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Abstract: In this paper, several instrumental variable (IV) and instrumental variable-related
methods for closed-loop system identification are considered and set in an extended IV frame-
work. Extended IV methods require the appropriate choice of particular design variables, as
the number and type of instrumental signals, data prefiltering and the choice of an appropriate
norm of the extended IV-criterion. The optimal IV estimator achieves minimum variance,
but requires the exact knowledge of the noise model. For the closed-loop situation several
IV methods are put in an extended IV framework and characterized by different choices of
design variables. Their variance properties are considered and illustrated with a simulation
example.

Keywords: Closed-loop system identification; linear estimators; instrumental variables.

1. INTRODUCTION

For many industrial production processes, safety and
production restrictions are often strong reasons for not
allowing identification experiments in open-loop. In
such situations, experimental data can only be ob-
tained under so-called closed-loop conditions. The
main difficulty in closed-loop identification is due
to the correlation between the disturbances and the
control signal, induced by the loop. Several classi-
cal alternatives are available to cope with this prob-
lem, broadly classified into three main approaches:
direct, indirect and joint input/output (Söderström and
Stoica 1989, Ljung 1999). Some particular versions of
these methods have been developed more recently in
the area of control-relevant identification as e.g. the

1 Paper submitted for publication in Automatica. Submitted 30
January 2004; revised 12 July 2004.
2 Author to whom correspondence should be addressed, tel. +33
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two-stage, the coprime factor, the dual-Youla meth-
ods. An overview of these recent developments can be
found in Van den Hof (1998) and Forssell and Ljung
(1999).
When looking at methods that can consistently iden-
tify plant models of systems operating in closed-
loop while relying on simple linear (regression) algo-
rithms, instrumental variable (IV) techniques seem to
be rather attractive, but at the same time also not very
often applied. On the other hand, when dealing with
highly complex processes that are high dimensional in
terms of inputs and outputs, it can be attractive to rely
on methods that do not require non-convex optimiza-
tion algorithms. Besides this computationally attrac-
tive property, IV methods have the potential advantage
that they can identify plant models consistently also
when the noise model is misspecified, and when the
present controller is non-linear and/or time-varying.
For closed-loop identification a basic IV estimator has
been proposed (Söderström et al. 1987), and more



recently a so-called tailor-made IV algorithm (Gilson
and Van den Hof 2001), where the closed-loop plant
is parametrized using (open-loop) plant parameters.
The class of algorithms denoted by BELS (for Bias-
Eliminated Least-Squares), e.g. Zheng (1996), is also
directed towards the use of linear regression algo-
rithms only. It has recently been shown that these
algorithms are also particular forms of IV estimation
schemes (Söderström et al. 1999, Gilson and Van den
Hof 2001). Then, when comparing the several avail-
able IV algorithms, the principal question to address
should be: how to achieve the smallest variance of the
estimate. Concerning extended IV methods an opti-
mal variance result has been developed in the open-
loop identification case, showing consequences for the
choice of weights, filters, and instruments (Stoica and
Söderström 1983, Söderström and Stoica 1989, Ljung
1999). For the closed-loop case a covariance analysis
has been provided by Söderström et al. (1987) and
Söderström and Stoica (1983). While in Forssell and
Chou (1998) this analysis is used to compare several
closed-loop identification methods, in the present pa-
per main attention will be given to a characterization
of the properties of the several (extended) IV-methods
presented here.

The paper is organized as follows. After the prelim-
inaries, several IV and IV-related methods are pre-
sented and unified in an extended IV framework in
section 3. Section 4 introduces the optimum variance
closed-loop IV estimation with the consequences for
the several design variables. Since for optimum vari-
ance, the noise model has to be known exactly, several
bootstrap methods are proposed in section 5 for ap-
proximating this required information from measure-
ment data. In section 6, the comparison between the
different proposed methods is illustrated in a simula-
tion example, showing that the optimal estimator can
be accurately approximated by an appropriate choice
of the design parameters.

