states). However,
in some experimentally relevant situations like, e.g., complex reverberant structures [4, 5] or
even microwave cavities at room temperature [6,7] one should take into account also localized-
in-space losses which lead to an inhomogeneous part Γinh of the widths which varies from
mode to mode. As a result, the neighboring modes experience nontrivial correlations due
to interference via one and the same decaying / dissipative environment that result in the
complex-valued wave functions of corresponding resonance states. Such a complexness may
reveal itself in long-range correlations of wave function intensity and current density [8] that
were recently studied experimentally [9]. Following Ref. [4, 10], it is convenient to measure
the above mentioned complexness through a single statistical parameter, namely the ratio
〈(Imψ)2〉/〈(Reψ)2〉 = q2 of variances of the real and imaginary parts of the mode wave function
ψ. The modes are real (q = 0) in the case of vanishing inhomogeneous losses and become
complex-valued when Γinh 6= 0 (the value of Γhom has no effect on the mode complexity, as
it will become clear later on). The strong experimental evidences in the favor of the intimate
relation between q and Γinh were recently provided by Barthélemy et al. [6], who analyzed
hundreds of resonances in a Sinai-like chaotic microwave cavity and found a proportionality
between these two quantities. Here, we present a thorough analytic description of this problem.
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It is instructive to start with the discussion of the physical picture of the problematic.
A typical experimental setup consists of a flat (two-dimensional) cavity fed with microwaves
through attached antennas or waveguides which support Ma scattering channels (propagating
modes) in total. These very channels are used to perform all the measurements and their
number is finite. Dissipation through ohmic losses at cavity boundaries gives another reason
to treat our system as open, since boundaries may be viewed locally as distributed “parasitic”
equivalent channels with ad hoc impedances [11, 12]. One should distinguish, however, be-
tween almost uniform ohmic attenuation at the cavity plates and localized absorption at the
cavity contour [6, 7]. The number of “parasitic” channels responsible for the former (“bulk”)
mechanism can be naturally estimated as Mb ∼ (L/λ)2, while one has typically Mc ∼ L/λ
channels at the contour (where L is the characteristic length of the cavity and λ denotes the
wave length). Both Mb,Mc ≫ 1 but their ratio Mc/Mb ∼ λ/L is parametrically small and
that will be essential for our consideration.

It is natural, therefore, to use the following model description of the problem. According to
the Hamiltonian approach to scattering [13–15], see also [2], one can represent the scattering
matrix in terms of the effective non-Hermitian Hamiltonian Heff of the open system as follows:

Stot = 1 − iV † 1

E −Heff

V , Heff = H − i

2
V V † . (1)

The Hamiltonian H of the closed chaotic system gives rise to N levels (eigenfrequencies) ǫn
characterized locally in the relevant range of the energy E by the mean level spacing ∆.
Those are coupled to all the open channels via the N × (Ma +Mb +Mc) matrix V of coupling
amplitudes and, as a result, are converted into complex resonances En = En − i

2
Γn, which are

given by the poles of the S-matrix. Accordingly, we propose to decompose V = {A,B,C}
into coupling to Ma antennas, Mb “bulk” and Mc “contour” parasitic channels to separate
explicitly different contributions to the widths Γn. The total (Ma + Mb + Mc)-dimensional
scattering matrix (1) is, of course, unitary.(1) However, one can access experimentally only
the (Ma ×Ma) subblock S = 1 − iA†(E −Heff)−1A which is subunitary.

Without loss of generality one can consider the case of preserved time-reversal invariance
(which was indeed the case of experiment [6]) when the coupling amplitudes V are real and
H is symmetric. It is convenient first to represent Heff in the eigenbasis of its Hermitian part
as follows:

(Heff)nm = ǫnδnm − i

2

(
Ma∑

a=1

Aa
nA

a
m +

Mb∑

b=1

Bb
nB

b
m +

Mc∑

c=1

Cc
nC

c
m

)
. (2)

In a chaotic cavity, H is commonly described in the framework of Random Matrix Theory [3].
A (real orthogonal) rotation that diagonalizes the random Hermitian matrix H transforms the
(fixed) coupling matrix V to Gaussian-distributed coupling amplitudes with zero means and
following covariances (we assume statistical independence of channels from different classes)
[13,14]:

〈Aa
nA

a′

n′〉 = 2κa

∆

π
δaa′

δnn′ , 〈Bb
nB

b′

n′〉 = 2κb

∆

π
δbb′δnn′ , 〈Cc

nC
c′

n′〉 = 2κc

∆

π
δcc′δnn′ . (3)

Coupling constants κ determine transmission coefficients T = 4κ/(1+κ)2 of the corresponding
channels, so that T ≪ 1 (T = 1) stands for weak (perfect) coupling. The strong inequality
Mb ≫Mc ≫ 1 allows us to perform now the limit of a very large number of weak fictitious bulk

