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Université Paris-Sud, Bâtiment 210, 91405 Orsay Cedex, France
2CERMICS, Ecole Nationale des Ponts et Chaussées,

6 et 8 av. Blaise Pascal, Cité Descartes,
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We propose an alternative scenario for the generation of entanglement between rotational quan-
tum states of two polar molecules. This entanglement arises from dipole-dipole interaction, and
is controlled by a sequence of laser pulses simultaneously exciting both molecules. We study the
efficiency of the process, and discuss possible experimental implementations with cold molecules
trapped in optical lattices or in solid matrices. Finally, various entanglement detection procedures
are presented, and their suitability for these two physical situations is analyzed.

PACS numbers: 03.67.Lx, 33.80.Ps, 32.80.Qk

I. INTRODUCTION

In the last years, the development of quantum infor-
mation opened new perspectives for several physical sys-
tems displaying controllable quantum properties. While
some low dimensional basic quantum information tools
have been experimentally realized with cavity quantum
electrodynamics [1], trapped ions [2], NMR [3] and cold
atoms [4], for example, the exploitation of other systems
presenting potential advantages remains of great impor-
tance. In this paper, we focus our attention to polar
diatomic molecules.

There is a growing recent interest in exploiting
molecules for quantum information purposes, both from
the theoretical and experimental points of view. This in-
terest comes partly from the development of new meth-
ods for the generation of ultracold molecular gases [5].
Two techniques are now widely used for this pur-
pose: photoassociation [6] and magnetic Feshbach reso-
nances [7]. These methods, first applied to the forma-
tion of homonuclear molecules, were then used for the
creation of ultracold polar heteronuclear molecules such
as RbCs [8], LiNa [9], KRb [10] or NaCs [11] in various
trapping situations. Very high formation efficiencies were
also obtained recently for homonuclear molecules in op-
tical lattices, when two atoms are located in each lattice
site [12]. This kind of trap presents several advantages
since it allows for the control of both the internal rovi-
bronic and external center of mass quantum states of
the molecules, which can additionally be isolated from
each other due to the tight confinement at the lattice
sites. Finally, the controlled creation of cold heteronu-
clear molecules in optical lattices [13] would allow for the
production of strong inter-molecular interactions which
could be exploited for quantum computation [5].

Indeed, several proposals have been presented recently
to benefit from the specificities of molecules for quan-
tum information [14, 15, 16, 17, 18]. Theoretically, it
was shown that molecules can be used to store binary
information in the phases of rotational wavepackets [14].

The implementation of simple quantum algorithms has
also been proposed using femtosecond pulses acting on di-
atomic molecules [15, 16, 17]. Additionally, it was shown
that molecules in optical lattices can simulate topolog-
ical order, generating topologically protected subspaces
where a quantum bit (qubit) can be encoded [18].

The use of polar diatomic molecules in various kinds
of traps was also proposed recently by different groups
for quantum computation [19, 20, 21, 22]. DeMille [19]
first proposed to use molecules oriented along an exter-
nal electric field in a 1D trap array for the implementa-
tion C-NOT gates with a very large number of qubits.
Lee and Ostrovskaya [20] then proposed to use coherent
Raman transitions between scattering and bound states
of heteronuclear molecules trapped in optical lattices for
the implementation of conditional dipole-dipole interac-
tions. It was shown by Kotochigova and Tiesinga [21]
that microwave fields can be used to induce a tunable
dipole-dipole interaction between ground state rotation-
ally symmetric molecules. Finally, Yelin et al [22] also
proposed very recently different schemes for the imple-
mentation of molecular quantum gates. From the exper-
imental point of view and in another context, evidences
of quantum correlations caused by dipole interaction be-
tween two molecules separated by tens of nanometers in
an organic crystal were observed by detection of photon
bunching [23].