2. PRELIMINARIES
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Fig. 1. Closed-loop configuration.

Consider a linear SISO closed-loop system shown in
figure 1. The process is denoted by G0(z) and the
controller by C(z); u(t) describes the process input
signal, y(t) the process output signal and {e0(t)} is a
sequence of independent identically disturbed random
variables of variance λ0. The external signals r1(t),
r2(t) are assumed to be uncorrelated with e0(t). For
ease of notation we also introduce the signal r(t) =

r1(t)+C(q)r2(t). With this notation, the data generat-
ing system becomes

S :

{

y(t) = G0(q)u(t)+H0(q)e0(t)

u(t) = r(t)−C(q)y(t)
(1)

The real plant G0 is considered to satisfy G0(q) =
B0(q−1)/A0(q−1), while in these expressions q−1 is
the delay operator, and the numerator and denominator
degree is n0. The m-th order controller C is assumed
to be known and specified by

C(q) =
Q(q−1)

P(q−1)
=

q0 +q1q−1 + · · ·+qmq−m

1+ p1q−1 + · · ·+ pmq−m (2)

with the pair of polynomials (P,Q) assumed to be
coprime.

A parametrized process model is considered

G : G(q,θ) =
B(q−1,θ)

A(q−1,θ)
=

b1q−1 + · · ·+bnq−n

1+a1q−1 + · · ·+anq−n ,

and the process model parameters are stacked colum-
nwise in the parameter vector

θ =
[

a1 · · · an b1 · · · bn
]T ∈ R

2n. (3)

Furthermore, let us denote by ϕc(t) and by ϕ(t) the
closed-loop and open-loop regressors respectively, de-
fined as

ϕT
c (t) = [−y(t−1) · · ·− y(t−n−m)

r(t−1) · · ·r(t−n−m)] ∈ R
2n+2m (4)

ϕT (t) =[−y(t−1) · · ·− y(t−n)

u(t−1) · · ·u(t−n)] ∈ R
2n (5)

ϕT
r (t) = [r(t−1) · · · r(t− rB)] ∈ R

rB . (6)

and rB a user-specified integer. If n = n0, i.e. the plant
G0 is contained in the chosen model set, the output
y(t) can be written as

y(t) = ϕT (t)θ0 + v0(t) (7)

where θ0 denotes the true parameters and v0(t) =
A0(q−1)H0(q)e0(t). Additionally we use the following
notation for filtered data

ϕ̄(t) = L(q−1)ϕ(t) (8)

ȳ(t) = L(q−1)y(t) (9)

where L(q−1) is a particular chosen prefilter.

3. CLOSED-LOOP IV METHODS IN AN
EXTENDED IV FRAMEWORK

3.1 Closed-loop basic IV method

The basic-IV estimate of θ0 is determined as the
solution θ̂iv to the set of equations

1
N

N

∑
t=1

z(t)[y(t)−ϕT (t)θ̂iv] = 0 (10)



or, provided that ∑N
t=1 z(t)ϕT (t) is non singular

θ̂iv =

[

1
N

N

∑
t=1

z(t)ϕT (t)

]−1[

1
N

N

∑
t=1

z(t)y(t)

]

(11)

where z(t) represents the vector of instruments, having
dimension 2n.

By using equation (7) in (11), it follows that

θ̂iv = θ0 +

[

1
N

N

∑
i=1

z(t)ϕT (t)

]−1[

1
N

N

∑
i=1

z(t)v0(t)

]

(12)
Therefore, the basic IV estimate provides a consistent
parameter estimate (plimN→∞ θ̂ = θ0) under the fol-
lowing two conditions 3 :

• Ēz(t)ϕT (t) is non singular,
• Ēz(t)v0(t) = 0.

A typical choice in the closed-loop situation is that the
instruments vector is composed of delayed samples
of the reference signel: z(t) = ϕr(t) with dimension
rB = 2n. Note that the consistency result is valid under
the condition that G0 is contained in the chosen model
set; it does not require exact modeling of the noise
model H0 and it allows the controller C to be non-
linear and or time-varying.

3.2 Closed-loop extended IV method

An extended IV estimate of θ0 is obtained by general-
izing the so-called basic IV estimates of θ by prefilter-
ing the data and by using an augmented instrument
z(t) ∈ R

nz (nz > 2n) so that (10) leads to an over-
determined set of equations that is solved by:

θ̂xiv(N) = argmin
θ

∥

∥

∥

∥

∥

[

1
N

N

∑
t=1

z(t)L(q)ϕT (t)

]

θ

−
[

1
N

N

∑
t=1

z(t)L(q)y(t)

]∥

∥

∥

∥

∥

2

Q

,

(13)

where L(q) is a stable prefilter and ‖x‖2
Q = xT Qx, with

Q a positive definite weighting matrix.