(1)Unitarity of the total S-matrix as well as causality, Γn > 0, are automatically provided by the factorized
algebraic structure of the anti-Hermitian part of Heff [14].
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channels, Mb → ∞ and Tb → 0 with MbTb ≡ 2πΓhom/∆ being kept fixed [12], which singles
out the homogeneous absorption contribution. Indeed, by virtue of the central limit theorem
one may replace in Heff the sum

∑Mb

b=1
Bb

nB
b
m with its average value

∑Mb

b=1
〈Bb

nB
b
m〉 ≡ Γhomδnm

in the limit considered that yields

(Heff)nm = (ǫn − i

2
Γhom)δnm − i

2

(
AAT + CCT

)
nm

, (4)

meaning that all the levels acquire one and the same attenuation rate. Since Heff comes into
the scattering problem only as the resolvent (E−Heff)−1, uniform absorption turns out to be
operationally equivalent to a pure imaginary shift of the scattering energy E → E+ i

2
Γhom ≡

Eγ [12, 16]. Thus the physical scattering matrix acquires the following form:

S = 1 − iAT 1

Eγ − H̃eff

A , H̃eff = H − i

2
(AAT + CCT ) . (5)

A representation similar to (5) was used in [5, 17] to study statistics of transmitted power in
dissipative ergodic microstructures. Here, we concentrate rather on spectroscopic problems.

It is clear from the above consideration that only escape to antennas and inhomogeneous
losses contribute to the fluctuating part Γ̃n = Γn − Γhom of the widths. The latter are
given now by the imaginary parts of the complex eigenvalues of H̃eff . Since H̃eff is non-
Hermitian, the eigenvalue problem H̃eff |n〉 = Ẽn|n〉 and 〈ñ|H̃eff = 〈ñ|Ẽn defines two sets of
right and left eigenfunctions, which satisfy the conditions of biorthogonality, 〈ñ|m〉 = δnm,

and completeness,
∑N

n=1
|n〉〈ñ| = 1N . The matrix Unm ≡ 〈n|m〉 6= δnm differs from the unit

one and is known in nuclear physics as Bell-Steinberger nonorthogonality matrix [18] (see a
compact description in [14]). This matrix features in two-point correlations in open systems
seen, e.g., in decay laws [19]. Unn appears also in optics via the so-called Petermann factor of
a lasing mode [20–22]. Some statistical aspects of chaotic nonorthogonal eigenfunctions were
recently studied in [22–24].

For a general non-Hermitian matrix left and right eigenvectors are independent of each
others. However, in our case H̃eff is complex symmetric (due to time-reversal invariance),
implying that left eigenfunctions are given by the transpose of the right ones, 〈ñ| = |n〉T . As

a result, H̃eff = ΨẼΨT can be diagonalized by a complex orthogonal transformation [14], with

Ẽ = diag(Ẽ1, · · · , ẼN ) and Ψ = (|1〉, · · · , |N〉), that leads to the well-known pole representation

of the S-matrix, S = 1 − iAT Ψ(Eγ − Ẽ)−1ΨTA, or in its components:

Saa′ = δaa′ − i
N∑

n=1

ψa
nψ

a′

n

Eγ − Ẽn

, ψa
n ≡ Aa|n〉 =

N∑

k=1

Aa
k|n〉k . (6)

The wave function component ψa
n of the n-th mode excited through the a-th channel is gen-

erally complex. This complexness is solely due to biorthogonal nature of the eigenfunctions
and is directly related to the structure of the anti-Hermitian part of H̃eff . In particular, all
ψa

n are real, when (ImH̃eff)nm ∝ δnm or, more generally, when the anti-Hermitian part of the
effective Hamiltonian commutes with its Hermitian part.(2)

We proceed now with considering the case of tunneling coupling to antennas, which was
realized in experiment [6]. This allows to neglecting safely antenna contributions to Γn,

(2)In this case both the Hermitian H and anti-Hermitian parts of Heff can be diagonalized simultaneously,
thus the eigenbasis being a conventional orthogonal one, as follows from HT = H.
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approximating H̃eff ≈ H − i
2
CCT . In the case of the large but finite number Mc of (contour)

channels, the levels acquire on average the width given by the so-called Weisskopf’s estimate

Γinh ≡McTc

∆

2π
, (7)

well-known in nuclear physics, see, e.g., [14, 15]. It is worth noting that this value can be
formally linked to the Sabine’s law of room acoustics, which determines the average width
Γrefl related to absorption at the cavity contour. One has Γrefl = cLTc/(πS) [6, 25], where S
is the cavity area, c is the speed of light and L is now the cavity perimeter. Making use of
Weyl’s law for the mean level spacing ∆ = cλ/S and putting Mc = L/(λ/2), we find that Γrefl

is exactly converted to Γinh. This provides us with a further link between the present model
description and the microscopic treatment of [6, 7] based on Maxwell’s equations.