In the present work we address the question of con-
trolled entanglement creation in cold polar diatomic
molecular systems. In our proposal, pure states with any
degree of entanglement can be created by laser assisted
conditional dipole-dipole interaction. Compared to pre-
vious proposals, this process only involves two vibrational
states in their three lowest rotational levels. A Raman
transition is used to transfer the qubit state from a set of
uninteracting levels used for the storage of information to
a set of interacting levels used for the creation of entan-
glement. This ability to switch on and off the dipole in-
teraction with simple optical pulses of relatively short du-
ration allows for the implementation of conditional quan-
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tum logic. In this approach, the dipole interaction is suf-
ficiently weak to be treated as a perturbation, but suffi-
ciently strong to generate maximally entangled states in a
relatively short duration (≃ 10µs – 1ms) as compared to
the expected coherence time (≫ 1 s) [21, 24]. One could
therefore perform about 104 logical gates within this an-
ticipated coherence time. In addition to this possible im-
plementation with cold molecules trapped in optical lat-
tices, other physical systems, such as molecules trapped
in solid matrices, are also considered in the present work.
In this case, entanglement is created in an uncontrolled
way in a collection of N molecules, two by two. Finally,
we investigate some ways of detecting entanglement given
the possibilities of each system, and describe how to per-
form non-locality tests.

In Section II, we describe the basic principles for en-
tanglement creation between the rotational levels of two
polar molecules. The effects of dissipation are discussed
in Section III, together with possible experimental real-
izations. Finally, a direct detection test of this entangle-
ment is described in Section IV.

II. LASER ASSISTED CREATION OF

ROTATIONAL ENTANGLEMENT

A. General frame

We consider here two identical diatomic polar
molecules, initially prepared in their ground electronic
and rotational levels. For simplicity, and in order to de-
scribe the physical process on which relies this entangle-
ment creation procedure, we ignore in this section the
vibrational degree of freedom. The additional complex-
ity introduced by the vibrational motion will be dealt
with in Section II B.

Since the mechanism proposed in the next Section for
the implementation of a quantum phase gate is based
on unitary transformations conserving the projection of
the rotational quantum number of both molecules on the
inter-molecular axis, this projection is fixed at zero in
the following (see the justification given at the end of
Sec. II B for details).

The rotational stationary states of each isolated
molecule, with energies

εN = BrotN(N + 1) , (1)

are denoted by |N〉i, with

〈θi, φi|N〉i = YN,0(θi, φi) , (2)

where YN,0(θi, φi) represents the spherical harmonic as-
sociated with the molecular rotational quantum number
N of projection zero on the inter-molecular axis. The
index identifying each molecule is i = 1, 2. The angular
coordinates of the two molecules with respect to the rela-
tive inter-molecular coordinate ~r are denoted by the polar
and azimuthal angles θi and φi (see Fig. 1 for a schematic

FIG. 1: (Color online) Schematic view of the molecular con-
figuration. The quantization axis is chosen as the inter-
molecular axis. The electric fields ~E(t) associated with the
laser pulses are assumed to be linearly polarized along this
same direction. The orientations of the permanent dipoles ~µ1

and ~µ2 of the two molecules are characterized by the angles
(θ1, φ1) and (θ2, φ2).

representation). The molecular rotational constant, Brot,
corresponds to the rotational period Trot = ~π/Brot.

For the two-molecule interacting system, the field free
Hamiltonian reads

Ĥ = Ĥ0 + Vd(~r) , (3)

where the non-interaction Hamiltonian Ĥ0 is written as
the following sum of mono-molecular Hamiltonians

Ĥ0 =
∑

i

∑

N

εN |N〉i i〈N | , (4)

and the dipole interaction potential Vd(~r) takes the form

Vd(~r) =
1

4πǫ0

µ2

r3
[

− 2 cos θ1 cos θ2

+ sin θ1 sin θ2 cos(φ1 − φ2)
]

. (5)

In this equation, µ is the permanent dipole moment of
the molecule.

The interaction of the two molecules with a sequence
of linearly polarized laser pulses is described within the
dipole approximation by the length-gauge laser interac-
tion Hamiltonian

Ĥlaser = −µE(t) (cos θ1 + cos θ2) , (6)

where we have assumed that the polarization of the elec-

tric field ~E(t) is parallel to the inter-molecular vector ~r.
Since in our scheme the projection of the rotational

quantum number on the inter-molecular axis remains
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equal to zero, the second part of the dipole interaction
potential in Eq.(5) averages to zero, and one is left with

Vd(~r) = − 1

2πǫ0

µ2

r3
cos θ1 cos θ2 . (7)

This dipole interaction only couples angular momentum
states N which differ by one unit, and the selection rule
∆N = ±1 applies for each molecule.

