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Abstract: This paper deals with an optimal instrumental variable method dedi-
cated to subspace-based closed-loop system identification. The presented solution
is based on the MOESP technique but requires to modify the original scheme by
proposing a new PO MOESP method which uses reconstructed past input and past
output data as instrumental variables. The developed approach is then illustrated
via a simulation example and a comparison with other subspace-based methods.
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1. INTRODUCTION

Identification of dynamical systems operating in
closed-loop has recently collected much attention.
Indeed, for many industrial production processes,
safety and production restrictions are often strong
reasons for not allowing identification experiments
in open loop. The main difficulty in closed-loop
identification is due to the correlation between
the disturbances and the control signal, induced
by the loop. Many results were established dur-
ing the last decade in the case of linear transfer
function models (Van den Hof, 1998; Forssell and
Ljung, 1999; Gilson and Van den Hof, 2005).
In parallel, a large number of subspace identifi-
cation methods (SIM) have been developed since
the 90’s (see e.g. (Verhaegen, 1994; Van Overschee
and De Moor, 1996) and (Viberg, 1995; Bauer,
2005) for relevant overviews). One of the reasons

for the success of SIM lies in the direct correspon-
dence between geometric operations on matrices
constructed from input/output data and their im-
plementation in terms of well known, stable and
reliable algorithms from the field of numerical
linear algebra. Lot of them have been extended
to the closed-loop case (Verhaegen, 1993a; Van
Overschee and De Moor, 1997; Chou and Verhae-
gen, 1997; Katayama et al., 2005) or directly de-
veloped in a closed-loop context (Qin and Ljung,
2003; Oku and Fujii, 2004; Huang et al., 2005).
When looking at methods that can consistently
identify plant models of systems operating in
closed-loop while relying on simple linear (re-
gression) algorithms, instrumental variable (IV)
techniques seem to be rather attractive, but at
the same time also not very often applied. Fur-
thermore, when comparing the several available
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IV algorithms, the principal question to address
should be: how to achieve the smallest variance of
the estimate. Concerning extended IV methods,
an optimal variance result has been developed in
the closed-loop context when a transfer function
model is sought (Gilson and Van den Hof, 2005).
The goal of this paper is to propose an optimal
IV estimator dedicated to subspace closed-loop
identification.
The paper is organized as follows. After the pre-
liminaries, the optimal closed-loop instrumental
variable problem is briefly presented in section 3
and a subspace-based solution is proposed section
4. Then, the performances of the developed algo-
rithm are illustrated via a simulation example and
a comparison with others subspace-based closed-
loop algorithms is given.

2. PRELIMINARIES

PC
+

+

+

-

rs(t) uc(t)

r(t)
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e(t)

y(t)

Fig. 1. Closed-loop system setup.

The discrete time closed-loop system configura-
tion that will be considered is sketched in figure
1. The identification setup is the following: u ∈
R

nu×1 is the process input signal, y ∈ R
ny×1 the

process output signal, r ∈ R
ny×1 and rs ∈ R

nu×1

the reference and setpoint signals respectively.
The controller output is denoted by uc ∈ R

nu×1,
while e ∈ R

ny×1 represents a white noise signal. It
is assumed, without loss of generality, that the set-
point rs = 0 while an excitation signal is added to
the controller output, via r. The process equations
are then given by

x(t + 1) = Ax(t) + Bu(t) + Ke(t) (1)

y(t) = Cx(t) + Du(t) + e(t). (2)

The controller equations are defined as

xc(t + 1) = Acxc(t) − Bcy(t) (3)

uc(t) = Ccxc(t) − Dcy(t). (4)

The process input checks u(t) = r(t) + uc(t).

2.1 Assumptions

The following assumptions are made on the
closed-loop system (Verhaegen, 1993a):

• The identification problem is supposed to
be well-posed in a sense that the output is
uniquely determined by the state of the plant
and the controller and by the disturbances
and excitation signal. This generic condition
is satisfied when (Iny

+DDc) is non singular
(Van Overschee and De Moor, 1997).

• The closed-loop system is internally stable.
• The excitation signal r and noise e are mu-

tually uncorrelated.

