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1. INTRODUCTION

A controller for a real-life system G0 is usually
designed on the basis of a model of G0 identi-
fied using data collected from the true system.
When designing the identification experiment, the
control engineer often has to make a trade-off
between her/his desire of obtaining an accurate
model and the economical constraint of keeping
the experimental costs low. Obtaining an accurate
model requires a long identification experiment
and a powerful input signal, while keeping the
experimental costs low corresponds to a short
experiment time and the excitation of G0 with
a low power signal.

The typical approach to this problem has been
to maximize the accuracy of the identified model
(possibly with a given, say, control-oriented ob-
jective in mind) for a given experiment time and
under prespecified constraints on input power
(see e.g. (Zarrop, 1979; Ljung, 1999) and refer-
ences therein). In recent contributions (see e.g.
(Bombois et al., 2004b; Bombois et al., 2004a;

Jansson and Hjalmarsson, 2004; Barenthin et

al., 2005)), this tradeoff has been addressed from
the dual perspective. Indeed, assuming that the
experiment time N is fixed, the optimal (open-
loop) identification experiment is defined as the
experiment on G0 whose input signal power Pu

is minimized under the constraint that the mod-
eling error |G0(e

jω) − G(ejω , θ̂N )| between the

identified model G(ejω , θ̂N ) and the true sys-
tem G0(e

jω) is guaranteed to remain below some
pre-specified threshold radm(ω). In (Bombois et

al., 2004b; Bombois et al., 2004a), it is shown how
this threshold radm(ω) can e.g. be chosen in order
to guarantee that the controller designed from
the identified model G(z, θ̂N ) is guaranteed to
achieve sufficient performance with the unknown
true G0. A more detailed comparison between the
two approaches for optimal experiment design can
be e.g. found in (Gevers and Bombois, 2006).

In the sequel of the paper, we focus on the
novel approach for optimal experiment design.
Until now, this novel approach has been treated
assuming that the modeling error is only due
to variance effects i.e. assuming that the model
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G(z, θ̂N ) is identified in a full-order model struc-
ture (S ∈ M). In this particular case, a probabilis-
tic bound α(ω, u) on the achievable modeling error

|G0(e
jω) − G(ejω , θ̂N)| given an input signal u(t)

is obtained a-priori as a function of u(t) via the
expression of the variance of the identified model.
Thus, the optimal input signal u(t) (t = 1..N) is
given by:

arg min
u(t)

Pu

subject to α(ω, u) < radm(ω) ∀ω
(1)

with Pu the total power of u(t).

In this paper, we extend these results to the case
where the identification takes place in a reduced
order model structure i.e. a model structure that
does not contain the true system (S �∈ M). In
this case, the modeling error is made up of two
contributions: a variance contribution due to the
noise (such as in (1)) and a bias contribution
due to the undermodeling. If the model structure
is chosen linear in the parameter vector, both
contributions can be a-priori estimated by upper-
bounds α(ω, u) and β(ω, u) depending on the to-
be-determined input signal (Hakvoort and den
Hof, 1997). This leads to the following experiment
design problem:

arg min
u(t)

Pu

subject to α(ω, u) + β(ω, u) < radm(ω) ∀ω
(2)

Due to the relative complexity of the relation
between the bias error term β(ω, u) and the to-
be-determined input signal u(t), the techniques
developed to solve (1) can unfortunately not be
transposed to (2). We nevertheless propose a
methodology to determine the optimal input sig-
nal when the class of input signals, in which the
optimization (2) takes place, is restricted to the
class of PRBS input signals. Consequently, the
optimization (2) is performed on the amplitude
and the clock period of the PRBS signal.

Returning now to the global picture of optimal
experiment design (i.e. the classical and the novel
approach), let us note that this paper is, to our
knowledge, the first contribution on optimal ex-
periment design which deals with undermodeling
using exact formulas for the modeling error. An-
other contribution for optimal experiment design
with S �∈ M is presented in (Ljung, 1999)[Chapter
4.5], but that result is based on an approximation
of the variance error which is only valid for sys-
tems of infinite order.