For the sake of simplicity let us first analyze the ef-
fect of the dipole interaction in the angular subspace
spanned by the quantum numbers N = 0 and 1 only.
This subspace is entirely characterized by the tensorial
product basis set |0〉1 ⊗ |0〉2, |0〉1 ⊗ |1〉2, |1〉1 ⊗ |0〉2 and
|1〉1 ⊗ |1〉2, that we can reference more simply as the
states |00〉, |01〉, |10〉 and |11〉. Note that out of these

four eigenstates of the non-interacting Hamiltonian Ĥ0,
|01〉 and |10〉 are degenerate. The perturbation regime
therefore applies when

〈01 |Vd| 10〉θ1,θ2
≪ 2Brot . (8)

This criterion imposes a limit on the inter-molecular sep-
aration which is discussed in Section III. With such a
small dipole interaction, the zero-order eigenstates of the
interacting Hamiltonian Ĥ are simply given by

ψ1 = |00〉 (9a)

ψ2 =
1√
2

(|01〉+ |10〉) (9b)

ψ3 =
1√
2

(|01〉 − |10〉) (9c)

ψ4 = |11〉 (9d)

The first-order energies of ψ1 and ψ4 are obviously unaf-
fected by the dipole interaction, while the degeneracy of
the states |01〉 and |10〉 is removed at first-order, intro-
ducing the energy shifts

∆E± = ± 1

6πǫ0

µ2

r3
. (10)

The probability distribution P (θ1, θ2) = |ψ2(θ1, θ2)|2
of state ψ2 is shown in Fig. 2(a). This state, which can be
seen as the following combination of molecules pointing
in the same direction

ψ2 ≡
1√
2

(|→→〉 − |←←〉) , (11)

is maximally entangled in orientation [26]. This config-
uration is obviously stabilized by the dipole interaction.
On the other hand, the entangled state ψ3, represented
in Fig. 2(b), corresponds to two molecules oriented in op-
posite directions

ψ3 ≡
1√
2

(|→←〉 − |←→〉) . (12)

This state is, therefore, subjected to a repulsive interac-
tion.
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FIG. 2: (Color online) Probability distributions of the zero-

order eigenstates of the interacting Hamiltonian Ĥ as a func-
tion of the polar angles θ1 and θ2 defining the orientation of
the two molecules with respect to the inter-molecular axis (see
Fig. 1) [25]. The upper graph (a) corresponds to the state ψ2,
while the lower graph (b) is associated with the state ψ3.

The energy shifts ∆E± of Eq.(10) lead to a temporal
dephasing ∆E±t/~ for a free evolution during a time t of
the bipartite rotational states as compared to the non-
interacting single-molecule rotational levels. As we will
show in the following, this dephasing can be used for en-
tanglement creation and conditional quantum logic. We
now turn to the description of the mechanism we propose
to perform a quantum phase gate using the two lowest
rotational levels of each molecule.

B. Quantum phase gate and entanglement creation

The physical implementation of quantum logic [27]
would put the predicted polynomial [28] and exponen-
tial [29] speed-up of various computational tasks of sig-
nificant interest in concrete form. This achievement re-
quires the physical implementation of a universal set of
single and two-qubit quantum gates [30]. Single-qubit
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operations, which consist of rotations in the qubit ba-
sis [30], are relatively easily implemented using stimu-
lated Raman transitions for instance [5, 6, 8, 12] or us-
ing stimulated Raman adiabatic passage techniques with
transform-limited laser pulses [31]. We therefore present
here a proposal for the implementation of a two-qubit
quantum phase gate. This phase gate P (ϕ), defined by
the unitary transformation

|00〉 −→ |00〉
|01〉 −→ |01〉
|10〉 −→ |10〉
|11〉 −→ eiϕ |11〉

, (13)

entangles the two-qubits by selectively changing the state
|11〉 while leaving other states unchanged. In practice,
it is often simpler to implement a phase gate which
changes the different qubit states according to the adia-
batic transformation

|00〉 −→ eiϕ00 |00〉
|01〉 −→ eiϕ01 |01〉
|10〉 −→ eiϕ10 |10〉
|11〉 −→ eiϕ11 |11〉

. (14)