2.2 Notations

In order to simplify the subspace solution pre-
sented further, some notations are introduced.
The identification framework considered hereafter
is the subspace identification algorithms family
gathered under the acronym MOESP (Verhaegen,
1994) (see (Haverkamp, 2001) for an interesting
overview of the MOESP identification schemes).
The key problem of this approach consists in
consistently estimating the column space of the
extended observability matrix of order i defined
as

Γi =
[

CT (CA)
T · · ·

(

CAi−1
)T

]T

(5)

from measured input/output (I/O) samples. In-
deed, from this matrix, it is relatively straightfor-
ward to derive (up to a similarity transformation)
the state space matrices [A,B,C,D,K] by ex-
ploiting particular properties of the observability
matrix (see e.g. (Viberg, 1995)). For that, let us
introduce the following generic notations. Given a
sampled data sequence {w} with w ∈ R

nw×1, the
past and future Hankel matrices are defined as

W−
p (t̄) =

[

w−
p (t) · · · w−

p (t̄)
]

∈ R
nwp×M (6)

W+

f (t̄) =
[

w+

f (t) · · · w+

f (t̄)
]

∈ R
nwf×M (7)

with t̄ = t + M − 1 and

w−
p (t) =

[

w(t − p) · · · w(t − 1)
]

∈ R
nwp×1 (8)

w+

f (t) =
[

wT (t) · · · wT (t + f − 1)
]T ∈ R

nwf×1

(9)

where p and f are user defined integers such as
M >> f, p > n. Furthermore, let us denote by Hu

i

the block Toeplitz matrix of the impulse responses
from u to y He

i the block Toeplitz matrix of the
impulse responses from e to y (Viberg, 1995).

2.3 Problem formulation

Given input, output and reference data {u}, {y}
and {r} of a closed-loop identification problem,
estimate a nominal state space model.

3. OPTIMAL CLOSED-LOOP
INSTRUMENTAL VARIABLE METHOD

The direct application of the classical open loop
subspace identification algorithms to the I/O mea-
surements u,y leads to a biased estimate when
the data are collected under feedback. More pre-
cisely, the use of past input and/or past output
as instrumental variable (IV) gives unreliable es-
timates because of the correlation between the
disturbances and the input signal (see (Ljung and
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McKelvey, 1996) for the proof). To overcome this
drawback, a particular IV based on the extended
instrumental variable techniques (Ljung, 1999) is
proposed. To apply this latter, the user has to
choose the instruments ξ, the number of instru-
ments nξ to be used, a weighting matrix Q and
a prefilter L(z). Moreover, to be used in the sub-
space identification framework, this instrumental
variable has to be uncorrelated with the noise
but correlated with the noise free I/O signals. As
proved in (Gilson and Van den Hof, 2005), the
choice of these design variables may have a con-
siderable effect on the resulting covariance matrix.
It has been more particularly shown herein that,
in the closed-loop transfer function identification
case, there exists a minimum value of the covari-
ance matrix as a function of the design variables
under the restriction that ξ is only a function of
the external signal r. This optimal IV estimator
can be achieved by the following choice of the
design variables:

• nξ = 2nx, where nx is the model order,
• Q = I,
• the instruments are chosen to be equal to the

noise free I/O data,
• the filter L(z) is equal to the inverse of the

true noise model.

By analysing these conditions, it is obvious that
the optimal IV estimator can only be obtained
if the true noise model is exactly known and if
the noise free data are available. Since the knowl-
edge of the noise is impossible in the considered
noisy environment, optimal accuracy cannot be
achieved in practice. Therefore, estimation tech-
niques of the noise free signals and the stochastic
part of the system are developed in the following
in order to approach this optimality at best.

4. PROPOSITION OF A CLOSED-LOOP
SUBSPACE (SUB)OPTIMAL IV METHOD

Since the optimal IV method cannot be achieved
in practice, approximate implementations will be
considered. For this purpose, it is necessary to
take care that

• a noise model is available to construct the
prefilter L(z) and the instruments ξ,

• a first model of the process has been esti-
mated to compute the noise free part of the
data.