Following the same reasoning as in the basic IV case,
the extended-IV estimate provides a consistent esti-
mate under the following two conditions

• Ēz(t)L(q)ϕT (t) is non singular,
• Ēz(t)L(q)v0(t) = 0.

3.3 Tailor-made IV identification (M1)

The tailor-made IV method (referred to M1 in the
following) as discussed in (Gilson and Van den Hof
2001) is designed to provide an unbiased estimate for

3 The notation Ē[.] = limN→∞
1
N ∑N−1

t=0 E[.] is adopted from the
prediction error framework of Ljung (1999)

the process model G(q,θ), while pertaining to simple
linear regression type of estimates. The closed-loop
transfer function from r to y is modelled by

G(q,θ)

1+C(q)G(q,θ)
=

B(q−1,θ)P(q−1)

A(q−1,θ)P(q−1)+B(q−1,θ)Q(q−1)
,

parametrized in the plant parameter θ (tailor-made
parametrization). The prediction error related to a
linear regression model for the closed-loop system is
then given by

ε(t,θ) = Ācl(q
−1,θ)y(t)− B̄cl(q

−1,θ)r(t) (14)

B̄cl(q
−1,θ) = B(q−1,θ)P(q−1)

Ācl(q
−1,θ) = A(q−1,θ)P(q−1)+B(q−1,θ)Q(q−1).

Using the relation r = u + Cy or equivalently Pr =
Pu+Qy, it follows that

ε(t,θ) = A(q−1,θ)P(q−1)y(t)−B(q−1,θ)P(q−1)u(t),

which alternatively can be written as

ε(t,θ) = ȳ(t)− ϕ̄T (t)θ. (15)

with ȳ(t), ϕ̄T (t) given by (8)-(9), and the prefilter L(q)
particularly chosen as L(q) = P(q−1). Then the tailor-
made IV estimate of θ is determined as the solution to
the set of equations

1
N

N

∑
t=1

ε(t, θ̂tiv,F)η(t) = 0, (16)

where η(t) = Fϕr(t) denotes the vector of instru-
ments, and F ∈R

2n×rB a user-chosen matrix with rank
2n.
The choice rB = 2n, F = I2n leads to a simple basic IV
estimator applied to the closed-loop system, taking as
instruments 2n delayed samples of the reference sig-
nal, that is supposed to be persistently exciting of suffi-
ciently high order. For rB > 2n, the matrix F constructs
2n instruments out of rB delayed reference samples, by
taking particular linear combinations. Again a basic
IV method results, but now with a particular choice of
instruments.

3.4 BELS method

The so-called bias-eliminated least-squares method
(BELS) as proposed by (Zheng and Feng 1995, Zheng
1996) has been shown to be a particular form of tailor-
made IV estimator (Gilson and Van den Hof 2001). It
has two different formats, dependent on the relation
between n (model order) and m (controller order). For
m ≤ n the BELS estimator is equivalent to the tailor-
made estimate with rB = 2n and F = I2n. For m > n it
is obtained by choosing rB = n+m and

F = MT R̂T
ϕrϕc

(N)(R̂ϕrϕc(N)R̂T
ϕrϕc

(N))−1. (17)

with R̂ϕrϕc(N) = 1
N ∑N

t=1 ϕr(t)ϕT
c (t), and

M ∈ R
(n+m+rB)×2n a full-column rank matrix



dependent on controller dynamics only and specified
as

M =

(

Pc Qc

0 P̄c

)

∈ R
(n+m+rB)×2n (18)

where Pc, Qc ∈ R
(n+m)×n are Sylvester matrices ex-

panded by
[

1 p1 · · · pm
]T

and
[

q0 q1 · · · qm
]T

re-
spectively, given in (2), i.e.

Pc =































1 0 · · · 0

p1
. . .

. . .
...

...
. . .

. . . 0

pm
...

. . . 1

0
. . .

... p1
...

. . .
. . .

...
0 · · · 0 pm































(19)

and P̄c ∈R
rB×n is given by Pc but expanded with a zero

matrix:

P̄c =

[

Pc

0(rB−n−m)×n

]

.

The matrix M satisfies

ϕ̄(t) = MT ϕc(t); (20)

for a full description of the relation between BELS and
tailor-made IV, see Gilson and Van den Hof (2001).