This last unitary operation can then be reduced to the
conditional phase gate P (ϕ) described in Eq.(13), with

ϕ = ϕ00 + ϕ11 − ϕ01 − ϕ10 , (15)

by using additional single-qubit operations [30, 32, 33,
34]. Its is clear that the dynamical phases acquired dur-
ing the evolution of non-interacting eigenstates do not
contribute to this global phase [33], and they will, there-
fore, be ignored in the following.

The case ϕ = π is of clear interest since this particular
operation can be used to transform a separable two-qubit
state into a maximally entangled state. Several differ-
ent implementations of this universal gate have already
been proposed or implemented with various physical sys-
tems [35, 36]. In this study, we propose the implemen-
tation of such a conditional phase gate using both the
vibrational and rotational molecular degrees of freedom.

The two rotational levels N = 0 and 2 of a well-defined
vibrational state v0 are used for the storage of infor-
mation. These two states have several advantages for
this purpose. First, they are easily manipulated by two-
photon Raman transitions relying on an intermediate
level of rotational quantum number N = 1. These two-
photon transitions may indeed be used to perform ar-
bitrary one-qubit rotations. In addition, they are unaf-
fected by the dipole interaction, which only couples, at
first order, angular momentum states differing by one
unit. Finally, their associated spontaneous decay rate

γrot ≃
1

4πǫ0

4µ2B3
rot

3~4c3
, (16)

corresponding to the (v0, N = 2)→ (v0, N = 0) transi-
tion, is not limiting their coherence time for the het-
eronuclear alkali dimers considered in this study, with

FIG. 3: (Color online) Laser pulses and energy levels involved
in the creation of the auxiliary state |+〉, defined in Eq.(20).
This transfer enables controlled dipole coupling between two
neighboring molecules. The |0〉 and |1〉 qubit states are shown
as two green dotted horizontal lines. The π/2 laser pulse (a)
first creates the coherent superposition (|2, v0〉 + |1, v1〉)/

√
2.

The laser pulses (b) and (c) then transfer the remaining pop-
ulation of |2, v0〉 to |0, v1〉 in a two-photon process. Arbitrary
coherent superpositions α |0, v0〉+β |2, v0〉 can also be created
from state |0, v0〉 by a two-photon Raman process relying on
a N = 1 intermediate level.

Brot ≃ 0.01− 0.1 cm−1. It is interesting to note here
that, in various experiments [12], cold diatomic molecules
have already been prepared and trapped using optical lat-
tices in their ground electronic and rotational levels and
in a well-defined vibrational state.

For the sake of simplicity, let us now denote the states
of both molecules by labelling them according to the
value of their rotational and vibrational quantum num-
bers as |N, v〉. Our qubit states are, therefore, now de-
fined as being

|0〉 ≡ |0, v0〉 (17a)

|1〉 ≡ |2, v0〉 (17b)

To implement the conditional phase gate (13), the qubit
state |1〉 is selectively transferred, at time t = 0, to the
coherent superposition

|Ω0〉 = α |0, v1〉+ β |1, v1〉 (18)
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associated with a vibrational state v1 6= v0, while the
qubit state |0〉 remains unchanged. The state |Ω0Ω0〉 can
be easily expressed in the eigenbasis {ψi} of Eq.(9), where
its time-evolution is simply given by analytical phase fac-
tors. We now denote the state (18) at any time t > 0 by
|Ωt〉. A simple analysis then shows that the time-average
dipole interaction

〈Vd〉 =
1

Trot

∫ Trot

0

〈ΩtΩt |Vd|ΩtΩt〉θ1,θ2
dt (19)

is maximized if the quantum superposition |Ω0〉 is chosen
as the state

|Ω0〉 = |+〉 =
1√
2

(|0, v1〉+ |1, v1〉) . (20)