2. PE IDENTIFICATION ASPECTS

We consider the identification of a linear time-
invariant single input single output system:

S : y(t) = G0(z)u(t) + e(t) (3)

Here, to simplify the notations, the additive noise
e(t) is assumed to be the realization of a white
noise of variance σ2

e . However, colored noise can
be treated as well (see (Hakvoort and den Hof,
1997)). As proposed in (Hakvoort and den Hof,
1997), the reduced-order model structure that
we will use for the identification is linear in the
parameter i.e.

M = {G(z, θ) = Λ(z)θ | θ ∈ R
k×1} (4)

where Λ(z) = (Λ1(z) Λ2(z)...Λk(z)) is a row
vector containing the first k elements of a series
of basis functions Λi(z) (i = 1...∞). Examples
of those basis functions are the FIR basis with
Λi(z) = z−i and the Laguerre basis with Λi(z) =

z−1

√
1−ξ2

1−ξz−1

(
−ξ+z−1

1−ξz−1

)i−1

for some pole ξ.

Without loss of generality, the true transfer func-
tion G0(z) can be written as an infinite expansion
of the chosen series of basis functions Λi(z) (i =
1...∞): G0(z) =

∑∞

i=1 g0(i)Λi(z). Consequently,
G0(z) can be divided into the sum of a model
lying in M and an undermodeling part Gtail

0 (z):

G0(z) = Λ(z)θ0 +

Gtail
0

(z)
︷ ︸︸ ︷

∞∑

i=k+1

g0(i)Λi(z) (5)

with Λ(z) as in (4) and θ0 ∈ R
k×1 ∆

=
(g0(1) g0(2)...g0(k))T .

To identify a model G(z, θ̂N) = Λ(z)θ̂N of the true
system G0(z), an input signal u(t) (t = 1...N) of
length N is applied to (3) and the corresponding
output signal y(t) (t = 1...N) is measured. Based

on this IO data set, the parameter vector θ̂N of
the identified model is computed as follows: θ̂N =
R−1 1

N

∑N

t=1 φ(t)y(t) with R = 1
N

∑N

t=1 φ(t)φT (t)
and φT (t) = Λ(z)u(t).

As said in the introduction, our objective in this
paper is, for a fixed data length N , to determine
the optimal input signal u(t) for the identification.
The optimal input signal is here defined as the
one solving the experiment design problem pre-
sented in the introduction. This experiment design
problem uses an upper bound on the modeling
error as a function of the input signal u(t). In
the identification framework presented above, this
bound can be determined provided we possess the
following prior information on the true system (3)
(Hakvoort and den Hof, 1997) (see that paper for
a discussion on how this prior information can be
obtained).

Assumption 1. Consider the true system (3) and
the expression (5) for G0(z). We possess reliable
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upper bounds σ̄2
e , ḡ(i) for the unknown vari-

ance σ2
e and for the unknown coefficients g0(i) in

Gtail
0 (z) i.e. σ2

e ≤ σ̄2
e and |g0(i)| < ḡ(i) ∀ i ≥ k+1.

Moreover, we assume that the series of coefficients
ḡ(i) at least die at an exponential rate in i.

Based on this assumption, we now deduce a com-
putable upper bound on the achievable modeling
error G0(z) − G(z, θ̂N ) and its relation with the
chosen input signal u(t). For this purpose, observe
that, in the framework presented above,

G0(z) − G(z, θ̂N ) =

Gtail
0 (z) − Λ(z)

(

R−1 1

N

N∑

t=1

φ(t) (x(t) + e(t))

)

(6)

with x(t) = Gtail
0 (z)u(t). The modeling error

G0(z)−G(z, θ̂N ) can here be clearly divided into
two different additive contributions: a contribu-
tion ∆1(z) due to the noise e(t) (the so-called
variance error) and a contribution ∆2(z) due to
the undermodeling (the so-called bias error):

∆1(z) = −Λ(z)