3.5 Tailor-made and extended IV identification

3.5.1. Unification In order to analyse the variance
properties of the estimators presented above, they are
positioned in the framework of extended IV estima-
tors. All estimators discussed so far can simply be
interpreted as a special form of extended IV estima-
tor. The most complicated one is the BELS estimator
specified by the particular choice of instruments deter-
mined by F in (17) and referring to the situation m > n
only. For this latter estimator an alternative formula-
tion can be given, as shown in the next Proposition.

Proposition 1. The tailor-made IV estimates pre-
sented in sections 3.3 and 3.4 related to the particular
situation m > n, rB = n + m and with the particular
choice of F given in (17), satisfies

θ̂tiv(N) = argmin
θ

∥

∥R̂ϕrϕ̄(N)θ− R̂ϕr ȳ(N)
∥

∥

2
Q (21)

with R̂ϕrϕ̄(N) = 1
N ∑N

t=1 ϕr(t)ϕ̄T (t), R̂ϕr ȳ(N) =
1
N ∑N

t=1 ϕr(t)ȳ(t), and

Q =
(

R̂ϕrϕc R̂T
ϕrϕc

)−1 ∈ R
(n+m)×(n+m). (22)

Consequently it is equivalent to an extended IV esti-
mator (13) with

• instrument vector z(t) = ϕr(t) with dimension
nz = rB = n+m,

• prefilter L(q) = P(q−1),
• weighting matrix Q (22).

Proof. A full proof is added in the appendix.

As a result, all considered IV methods can be unified
in an extended IV framework, where the estimator is
specified by equation (13) with particular choices of
the design parameters z(t), L(q) and Q, as summarized
in the following overview:

• closed-loop basic IV (section 3.1): nz = 2n,
z(t) = ϕr(t) with rB = 2n, L = 1, Q = I,

• tailor-made IV (section 3.3): nz = 2n, z(t) =
F(q)ϕr(t) with rB = 2n, L = P(q−1), Q = I,

• BELS in case m≤ n (section 3.4): special case of
the tailor-made IV where F = I and rB = 2n,

• BELS in case m > n (see proposition 1): nz = n+
m, z(t) = ϕr(t) with rB = n + m, L = P(q−1),

Q =
(

R̂ϕrϕc R̂T
ϕrϕc

)−1
.

3.5.2. Covariance property The asymptotic distri-
bution of the parameter (13) estimated by an extended
IV type of method has been extensively investigated in
the open-loop context (Söderström and Stoica 1989).
Moreover, the structure of the closed-loop extended
IV estimates is identical to that of the open-loop esti-
mates, as is shown in (Söderström et al. 1987). As a
result, under the assumptions given in section 3.2 (in
particular that instruments and noise are uncorrelated)
and G0 ∈ G , θ̂ is asymptotically Gaussian distributed

√
N(θ̂−θ∗) dist→ N (0,Pxiv) (23)

with θ∗ the asymptotic parameter estimate, and the
covariance matrix Pxiv is given by

Pxiv=λ0
(

RT
zϕ̄QRzϕ̄

)−1RT
zϕ̄QRzT zTQRzϕ̄

(

RT
zϕ̄QRzϕ̄

)−1

(24)
where

Rzϕ̄ = Ēz(t)ϕ̄T (t) = Ēz(t)L(q)ϕT (t) (25)

RzT zT = ĒzT (t)zT
T (t) (26)

zT (t) =
∞

∑
i=0

tiz(t + i) (27)

T (q) = L(q)A0(q
−1)H0(q) =

∞

∑
i=0

tiq
−i (28)

and T (q) is a monic filter.

3.5.3. Remarks In the situation nz = 2n, the number
of unknowns in (13) is equal to the number of equa-
tion, and the weighting matrix Q will not influence the
optimization. In that situation the simple choice Q = I
suffices. According to equation (24) and under the
assumption G0 ∈ G , the expression for the covariance
matrix of this estimate then simplifies to

Pxiv = λ0R−1
zϕ̄ RzT zT R−T

zϕ̄ . (29)

4. OPTIMAL CLOSED-LOOP IV

The choice of the instruments z(t), of nz, of the
weighting matrix Q and of the prefilter L(q) may have



a considerable effect on the covariance matrix Pxiv. In
the open-loop situation the lower bound of Pxiv for
any unbiased identification method is given by the
Cramer-Rao bound, which is specified in e.g. Ljung
(1999) and Söderström and Stoica (1983). Optimal
choices of the above mentioned design variables exist
so that Pxiv reaches the Cramer Rao bound. For the
closed-loop case, this type of reasoning is not viable
for IV estimates, as the objective of reaching min-
imum variance conflicts with the restriction that in-
struments and noise should be uncorrelated. However
it has been shown in (Söderström et al. 1987) that
there indeed exists a minimum value of the covariance
matrix Pxiv as a function of the design variables z(t),
L(q) and Q, under the restriction that z(t) is a function
of the external signal r(t) only:

Pxiv ≥ Popt
xiv

with
Popt

xiv = λ0[Ēϕ̃F(t)ϕ̃T
F(t)]−1,

ϕ̃F(t) = L(q)ϕ̃(t) and ϕ̃(t) is the noise-free part of
ϕ(t).

The minimum variance can be achieved by the follow-
ing choice of design variables:

• Q = I and nz = 2n, i.e. Rzϕ̄ in (24) is square;
• L(q) = 1

H0(q)A0(q−1)

• z(t) = 1
H0(q)A0(q−1)

ϕ̃(t).

This can be verified by subsitution into (24) and by
using the fact that

Rzϕ̄ = Ēz(t)L(q)ϕ̃T (t) = Ēϕ̃F(t)ϕ̃T
F(t).

Note that the optimal IV estimator can only be ob-
tained if the true noise model A0(q−1)H0(q) 4 is ex-
actly known and therefore optimal accuracy cannot be
achieved in practice.

Furthermore, it is interesting to notice that the op-
timal accuracy is achieved without introducing any
additional instruments (nz = 2n), like in the open-loop
situation. The introduction of additional instruments
will not contribute to reduction of the variance, at least
in the ideal situation of an exactly known noise model
A0(q−1)H0(q).

5. APPROXIMATE IMPLEMENTATIONS

In order to give some clues to the closed-loop identi-
fication method users, it would be interesting to com-
pare the extended IV method with the optimal IV one.
However, as the latter cannot be achieved in prac-
tice, approximate implementations of the optimal IV
method will be considered. For this purpose one will
need to take care that

• a model of A0H0 is available in order to construct
the prefilter L(q) and the instruments z(t),

4 Although A0H0 is referred to as “noise model” it also involves
knowledge of G0 through its denominator A0.

• a first model of G0(q) is needed to compute the
noise free part of the regressor ϕ̃(t).

The choice of the instruments and prefilter in the IV
method affects the asymptotic variance, while consis-
tency properties are generically secured. This suggests
that minor deviations from the optimal value (which
is not available in practice) will only cause second-
order effects in the resulting accuracy. Therefore it is
considered to be sufficient to use consistent, but not
necessarily efficient estimates of the dynamics and of
the noise when constituting the instrument and the
prefilter (Ljung 1999).
Additionally for obtaining the necessary preliminary
models a restriction is made to linear regression esti-
mates in order to keep computational procedures sim-
ple and tractable.

5.1 First alternative (M2, M3)

Several bootstrap IV methods have been proposed in
the open-loop situation, in an attempt to approximate
the optimal IV method, see e.g. (Young 1976, Söder-
ström and Stoica 1983, Ljung 1999). A first solu-
tion consists in extending one of these algorithms
to the closed-loop situation; here the IV4 method
(Ljung 1999) will be considered. The only difference
between open-loop and closed-loop cases is that in
the latter, also the input is correlated with the noise.
Therefore, the instruments have to be uncorrelated
with the noise part of u(t) but correlated with the
noise-free part of u(t).

Method M2 (cliv4).

Step 1. Write the model structure as a linear regres-
sion

ŷ(t,θ) = ϕ(t)T θ. (30)

Estimate θ by a least-squares method and get
θ̂1 along with the corresponding transfer function
Ĝ1(q).

Step2. Generate the instruments z1(t) as

ỹ1(t) =
C(q)Ĝ1(q)

1+C(q)Ĝ1(q)
r(t) (31)

ũ1(t) =
1

1+C(q)Ĝ1(q)
r(t) (32)

z1(t) =[−ỹ1(t−1) · · ·−ỹ1(t−n)ũ1(t−1) · · · ũ1(t−n)]T

z1(t) can be seen as an estimation of the noise-
free part of the regressor ϕ(t). Determine the IV
estimate of θ in (30) as

θ̂2 = R̂−1
z1ϕR̂z1y (33)

The corresponding estimated transfer function is

given by Ĝ2(q) = B̂2(q−1)

Â2(q−1)
, of order n.