We will, therefore, transfer here the qubit state |1〉
to the coherent superposition |Ω0〉 ≡ |+〉. This transfer
involves two transitions, which are represented schemat-
ically with the arrows shown in Fig. 3. A first π/2 laser
pulse (arrow (a) in Fig. 3) transfers half of the popula-
tion from state |1〉 ≡ |2, v0〉 to state |1, v1〉, thus creating

the coherent superposition (|2, v0〉+ |1, v1〉)/
√

2. A two-
photon Raman process (arrows (b) and (c) in Fig. 3) then
transfers the remaining population of state |2, v0〉 to state
|0, v1〉, therefore completing the protocol and generating
the |+〉 state of Eq.(20). This transfer can be performed
using stimulated Raman adiabatic passage techniques
for instance [31]. For practical reasons, it could also be
preferable to operate this two-photon transition slightly
detuned from the intermediate level |1, v2〉. The efficiency
of spontaneous Raman scattering, a mechanism possibly
leading to trap losses in optical lattices, is indeed clearly
decreased in this case [12]. In terms of pulse duration,
it is necessary to work with pulses whose spectral band-
width is much lower than the rotational energy spacing
2Brot. With the polar molecules considered in this study
(see Table I for the rotational constants of RbCs, KCs,
KRb, NaCs, NaRb and NaK), this requirement imposes
a pulse duration much larger than ∆t ∼ 200 ps. Since the
gate durations obtained with these polar molecules be-
long to the µs time scale (see Sec. III hereafter), the trans-
fer between the storage qubits and the interacting states
proposed here is not limiting the total operation time of
the gate. Re-establishing the initial state |2, v0〉 is simply
done by using the pulses which invert this unitary oper-
ation: a π-pulse for the transition |1, v1〉 → |2, v0〉, and a
Raman pulse sequence similar to the one shown in Fig. 3
for the complete transfer |0, v1〉 → |2, v0〉. Note that, due
to the choice of laser frequencies, the state |2, v0〉 is the
only one affected by the laser pulses, and the state |+〉 is
produced conditioned to the fact that the molecules are in
state |2, v0〉 initially. Finally, we would like to stress that,
as shown in Ref. [36], the fact that the interaction with
the laser pulses is analyzed in terms of single-molecule
states, while the overall two-qubit phase gate operation
is based on the two-molecule interacting Hamiltonian, is
not limiting the generality of our results.

FIG. 4: (Color online) Probability distribution associated
with the interacting state ψ++ ≡ |++〉 corresponding to both
molecules in the |+〉 state (20) as a function of the polar angles
θ1 and θ2 which define the orientation of the two molecules
with respect to the inter-molecular axis (see Fig. 1) [25].

When this sequence of laser pulses is applied to both
molecules simultaneously, the complete molecular system
ends up in state |++〉 if it was initially in state |11〉.

The probability distribution of state |++〉 is shown
in Fig. 4 as a function of θ1 and θ2. This separable state
clearly corresponds to two molecules oriented in the same
direction, with

|++〉 ≡ |→→〉 . (21)

Since the two coherent superpositions (20) which are as-
sociated with each molecule evolve in phase, this parallel
orientation is maintained at any time. As a consequence,
this state is stabilized by the dipole interaction.

This stabilization effect can also be easily deduced from
a simple rewriting of state |++〉 as a function of the eigen-

states (9) of the interacting Hamiltonian Ĥ

|++〉 = 1

2
(ψ1 + ψ4) +

1√
2
ψ2 . (22)

This rewriting reveals the contribution of the stabilized
eigenstate ψ2, and a lack of contribution from the desta-
bilized state ψ3.

The quantum phase gate can, therefore, be imple-
mented in three steps, following the sequence

|00〉 −→ |00〉 −→ |00〉 −→ |00〉
|01〉 −→ |0+〉 −→ |0+〉 −→ |01〉
|10〉 −→ |+0〉 −→ |+0〉 −→ |10〉
|11〉 −→ |++〉 −→ − |++〉 −→ − |11〉

, (23)

where the dynamical phases associated with the non-
interacting evolution have been ignored. The sign change
of state |++〉 is due to the free evolution of the dipole in-
teracting two-molecule system. Indeed, because of the
dipole interaction, this state gains a time dependent
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TABLE I: Optimal range of inter-molecular separations for
the implementation of conditional quantum logic with polar
molecules. The minimum and maximum distances rmin and
rmax verify the inequalities (26) and (29), with a ratio between
the left and right hand sides of these equations equal to 103.
The molecular parameters Brot, µ and ωvib are taken from [37]
and [38].