Fluctuations of the widths around Γinh are mostly due to those of the matrix CCT . As
follows from the central limit theorem, fluctuations of off-diagonal matrix elements are sup-
pressed as compared to diagonal ones at Mc ≫ 1, (CCT )n 6=m ∼ (CCT )nn/

√
Mc ∼ Γinh/

√
Mc,

so that they contribute to Γ̃n in the next-to-leading order in 1/Mc. However, off-diagonal
matrix elements give a dominating contribution to the mode nonorthogonality. Indeed, all
essential features of the problem can be most explicitly seen in the two-state approximation.
Representing H̃eff as follows

H̃eff ≈
(
ǫ1 0
0 ǫ2

)
− i

2

(
‖C1‖2 (CT

1 C2)
(CT

2 C1) ‖C2‖2

)
, (8)

where C1,2 are the Mc-dimensional vectors of the corresponding coupling amplitudes, one can

easily solve the secular equation for its two eigenvalues Ẽ1,2, finding Ẽ1,2 = (ǫ̃1+ǫ̃2±d)/2, where

d =
√

(ǫ̃1 − ǫ̃2)2 − (CT
1
C2)2 and ǫ̃1,2 = ǫ1,2− i

2
‖C1,2‖2. The corresponding eigenfunctions (we

assume ǫ1 < ǫ2) are given by

|1〉 = N
(

1
if

)
and |2〉 = N

(
−if
1

)
, f =

(CT
1 C2)

ǫ̃2 − ǫ̃1 + d
, (9)

N 2 = (1 − f2)−1 being the normalization constant. Then the nonorthogonality matrix reads
U = |N |2[(1 + |f |2)12 + 2Re(f)σy], with the Pauli matrix σy. The parameter f controls the
mode complexness, as follows from ψa

1,2 = N (Aa
1,2 ± ifAa

2,1) for the mode wave functions.
In experiment [6], the complexness parameter q2 = 〈(Imψa

n)2〉/〈(Reψa
n)2〉 was accessible

only in the regime of the weak mode overlap due to inhomogeneous losses (we stress, however,
that the total width Γhom +Γinh can be larger than ∆). In this regime, Γinh ≪ ∆, the compu-
tation of q can be easily carried out by making the use of the above two-state approximation.
One finds straightforwardly that q2 ≈ 〈(Ref)2〉 ≈ 〈(CT

1 C2)
2〉/(2∆)2, which determines now

the average nonorhogonality matrix as 〈Unm〉 ≈ (1+2q2)δnm. The remaining Gaussian averag-
ing over random amplitudes (3) yields

∑
c,c′〈Cc

1C
c
2C

c′

1 C
c′

2 〉 = Mc(2κc∆/π)2 ≈ Mc(Tc∆/2π)2,
as Tc ≈ 4κc ≪ 1 in our case of large Mc and fixed Γinh. Collecting everything, we arrive at

q ≈ 1√
Mc

Γinh

2∆
(10)

that substantiates the proportionality between q and Γinh established experimentally [6]. The
mode complexness (nonorthogonality) decreases as the number of absorptive channels in-
creases, in agreement with the general discussion presented above.
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We discuss now the role of fluctuations in energy levels and contributions from the other
levels neglected so far. Restricting ourselves to the same weak overlap regime, we can use the
perturbation theory for wave functions to find q2 ≈ 1

4

∑
m6=n〈(CT

nCm)2〉〈(ǫn − ǫm)−2〉. The
known correlation function R2(ω) of Gaussian orthogonal ensembles, see [3], can be now used
to get

∑
m6=n〈(ǫn − ǫm)−2〉 =

∫
dωω−2R2(ω), which can be appreciated as (average square of)

the so-called “level curvature” studied in [26,27]. Since R2(ω) ∼ ω as ω → 0, this integral has
a logarithmic divergency regularized by setting the lower limit ∼ Γinh that also ensures us to
stay within the perturbation theory. As a result, (10) is renormalized by a factor ∼ ln(∆/Γinh).
One should expect that such a factor would be absent in a non-perturbative treatment (see also
the relevant discussion in [22]). The computation of q at arbitrary inhomogeneous absorption
is still an interesting open problem to consider.

In summary, we have presented the model description for inhomogeneous (localized-in-
space) losses in open chaotic systems and discussed thoroughly the resulting complexness
(or biorthogonality) of the mode wave functions. In particular, the complexness parameter q
determining the relative weight of the imaginary parts of the modes is found analytically to be
proportional to the inhomogeneous part Γinh of the widths in full agreement with experimental
results of [6]. Though the present calculation of q is perturbative in the small parameter
Γinh/∆, it may nevertheless be valid in the intermediate or large modal overlap regime where
Γhom dominates, as, for instance, in the case of room acoustics or elastodynamics [1,25]. Our
analysis may be also relevant for problems of mode nonorthogonality outside of the scattering
systems as those considered recently in [23,28].
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