Step 3. Let ŵ(t) = Â2(q−1)y(t) − B̂2(q−1)u(t) and
postulate an AR model of order 2n for ŵ(t) :
L(q)ŵ(t) = e(t).
Estimate L(q) using a least-squares method and de-
note the result by L̂(q).



Step 4. Generate the instruments z2(t) as

ỹ2(t) =
C(q)Ĝ2(q)

1+C(q)Ĝ2(q)
r(t), (34)

ũ2(t) =
1

1+C(q)Ĝ2(q)
r(t) (35)

z2(t) =[−ỹ2(t−1) · · ·−ỹ2(t−n)ũ2(t−1) · · · ũ2(t−n)]T

Using these instruments z2(t) and the prefilter L̂(q),
determine the IV estimate of θ in (30) as

θ̂cliv4 = R̂−1
z2ϕT

R̂z2yT , (36)

where

ϕT (t) = L̂(q)ϕ(t) and yT (t) = L̂(q)y(t). (37)

The asymptotic covariance matrix of the final esti-
mates is the Cramer-Rao bound, provided the true
noise model is an autoregression of order 2n.

Method M3 (cliv4-armasel). The method above can
be improved by using a more sophisticated noise mod-
eling procedure, e.g. by replacing the third step of the
M2 algorithm by the �������,�	*+� procedure developed
in Broersen (2002), including an appropriate order
selection step. This procedure consists in estimating
several autoregressive models of different orders and
in applying a nonasymptotic order selection criterion
based on estimates of prediction error expectation.

5.2 Second alternative (M4)

Noise and process models have to be known in order
to construct the instruments and the prefilter. Since,
the second order statistical property is not of crucial
importance, a simple solution consists in estimating
these models by using a high-order least-squares esti-
mator. The result will be obviously biased but a bias in
the first step does not lead to a bias in the final model.

Method M4 (cliv3).

Step 1. Write the model structure as a linear regres-
sion (30), and estimate θ by a high-order least-
squares method.
The resulting θ̂1 leads to process and noise models

Ĝ1(q) = B̂1(q−1)

Â1(q−1)
, Ĥ1(q) = 1

Â1(q−1)
respectively.

Step 2. The prefilter L̂(q) = Â1(q−1)Ĥ1(q) = 1 by
construction, due to the ARX model structure.
Compute the noise-free part of the regressor

ϕ̃(t) =[−ỹ1(t−1) · · ·−ỹ1(t−n)ũ1(t−1) · · · ũ1(t−n)]T

with ỹ1(t) and ũ1(t) computed as in equations (31)-
(32). Generate the instruments as

z(t) = {[Â1(q
−1)Ĥ1(q)]−1ϕ̃T (t)}T (38)

Step 3. Using the instrument z(t) and the prefilter
L̂(q), determine the IV estimate in (30) as

θ̂cliv3 = R̂−1
zϕT

R̂zyT . (39)

6. EXAMPLE

The following numerical example is used to compare
the performances of the proposed approaches. The
process to be identified is described by equation (1),
where

G0(q) =
0.5q−1

1−0.8q−1 , n = 1 (40)

C(q)=
0.0012+0.0002q−1−0.001q−2

0.5−0.9656q−1 +0.4656q−2 ,m=2 (41)

H0(q) =
1−1.56q−1 +1.045q−2−0.3338q−3

1−2.35q−1 +2.09q−2−0.6675q−3 (42)

r(t) is a deterministic sequence (realization of a ran-
dom binary signal) and e0(t) is a white noise uncorre-
lated with r(t). The process parameters are estimated
by means of the methods M1 to M4. Moreover, the
results from the basic closed-loop IV method devel-
oped by Söderström et al. (1987) are also analyzed.
This methods referenced as M5, consists in using the
delayed version of the reference signal as instruments;
the estimate is thus given by

θ̂cliv =

[

N

∑
t=1

ζ(t)ϕT (t)

]−1[ N

∑
t=1

ζ(t)y(t)

]

(43)

ζ(t) =
[

r(t) r(t−1) · · · r(t−2n)
]T

(44)

Summary of methods:

M1: tailor-made IV (tiv) / BELS with m > n, see
section 3.3;

M2: bootstrap IV (cliv4), see section 5.1;
M3: bootstrap IV with automated noise model iden-

tification (cliv4-armasel), see section 5.1;
M4: bootstrap IV with high-order least-squares

(cliv3), see section 5.2;
M5: basic closed-loop IV.