(

R−1 1

N

N∑

t=1

φ(t)e(t)

)

∆2(z) = Gtail
0 (z) − Λ(z)

(

R−1 1

N

N∑

t=1

φ(t)x(t)

) (7)

As can be seen in (7), the variance error ∆1(z)
is equal to −Λ(z)ǫ with ǫ ∈ R

k×1 a zero-mean
random variable with covariance matrix Pǫ =
σ2

e

N
R−1. In the expression of Pǫ, the only unknown

element is σ2
e . However, based on Assumption 1,

we see that Pǫ ≤ σ̄2

e

N
R−1. Based on this, we can use

classical results (see e.g. (Bombois et al., 2005))
to determine an upper bound for the modulus of
the variance error at each ω. This upper bound is
valid up to a certain user-chosen probability level:

|∆1(e
jω)| <

α(ω,u)
︷ ︸︸ ︷
√

σ̄2
eχ

N
λ1 (T (ω) R−1 T T (ω)) (8)

with T (ω) =
(
Re(ΛT (ejω)) Im(ΛT (ejω))

)T
, χ

a constant depending on the chosen probability
level and λ1(A) the largest eigenvalue of A. The
quantity α(ω, u) is dependent on the input signal
u(t) used during the identification through the
matrix R.

A bound on the bias error ∆2(z) will now be
deduced. Using the expression of Gtail

0 (z) in (5),
the bias error ∆2(z) can be rewritten as:

∆2(z)

=

∞∑

i=k+1

g0(i)

(

Λi(z) − Λ(z)

(

R−1 1

N

N∑

t=1

φ(t)xi(t)

))

︸ ︷︷ ︸

Bi(z,u)

(9)

with xi(t) = Λi(z)u(t). The bias error is thus
an expansion of transfer functions Bi(z, u) de-
pendent on u(t) through xi(t) = Λi(z)u(t), φ(t)
and R. Using (9) and Assumption 1, an upper
bound for the real part of ∆2(e

jω) is given by
βR(ω, u) =

∑∞

i=k+1 ḡ(i)|Re(Bi(e
jω , u))| and an

upper bound for its imaginary part by βI(ω, u) =
∑∞

i=k+1 ḡ(i)|Im(Bi(e
jω , u))|. Both bounds can be

calculated to within arbitrary accuracy due to the
exponential decay rate of ḡ(i) (Hakvoort and den
Hof, 1997). Consequently, a computable upper
bound for the modulus |∆2(e

jω)| of the bias error
is:

|∆2(e
jω)| ≤

β(ω,u)
︷ ︸︸ ︷
√

β2
R(ω, u) + β2

I (ω, u) (10)

Note that this upper bound β(ω, u) is a slightly
less conservative upper bound than the one in
the original paper (Hakvoort and den Hof, 1997)
where the bias error (9) is divided into two con-
tributions which are subsequently bounded sepa-
rately; introducing an unnecessary conservatism.

Combining (8) and (10) and using the triangle
inequality, we obtain that, modulo an user-chosen
probability level,:

|G0(ejω) − G(ejω , θ̂N )| ≤ α(ω, u) + β(ω, u) ∀ω. (11)

This bound deduced from the data is made up
of the sum of two terms. As already mentioned
earlier, both terms are dependent on the input
signal u(t) used during the identification; but
in different ways. The dependence of the bias
term β(ω, u) on u(t) is only relative. Indeed, the
bias term remains unchanged if the signal u(t) is
multiplied by any constant scaling factor σ i.e.
β(ω, σu) = β(ω, u) ∀σ ∈ R

+. Unlike β(ω, u),
the dependence of the variance term α(ω, u) is
not only relative. Indeed, when the signal u(t) is
multiplied by a scaling factor σ, the variance error
term is multiplied by 1/σ: α(ω, σu) = 1

σ
α(ω, u).

These two important properties for the sequel of
this paper follow from (8), (10) and (9) combined
with the definitions of R, φ(t), and xi(t).