The choice of the instruments and prefilter in
the IV method affects the asymptotic variance,
while consistency properties are generically se-
cured. This suggests that minor deviations from
the optimal value (which is not available in prac-
tice) will only cause second order effects in the
resulting accuracy. Therefore it is considered to
be sufficient to use consistent, but not necessarily

efficient estimates of the dynamics and of the noise
when constituting the instrument and the prefilter
(Ljung, 1999). Additionally, for obtaining the nec-
essary preliminary models, a restriction is made
to linear regression estimates in order to keep
computational procedures simple and tractable.
Before introducing in details the various algo-
rithms used for the estimation, a quick description
of the steps composing the closed-loop subspace
identification developed in this article is proposed
in the following subsection. Due to the lack of
space, it is assumed that the controller operat-
ing in the loop is known a priori. The case of
an unknown controller is technically similar but
requires the estimation of the closed-loop system
instead of the open-loop one in the first step.

4.1 Overview of the closed-loop subspace identifi-
cation method

To get an accurate model of the system (1)-(2),
the following six steps can be considered:

step 1: estimate a subspace model of the process
described in (1)-(2) by using the Ordinary

MOESP (Verhaegen and Dewilde, 1992) and get

the first (biased) estimates
{

Â1, B̂1, Ĉ1, D̂1

}

,

step 2: compute the I/O data from the simula-
tion of the model estimated in step 1, on the
basis of the reference signal r and the knowledge
of the controller. The instruments {ξ1} are then
generated from the past simulated I/O data,

Step 3: determine the new estimate of the pro-

cess
{

Â2, B̂2, Ĉ2, D̂2, K̂2

}

from a modified ver-

sion of the PO MOESP algorithm (Verhaegen,
1994), named POopt MOESP, with {ξ1} as in-
strumental variable,

step 4: compute the noise model

• from L(z−1) = Ĉ2

(

zI − Â2

)−1

K̂2 + I,

• from the reconstructed input and output,
step 5: generate new instruments {ξ2} following

the same method as in step 1 but with the

estimates
{

Â2, B̂2, Ĉ2, D̂2

}

and filter the I/O

data with the noise model L̂(z),
step 6: use these instruments {ξ2} and the fil-

tered data to determine the IV estimate of
the process

{

Â3, B̂3, Ĉ3, D̂3

}

from the POopt

MOESP algorithm.

A presentation of the main contributions of this
approach is proposed in the following subsections.
A particular attention is devoted to the new POopt

MOESP algorithm.

4.2 The POopt MOESP algorithm

The use of the MOESP class of methods in a closed-
loop framework has received a special care since
the beginning of the 90’s (Verhaegen, 1993a; Chou
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and Verhaegen, 1997; Chou and Verhaegen, 1999;
Zhao and Westwick, 2003; Oku and Fujii, 2004).
The study realised in (Chou and Verhaegen, 1997)
has more precisely proved that the PO MOESP

algorithm could be directly applied from data
collected in closed-loop if and only if u is a white
noise, property which can’t be checked in practice.
In this paper, it is proposed to modify the original
PO MOESP method by introducing reconstructed
past input and output ũ and ỹ as instrumental
variable. The following theorem is also formulated

Theorem 4.1. Let {u,y} the I/O data of the sys-
tem (1)-(2) and {ũ, ỹ} the reconstructed I/O se-
quence computed from the following simulation of
the closed-loop system

x(t + 1) = Âx(t) + B̂ũ(t) (10)

ỹ(t) = Ĉx(t) + D̂ũ(t) (11)

xc(t + 1) = Acxc(t) − Bcỹ(t) (12)

uc(t) = Ccxc(t) − Dcỹ(t). (13)

Furthermore, consider the following QR factorisa-
tion

⎡

⎢

⎢

⎣

U+

f

Ũ−
p

Ỹ−
p

Y+

f

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎣

R11 0 0 0

R21 R22 0 0

R31 R32 R33 0

R41 R42 R43 R44

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

Q1

Q2

Q3

Q4

⎤

⎥

⎥

⎦

. (14)

Then

lim
M→∞

1√
M

[

R42 R43

]