For illustration purposes, all of these methods are
compared to a benchmark which consists in applying
the true noise and process models for generating the
prefilter and the instruments.
The process parameters are estimated on the basis
of closed-loop data sequences of length N = 1000.
Monte Carlo simulation of 100 experiments has been
performed for a signal to noise ratio

SNR = 10log

(

Pyd

Pe

)

= 15 dB, (45)

where Px denotes the power of the signal x and yd is
the noise-free output signal.
In figure 2, the Bode diagrams of the 100 models iden-
tified by the six methods are represented. Furthermore,
the following function is computed and represented in
figure 3 for each algorithm

g(ω) =
1

MC

MC

∑
k=1

|G0(e
iω)− Ĝk(e

iω)| (46)

where MC denotes the number of Monte Carlo ex-
perimentations and Ĝk(eiω) the transfer function es-
timated during the kth Monte Carlo experimentation.



Figures 2 and 3 show that M3 gives the best results (no
bias, lower standard-deviation), really close to those
of the benchmark. The two approximate versions of
the optimal IV algorithm (M3, M4) and the closed-
loop IV method (M5) give better results than the pro-
posed extended IV (M1) in that case. Moreover, the
method based on the least-square high-order model
(M4) seems to be more appropriate than the extension
of the IV4 method to this closed-loop case (M2).

Furthermore, the 2 norm of the difference between the
real and estimated transfer functions is also computed
for each method

Norm =
1

MC

MC

∑
k=1

∫

|G0(e
iω)− Ĝk(e

iω)|2dω (47)

The results are given in table 1 and confirm the previ-
ous graphic results: the bootstrap methods considered
in the paper give better results than the extended IV
technique.

method bench. M1 M2 M3 M4 M5
(tiv) (cliv4) (armasel) (cliv3) (cliv)

Norm 1.921 4.766 2.893 2.223 2.591 3.685

Table 1. Norm
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Fig. 2. Bode amplitude plots of the process (black) and
of the estimates (grey)

7. CONCLUSION

Several IV and IV-related estimators for closed-loop
system identification have been studied and set in an
extended IV framework. An explicit expression for the
covariance matrix of estimation errors is given and it
is then shown that a minimal value of this covariance
matrix can be achieved for a particular choice of in-
struments and prefilters. This minimal value requires
the knowledge of the true system parameters and is
therefore not reachable in practice. Several methods
have thus been developed to determine the design
parameters which allow to approximate the optimal
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Fig. 3. Average frequency response error g(ω) for
several IV methods; results are averaged over 100
Monte Carlo experiments.

closed-loop IV estimator. These methods have been
compared to the recently suggested Tailor-made IV
methods and BELS methods which are known to lead
to unbiased plant estimates in closed loop. However
for arriving at estimates with attractive variance prop-
erties it is preferably to apply bootstrap IV methods as
considered in this paper.
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APPENDIX

Proof of Proposition 1. Using (15), the solution to
(16) can be written as

θ̂tiv(N) =

[

N

∑
t=1

η(t)ϕ̄T (t)

]−1[ N

∑
t=1

η(t)ȳ(t)

]

.

With (20) the expression (17) for F can be written as

F = R̂T
ϕrϕ̄(R̂ϕrϕc R̂T

ϕrϕc
)−1.

Substituting η(t) = Fϕr(t) into the expression for
θ̂tiv(N), and using (8) then delivers

θ̂tiv = [R̂T
ϕrϕ̄(R̂ϕrϕc R̂T

ϕrϕc
)−1R̂ϕrϕ̄]−1

· R̂T
ϕrϕ̄(R̂ϕrϕc R̂T

ϕrϕc
)−1R̂ϕr ȳ. (48)

The structure of this expression is

θ̂tiv = (AT QA)−1AT QB (49)

with

A = R̂ϕrϕ̄, Q = (R̂ϕrϕc R̂T
ϕrϕc

)−1, B = R̂ϕr ȳ, (50)

having the structure of a solution to a weighted least-
squares problem. As a result, θ̂tiv is the solution to the
extended IV problem

θ̂tiv = argmin
θ

∥

∥R̂ϕrϕ̄θ− R̂ϕr ȳ
∥

∥

2
Q (51)

with weighting matrix Q given by equation (50).
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