Brot µ ωvib rmin rmax

(cm−1) (D) (cm−1) (nm) (nm)

RbCs 1.65 10−2 1.21 49.4 52.8 1385

KCs 3.08 10−2 1.84 66.2 56.8 1033

KRb 3.80 10−2 0.59 75.5 24.8 906

NaCs 5.88 10−2 4.58 98.0 84.3 698

NaRb 7.02 10−2 3.30 107.0 63.8 639

NaK 9.81 10−2 2.76 124.1 50.7 551

phase easily expressed as ϕ(t) = (δ/~) t, where

δ = 〈+ + |Vd|+ +〉 = 1

4πǫ0

µ2

3r3
(24)

This step is, therefore, able to build up a maximal molec-
ular entanglement in the duration

τ = 4πǫ0

(

3~πr3

µ2

)

(25)

from an initially separable two-qubit wavefunction.
Since, from all accessible states in Eq.(23), the state
|++〉 is the only one in which the two molecules are cou-
pled by dipole interaction at first order, by transforming
the |+〉 states back to the “storage” qubit states |1〉, we
stop the conditional interaction and transfer the quan-
tum phase gate to the original subspace spanned by the
levels |00〉, |01〉, |10〉 and |11〉.

It is important to notice that the quantum numbers
Mi, projections of the rotational quantum numbers of
the two molecules on the inter-molecular axis, remain
unchanged in the protocol above. This happens thanks

to the polarization chosen for the electric field ~E(t) (see
Fig. 1), and because the dipole interaction (7) can be ex-
pressed as the Y2,0 component of a second order spherical
tensor. This interaction therefore conserves the total pro-
jection M = M1 +M2. In our scheme, the initial value
of M is zero, and the dipole coupling affects the linear
combination |01〉+ |10〉 of state |++〉 only. In this linear
combination, one of the molecule remains in the ground
rotational level N = 0, and both projections M1 and M2

are, therefore, fixed at zero during the whole gate dura-
tion.

Finally, we also would like to stress that, in the proto-
col described above, the auxiliary vibrational levels could
as well be replaced by electronic states without substan-
tially modifying the basic procedure of entanglement cre-
ation. In this case, it would however be required to imple-
ment the two-photon transition shown in Fig. 3 slightly

detuned from the intermediate level in order to avoid
spontaneous emission by electric dipole transitions [12].

III. DISCUSSION ON POSSIBLE

EXPERIMENTAL IMPLEMENTATIONS

A practical implementation of the quantum phase gate
described in Section II B must satisfy the following con-
ditions:

(i) the molecules should be prepared initially in their
rotational ground state,

(ii) the molecules should be close enough for a fast op-
eration time, but far enough to avoid strong non-
linear interactions,

(iii) the molecules should be individually addressable,

(iv) the inter-molecular distance should remain con-
stant during the whole gate duration,

(v) the gate operation time should be much shorter
than the decoherence time.

Considering the five requirements above, trapped
molecular systems seem to be interesting candidates for
the implementation of the quantum phase gate protocol.
We proceed now to a more quantitative investigation of
the experimental parameters involved.

Let us take as an example cold molecules trapped in
an optical lattice. In such systems, the molecules can be
formed from an atomic Bose-Einstein condensate (BEC)
by Feshbach resonance or by photoassociation. Since
the molecules are then formed in s-wave collisions, the
first criterion is necessarily fulfilled. In addition, the
molecules could be addressed individually (criterion (iii))
as proposed by DeMille [19] by using an electric field gra-
dient which shifts the transition frequencies of the dif-
ferent molecules as a function of their position. Finally,
when the dipole interaction is weak, the molecules are not
moving from their lattice site during the gate operation,
and the criterion (iv) is also verified.

For the dipole interaction to be treated as a perturba-
tion, one should require that the inequality (8) is verified.
The two molecules should therefore be well separated,
with

r3 ≃
(

λ

2

)3

≫ 1

4πǫ0

(

µ2

3Brot

)

. (26)

In this equation, λ denotes the wavelength of the lattice
laser light.