Note finally that the bound in (11) can be com-
puted before the identification experiment based
on the prior information given in Assumption 1
and the signal u(t) (t = 1...N) that will be used
for the identification.

3. EXPERIMENT DESIGN PROBLEM

As said in the introduction, our objective in this
paper is, for a fixed data length N , to determine
the least powerful input signal for the identifica-
tion of a model of the true system while guarantee-
ing that the modeling error remains at each fre-
quency below a pre-specified threshold radm(ω).
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In the framework defined in Section 2, this con-
straint on the modeling error can be expressed as
follows:

β(ω, u) + α(ω, u) < radm(ω) ∀ω. (12)

with α(ω, u) and β(ω, u) as given in (8) and
in (10), respectively.

The experiment design problem becomes there-
fore:

arg min
u(t)∈U

Pu

subject to (12)
(13)

with U a parametrized class of input signals which
is preferably the broadest possible.

Due to complexity of the relation between u(t)
(and/or its spectrum Φu(ω)) and the bias error
contribution β(ω, u), the techniques developed to
solve this experiment design problem in the case
of a a full order model structure (i.e. β(ω, u) = 0)
and the classes U used in these techniques can
unfortunately not be transposed to (13).

We propose nevertheless a methodology to design
our input signal in an optimal way. For this pur-
pose, it is required to restrict the class U of u(t),
in which the optimization (13) takes place, to a
class with a very limited amount of optimization
parameters. Among these, we here focus on a very
widely-used and rather broad type of input sig-
nals: the class of pseudo-random binary sequences
PRBS (Ljung, 1999). A PRBS signal is a finite-
length deterministic signal characterized by only
two parameters: its amplitude σ and its clock
period ν. A PRBS signal u(t) of amplitude σ is a
binary signal taking its value uniquely in {+σ, σ}.
The clock period ν is an integer ≥ 1 indicating
the periodicity of the switches between σ or −σ:
a PRBS signal with clock period ν = 1 is allowed
to changes its value at each time sample while a
PRBS signal with a clock period ν > 1 is constant
for ν samples.

A PRBS signal u(t) (t = 1...N) of amplitude
σ and clock period ν has a total power Pu =
1
N

∑N

t=1 u2(t) = σ2 and a power spectrum Φu(ω)

approximately given by σ2

ν

1−cos(νω)
1−cos(ω) . Based on

this expression, we see that a PRBS signal with
ν = 1 has (approximately) the flat spectrum of a
white noise and that, for increasing values of ν,
there is a shift of signal power to the low frequent
part as can be seen in Figure 1.

To sum up, the clock period ν of the PRBS signal
allows to shape the frequency content of the power
spectrum Φu(ω) of u(t), without changing its total
power Pu and the amplitude σ of a PRBS signal
allows to adapt the total power level Pu of u(t)
without changing its frequency content.

0.5 1 1.5 2 2.5 3
0

1

2

3

4
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10

ω

Φ
u
(ω

)

Fig. 1. 1
ν

1−cos(νω)
1−cos(ω) for ν = 1 (solid), for ν = 3

(dotted), for ν = 5 (dashdot) and for ν = 10
(dashed)

Based on the considerations above and denoting
pν(t) (t = 1...N) the PRBS signal 1 of clock
period ν and amplitude σ = 1, the class of all
PRBS signals u(t) of length N is given by:

U = {u(t) = σ pν(t) | σ ∈ R
+ and ν ∈ N ≥ 1}(14)

Since we restrict attention to the class U of PRBS
input signals and since Pu = σ2 for that type of
signals, solving experiment design problem (13)
is equivalent to determining the clock period and
the amplitude of the PRBS signal u(t) = σpν(t)
(t = 1...N) with the smallest amplitude σ which
still guarantees the constraint (12). In the sequel,
we present a methodology to solve this experiment
design problem.

If we denote, for each value of ν, by σopt(ν) the
minimal value for the amplitude of a PRBS signal
of clock period ν which guarantees (12) i.e.