=

lim
M→∞

1√
M

ΓfXf

[

QT
2 QT

3

]

. (15)

Proof 1. By using the definition of the Hankel ma-
trices and the equations (1)-(2), it is straightfor-
ward to find the following data equation (Viberg,
1995)

Y+

f = ΓfX
+ + Hu

f U+

f + He

fE
+

f . (16)

Furthermore, from (14), we know that

Y+

f = R41Q1 + R42Q2 + R43Q3 + R44Q4. (17)

Thus, we get

ΓfX
+ + Hu

f U+

f + He

fE
+

f =

R41Q1 + R42Q2 + R43Q3 + R44Q4. (18)

By post multiplying both sides of this expression
by 1√

M

[

QT
2 QT

3

]

, it holds that

1√
M

[

R42 R43

]

=
1√
M

ΓfX
+

[

QT
2 QT

3

]

+
1√
M

He

fE
+

f

[

QT
2 QT

3

]

(19)

since U+

f = R11Q1 and QiQ
T
j = 0 for i �= j. The

proof will be completed if we succeed in showing
that the last term of the right hand side of (19)
vanishes when M → ∞. For that purpose, note

first of all that, by construction, the noise free
past input and output data are uncorrelated with
the future innovation:

lim
M→∞

1

M
E+

f Ũ−
p

T
=

lim
M→∞

1

M
E+

f

(

QT
1 RT

21 + QT
2 RT

22

)

= 0 (20)

lim
M→∞

1

M
E+

f Ỹ−
p

T
=

lim
M→∞

1

M
E+

f

(

QT
1 RT

31+QT
2 RT

32+QT
3 RT

33

)

=0.

(21)

Furthermore, the past simulated I/O data (the
instruments) are uncorrelated with the future
system input measurements. Then

lim
M→∞

1

M
U+

f Ũ−
p

T
=0, lim

M→∞

1

M
U+

f Ỹ−
p

T
=0.

(22)
By using the factorisation (14), we can rewrite the
previous equations as follows

lim
M→∞

1

M
R11R

T
21 = 0, lim

M→∞

1

M
R11R

T
31 = 0

(23)
since QiQ

T
j = 0 for i �= j and QiQ

T
i = I. Then,

by assuming that the reference signal is persis-
tently excited, it can be supposed that the input
u asymptotically verifies the same property (Zhao
and Westwick, 2003). From this hypothesis, it can
be asserted that the matrix limM→∞

1√
M

R11 is

invertible. By combining this particularity with
equations (23), we have

lim
M→∞

1√
M

R21 = lim
M→∞

1√
M

R31 = 0. (24)

As a consequence of this fact, equations (20) and
(21) can be simplified as follows

lim
M→∞

1

M
E+

f QT
2 RT

22 = 0 (25)

lim
M→∞

1

M
E+

f

(

QT
2 RT

32 + QT
3 RT

33

)

= 0. (26)

By using a similar argument for ũ, it can be
supposed that the matrix limM→∞

1√
M

R22 is

invertible. Thus, equation (25) can be rewritten
as limM→∞

1

M
E+

f QT
2 = 0. Consequently, this

relation implies that limM→∞
1

M
E+

f QT
3 RT

33 = 0

(cf. equ. (26)). Because of the noise contribution,
the matrix limM→∞

1√
M

R33 is invertible. We also

obtain limM→∞
1

M
E+

f QT
3 = 0, which completes

the proof.

It is interesting to notice that, according to the
fact that the input u is not white, the most
natural approach would consist in considering the
following modified version of the QR factorisation
developed in paragraph 4.2 of (Chou and Verhae-
gen, 1997) (see e.g. (Zhao and Westwick, 2003) for
a second contribution)
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[

U+

f

Y+

f

]

[

Ũ−
p

T
Ỹ−

p

T
]

=

[

R11 0

R21 R22

] [

Q1

Q2

]

. (27)

However, in our case, such an implementation
would give ill conditioned estimates since the past
noise free I/O data are asymptotically uncorre-
lated with the future I/O measurements.