A link can be made between this requirement and
the condition (v). In an optical lattice, among various
sources of decoherence, one can cite spontaneous emis-
sion, decoherence due to the coupling to the black-body
radiation of the room-temperature environment, and col-
lisions with residual atoms or molecules. The black-body
contribution leads to lifetimes which are much larger
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(> 100 s) than the expected gate duration [21, 24]. For
such cold and relatively isolated molecules, spontaneous
emission from excited vibrational states should therefore
present the highest contribution to decoherence. The
spontaneous vibrational decay rate is then given by

γvib ≃
1

4πǫ0

(

4µ2ω3
vib

3~c3

)

, (27)

where ωvib is the vibrational frequency and c is the speed
of light. The requirement (v), reformulated as

γvib τ ≪ 1 , (28)

therefore yields another criterion for the inter-molecular
separation

r3 ≃
(

λ

2

)3

≪ c3

4πω3
vib

. (29)

Combining Eqs. (26) and (29) yields an optimal range
[ rmin , rmax ] of inter-molecular separations for the im-
plementation of the present conditional quantum logic
scheme with polar molecules. This range of distances is
given in Table I for a set of alkali dimers which have been
presented as potential candidates for quantum informa-
tion [19, 20, 21].

Clearly, all alkali dimers are well suited if one considers
lattices in the optical or near infrared domain, around
λ ≃ 600− 1100 nm. In addition, a recent study [21] has
shown the existence of two frequency windows for KRb
and RbCs in which, in spite of the complex molecular
internal structure, resonant excitation by the lattice light
is very unlikely. The trapping potential of the lattice is
then almost unaffected by this additional complexity.

The efficiency of the present entanglement procedure
is finally analyzed in Fig. 5 for the two dimers KRb and
NaCs, which have the smallest and largest dipole mo-
ments µ = 0.59 D and µ = 4.58 D of the alkali molecules
of Table I. The upper and lower panels (a) and (b) of this
figure show the expected gate duration τ (Eq.(25)) and
the gate robustness 1/γvibτ as a function of the lattice
site separation λ/2 for these two molecules.

In the domain λ/2 ≃ 300− 500 nm (right part of
Fig. 5), gate durations around τ ≃ 12− 60µs and
τ ≃ 0.8− 3.6 ms are obtained for NaCs and KRb respec-
tively. As shown in Fig. 5(b), in the same range of wave-
lengths, about 3×103 to 3×104 gates can be performed in
the expected coherence time of the system. More specif-
ically, the frequency window λ ≃ 680± 35 nm given in
Ref. [21] for KRb yields the gate duration τ ≃ 1.2 ms,
with 1/γvibτ ≃ 1.8 104 gates achievable in the expected
coherence time. In addition, one should note that the
gate duration τ is much larger than the molecular rota-
tional period. The quantum phase gate therefore builds
up in a very large number of molecular rotations.

The number of rotations necessary for the creation of
entanglement can be decreased by using molecules closer
to each other. This can be achieved in systems where the
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FIG. 5: (Color online) Gate duration τ [upper panel (a)]
and gate robustness 1/γvibτ [lower panel (b)] in logarithmic
scales as a function of the average inter-molecular separation
r ≃ λ/2 in an optical lattice of wavelength λ. The values
corresponding to NaCs (µ = 4.58 D) are shown as black solid
lines and the one associated with KRb (µ = 0.59 D) are rep-
resented as red dashed lines.

molecular density reaches higher values, as in solid matri-
ces for instance. In such systems, the quantum phase gate
protocol described above leads to uncontrolled entangle-
ment creation between different molecules. Since in this
system the molecules are randomly located in the ma-
trix sites, one can usually not define rigorously a unique
inter-molecular quantization axis. As a consequence, dif-
ferent values ofM will appear during the implementation
of the quantum phase gate protocol. For relatively low
densities, an undetermined entangled state is, therefore,
produced between pairs of molecules.