σopt(ν) = arg min
σ

σ

subject to β(ω, σpν) + α(ω, σpν) < radm(ω) ∀ω
(15)

Then, the solution of the experiment design prob-
lem (13) within the class of PRBS signals is a
PRBS signal uopt(t) = σopt pνopt

(t) with a clock
period νopt and an optimal amplitude σopt given
respectively by:

νopt = arg min
ν

σopt(ν)

σopt = σopt(νopt)
(16)

The next proposition gives a methodology to
compute the quantity σopt(ν) which is necessary
to determine νopt and σopt as shown in (16).

Proposition 1. Consider a fixed clock period ν
and generate the unitary-amplitude PRBS signal
pν(t) (t = 1...N) corresponding to this clock
period ν. Then, the solution σopt(ν) of (15) is
given by:

1 More precisely, pν(t) is defined as the (pos-
sibly truncated) PRBS generated in Matlab by
idinput(N,′ prbs′, [0, (1/ν)]). This precision ensures
the uniqueness of pν(t) (given ν).
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σopt(ν) = sup
ω

α(ω, pν)

radm(ω) − β(ω, pν)
(17)

where α(ω, pν) and β(ω, pν) are the variance and
bias terms (8) and (10) computed with u(t) =
pν(t) (t = 1...N).

Proof. Based on the remark at the end of Sec-
tion 2, the constraint β(ω, u)+α(ω, u) < radm(ω)
for u(t) = σpν(t) (see (15)) can be rewritten as
follows:

β(ω, pν) +
1

σ
α(ω, pν) < radm(ω) (18)

It is then obvious that the minimal amplitude σ
for which (18) holds at each ω is given by (17).

Proposition 1 gives a methodology to compute the
optimal amplitude σopt(ν) for a given value of the
clock period ν. This optimal amplitude σopt(ν) is
typically different for different values of ν. Using
Proposition 1, this quantity can be computed for
all possible values of the integer ν. The clock
period and the amplitude of the signal u(t) ∈ U
solving the experiment design problem (13) can
thereafter be determined using (16). Note that,
due to the typical absence of local minima in
the function σopt(ν), the optimization problem
νopt = arg minν σopt(ν) can be generally tackled
using a classical dichotomy technique; therefore
preventing us from the rather cumbersome need
to compute σopt(ν) for all possible values of the
integer ν.

Remark 1. The class U of inputs considered
above (see (14)) covers the range of low-frequency
dominant spectra including the flat spectra. Con-
sequently, high-frequency dominant spectra are
not considered in this class. This drawback can
be circumvented by performing the optimization
above not only for the class U of PRBS signals
but also for a class of input signals including high-
frequency dominant spectra. A possible choice for
this class could be the set of input signals gen-
erated by filtering a white noise through a high-
pass filter (e.g. a Butterworth filter of order 1)
with cut-off frequency ν. An input signal within
this class could be described by u(t) = σ hν(t)
where hν(t) a normalized signal with total power
= 1 generated by a filter with cut-off frequency ν
and σ is a positive scaling factor. Based on this
description, the optimal σ and ν can be deter-
mined using a similar procedure as for the PRBS
signals since Pu is here also given by σ2. Note that
u(t) = σ hν(t) is no longer a binary signal.

Remark 2. The optimal input signal within the
class of PRBS signals (and/or in the class of high-
frequency dominant signal u(t) = σhν(t)) can
be obtained since, the optimal σ for a given ν
being easily computable, the optimization on the
unique other scalar variable ν can be done via a

line search. This approach can of course only be
applied if the total amount of decision variable
is limited. Consequently, the approach can not
be applied for the broader parametrizations (e.g.
multisines) that are generally used in the absence
of undermodeling and which generally contains a
large amount of decision variables.

4. NUMERICAL ILLUSTRATION

In this section, we will illustrate the results pre-
sented in this paper. We consider that the true
system is given by: G0(z) = 0.1766Λ1(z) +
0.1187Λ2(z)+ 0.02Λ3(z) where Λi(z) are here La-
guerre basis functions with a pole at ξ = 0.8147
(see below (4)). The considered model structure
M neglects the third term of the expansion i.e.
M is given by (4) with Λ(z) = (Λ1(z) Λ2(z)). The
bound on |g0(3)| required in Assumption 1 is here
chosen equal to 0.025 and the bound σ̄2

e = σ2
e .