5. SIMULATION EXAMPLE

The following numerical example is used to illus-
trate the performances of the proposed method.
The example is partially borrowed from (Hakvoort,
1990) and is also used in (Verhaegen, 1993b) and
(Van Overschee and De Moor, 1997). The plant
corresponds to a discrete-time model of a labora-
tory plant set-up of two circular plates rotated by
an electrical servo motor with flexible shafts. The
closed-loop system set-up is the one displayed on
figure 1. The plant has a state-space description
as in (1) and (2) with

A =

⎛

⎜

⎜

⎜

⎜

⎝

4.40 1 0 0 0
−8.09 0 1 0 0
7.83 0 0 1 0
−4.00 0 0 0 1
0.86 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎠

, B =

⎛

⎜

⎜

⎜

⎜

⎝

0.00098
0.01299
0.01859
0.0033

−0.00002

⎞

⎟

⎟

⎟

⎟

⎠

,

C =
(

1 0 0 0 0
)

,

KT =
(

2.3 −6.64 7.515 −4.0146 0.86336
)

D = 0 and ek is a Gaussian white noise sequence.
Note that the plant has one integrator, and there-
fore is only marginally stable. The controller has
a state-space description as in (3) and (4) with

Ac =

⎛

⎜

⎜

⎝

2.65 −3.11 1.75 −0.39
1 0 0 0
0 1 0 0
0 0 1 0

⎞

⎟

⎟

⎠

, Bc =

⎛

⎜

⎜

⎝

1
0
0
0

⎞

⎟

⎟

⎠

,

Cc = (−0.4135 0.8629 − 0.7625 0.2521), Dc = 0.61.

The excitation signal rk is a Gaussian white noise
sequence with variance 1. Firstly, the example is
used to validate the performance of the proposed
closed-loop subspace optimal IV (sivcl) algo-
rithm. The process model is estimated on the basis
of closed-loop data sequences of length N = 1000.
Monte Carlo simulation of 100 experiments has
been performed for a signal to noise ratio

SNR = 10 log

(

Pyd

Pe

)

= 15 dB, (28)

where Px denotes the power of the signal x and
yd is the noise-free output signal.
In figure 2(a), the Bode diagrams of the 100 mod-
els identified by the sivcl algorithm are repre-
sented and the poles of these estimated models
are gathered in figure 2(b).
It can be seen from both the Bode diagrams and
pole plots that the developed method gives indeed
unbiased and accurate results.

10
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−100

−80

−60

−40

−20

0

20

40

60

80

Fréquence

d
B

(a) Bode diagram

0.6 0.8 1

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

(b) Poles

Fig. 2. Real (black) and estimated (magenta)
Bode diagrams and poles over the 100
Monte Carlo simulation runs, sivcl algo-
rithm, SNR = 15dB.

The proposed algorithm is now compared with
two other subspace techniques:

• the closed-loop subspace method proposed
by Ljung and McKelvey (1996), referenced
here as sscl,

• the closed-loop 4sid solution proposed by
Van Overschee and De Moor (1997), refer-
enced here as 4sidcl.

The process parameters are estimated on the basis
of closed-loop data sequences of length N = 1000.
Monte Carlo simulation of 100 experiments has
been performed for SNR = 25dB.
In figure 3, the pole of the 100 models identified
by the three methods are represented. It can be
seen that in presence of relatively high noise, the
sscl algorithm fails to give unbiased results, while
the 4sidcl and sivcl methods give unbiased and
good results. The sivcl algorithm seems to give
estimates with smaller covariance compare to the
4sidcl algorithm. However, it can be noted that
2 poles are difficult to estimate, since they operate
in high frequency and with very low weight.

6. CONCLUSION

An optimal IV algorithm dedicated to the closed-
loop subspace-based identification problem has
been developed. Moreover, a new PO MOESP algo-
rithm which makes use of reconstructed past input
and past output data as instrumental variables
has also been proposed. This method has then
been compared to other subspace-based closed-
loop techniques which are known to lead to un-
biased plant estimates in closed-loop. However,
for arriving at estimates with attractive variance
properties, it is preferably to apply bootstrap IV
methods as considered in this paper.
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