Let us now consider the specific case of DCl
(µ ≃ 1.02 D) trapped in an fcc Ar crystal [39], with an
Ar-Ar distance equal to that in bulk Ar, i.e. 7.03 a.u..
The DCl molecules are located at the center of the cu-
bic Ar structure, and the closest molecules are separated
from each other by 7.03 a.u. only. In these conditions, a
quantum phase gate may be performed in just τ ≃ 500 fs.

The vibrational motion of these molecules is of course
coupled to the vibrational modes of the crystal, and this
is the main source of vibrational decoherence in this sys-
tem. This decoherence time strongly depends on tem-
perature, and for T = 6 K, it is of the order of 100ps [39].
About 200 gates could therefore be performed within the
system coherence time. By further cooling down this
system, one can expect to dramatically increase these
figures. An advantage of this type of system is its sim-
plicity, and the fact that it is a tractable macroscopic
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system. It also allows, in principle, for a direct test of
entanglement, as discussed in the next Section.

IV. ENTANGLEMENT DETECTION AND

NON-LOCALITY TESTS

A possible way to completely characterize the entan-
gled state generated by the procedure described in Sec-
tion II is to perform a tomographic measurement of the
rotational state. This can be done by detecting, by mea-
surements of molecular alignment for instance [40], the
complete density matrix of the system [41]. This proce-
dure, usually employed in the quantum information con-
text with trapped atoms and ions, presents the advantage
of giving complete information about the system state.

However, if one is interested only in determining if
both molecules are entangled or not, other measure-
ment schemes can be simpler and more direct. They
are based on entanglement witnesses [42]. These mea-
surements present the disadvantage of not providing nec-
essary and sufficient criteria for entanglement detection
since only a subspace of the Hilbert space spanned by all
entangled states is detected.

A possible way of testing entanglement using entangle-
ment witnesses is to perform Bell type experiments [43]
with molecules in an optical lattice. By applying the uni-
tary transformations which allow for the implementation
of a conditional phase gate between the storage rotational
levels |0〉 and |1〉 as discussed in Section II, and then by
measuring the population of each level, one can infer the
quantity

B =
∣

∣〈σaσb〉+ 〈σa′σb〉+ 〈σaσb′〉 − 〈σa′σb′ 〉
∣

∣ , (30)

where the σα are the Pauli matrices in the α directions,
written in the (|0〉 , |1〉) basis set. In this type of mea-
surement, the molecules do not need to be distinguished.
As shown in Ref. [43], all separable states satisfy the in-
equality

B 6 2 , (31)

while some entangled states violate it. Other types of
approaches are also possible with temporal Bell inequal-
ities, for instance [44].

In the solid matrix system, the rotational states of the
molecules are not as accessible as in the preceding case.
In such systems, the measurements are usually made by
radiation detection or by photon echo techniques [39]. In
Ref. [45], it was shown that photon echoes can be used

as entanglement witnesses, detecting a subspace of en-
tangled states. In the experimental system in question,
the echoes are observed in a transition between two vi-
brational levels. In order to obtain information about
entanglement between rotational states, one should first
coherently transfer the population of state |1〉 ≡ |2, v0〉
to the first excited vibrational state with no rotational
excitation, |0, v1〉, using the two-photon process shown
in Fig. 3. The result of this transformation is somehow
to swap the excitations associated with the rotational
and vibrational degrees of freedom. By doing so, entan-
glement between rotational levels is, therefore, converted
into entanglement between vibrational levels. The tech-
niques described in [45] can then be applied for entangle-
ment detection.

V. CONCLUSION

We have presented an alternative way for creating
controlled and uncontrolled entanglement between rota-
tional levels of two polar diatomic molecules trapped in
optical lattices or in solid matrices.

Our scheme is based on a weak dipole coupling which
is conditionally created between molecules, leading to a
conditional phase shift. It uses the three lowest rota-
tional levels of two vibrational states. For storage of the
information between the gate operations, the qubit state
is transferred efficiently via a Raman transition to two
uninteracting states of long coherence times.

We have discussed two possible experimental scenar-
ios which are suitable for implementing the proposed
scheme, as well as possible detection techniques adapted
to both experimental contexts. These results throw some
light on how to perform quantum information operations
in cold and trapped molecular systems.
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