We wish to determine the optimal signal of length
N = 500 solving experiment design problem (13)
when U is the class of PRBS signals and with a
largest admissible modeling error radm(ω) com-
puted in order to guarantee that the controller
designed with the identified model achieves an
acceptable sensitivity function when applied to
the true system (see (Bombois et al., 2004a)).
The obtained frequency function radm(ω) is rep-
resented in Figure 2.

In order to solve (13), we use the procedure
presented in Section 3. The optimal amplitude
σopt(ν) for a PRBS of clock period ν has been
computed via (17) for a large amount of different
values of ν. Table 1 gives the result for some
significant values of ν. Based on these results,
we conclude that the optimal input signal is a
PRBS of amplitude σopt = 0.47 and clock period
νopt = 24. Note that no improvement is booked by
considering in addition high-frequency dominant
spectra (such as proposed in Remark 1 at the end
of Section 3)

ν σopt(ν)

1 2.31
10 0.77
20 0.50
24 0.47
30 0.56
50 0.67
100 1.40

Table 1. σopt(ν) for some significant
values of ν

An important observation we can make from
Table 1 is that the amplitude necessary to meet
the modeling error constraint (12) is five times
larger for the classically-used PRBS (the one with
ν = 1) than for the PRBS with the optimal clock
period ν = 24. This phenomenon which will be
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further discussed in the sequel was also observed
in the absence of undermodeling (see (Barenthin
et al., 2005)).

Verification. We have generated the optimal
PRBS signal u(t) = 0.47pν=24(t) (t = 1...500)
and computed the bound α(ω, u)+β(ω, u) on the
modeling error using (10) and (8). This bound is
compared with the threshold radm(ω) in Figure 2.
As was expected, we observe that (12) is fulfilled.

10
−3

10
−2

10
−1

10
0

10
−2

10
−1

10
0

10
1

10
2

ω

Fig. 2. u(t) = 0.47pν=24(t): α(ω, u) (dashdot),
β(ω, u) (dashed), α(ω, u)+β(ω, u) (solid) and
radm(ω) (dotted)

For the sake of comparison, we have computed
the bound α(ω, u) + β(ω, u) for the signal u(t) =
0.47pν=1(t) i.e. an input signal with the same
amplitude 0.47 as the optimal input signal but
with a clock period ν = 1. Based on Table 1, we
know that the modeling error constraint (12) will
not be fulfilled since the minimal amplitude for
this purpose is 2.31. This is confirmed in Figure 3.
It is interesting to compare Figures 2 and 3.
The total power of the input signals leading to
these two figures is exactly the same. However,
for Figure 2, this power is mainly distributed in
the frequencies below π/νopt while, for Figure 3,
this power is distributed over the whole frequency
range. This concentration of Φu(ω) in the low
frequencies leads in Figure 2 to bias and variance
terms much smaller in this frequency range (i.e.
the one where radm(ω) is small) than in Figure 3.
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Fig. 3. u(t) = 0.47pν=1(t): α(ω, u) (dashdot),
β(ω, u) (dashed), α(ω, u)+β(ω, u) (solid) and
radm(ω) (dotted)

5. CONCLUSIONS

In this paper, the least powerful PRBS input
signals for an identification guaranteeing that the
modeling error remains below some threshold has
been determined for identification in a reduced
order model structure. Note that the results de-
veloped here for open-loop identification can be
easily extended to closed-loop identification by
adapting Section 2 accordingly (see (Hakvoort
and den Hof, 1997)). Note also that, as usual
in optimal experiment design, the optimal input
signal is designed based on a fair amount of prior
information on the true system. Consequently, the
results should always be handled with caution, but
they nevertheless give useful guidelines on how to
choose the input signal to identify a model which
is suitable for a robust control procedure.
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