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Abstract :

In this paper a Perfectly Matched Layer (PML) formulation was tested as boundary condition in linearized Eu-
ler’s Equations. Counted among absorbing boundary conditions, it was recently introduced in Computational
Aeroacoustics (CAA). A formulation is presented that makes the implementation of the PML very easy and com-
putationally efficient. This technique was evaluated with typical problems in CAA by using the linearized Euler
equations in 2-D such as a convected incompressible vortex and a Kelvin-Helmholtz instability wave. The PML
was compared directly to a standard sponge zone and shows an excellent performance.
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1 Introduction

The importance of non-reflecting boundary conditions in numerical simulations with an
open domain, such as those that occur in many practical problems in CAA and computational
fluid dynamics, is crucial for time and cost accurate solutions. The most widely spread non
reflecting boundary condition is the characteristic based one of Thompson [1]. Tam and Webb
[2] followed another strategy and developed a boundary condition starting from the asymptotic
solution of the linearized Euler equations in 2-D. As radiation boundary condition it performs
very well for all angle of incidences and was therefore favored over the characteristic boundary
condition.

However for CAA problems radiation boundary conditions are not efficient enough to exit
turbulent structures. Once a vortex has entered the boundary, acoustic waves are generated and
contaminate the solution. Therefore vorticity waves that are upwinded by the flow have to be
dissipated before meeting the boundary condition. A very simple and common method is to
apply a Laplacian filter on the fluctuations of the flow in a damping zone or sponge zone.
Following Bogey & Bailly [3] after each time step the fluctuations of u � ����������	
������

are
updated such a way that

u ��� u ����� LF

���� u ��� ���� u � ��!
" u �$#�!&%(' � LF �)� LF,max ***,+ � +.-+./ � + -
***10 (1)

where 2
3 and 254 represent the beginning and the end of the damping zone respectively. 6 LF

is the maximum absorption rate reached at 274 and 8 determines the smoothness of the filter.
However the efficiency of this damping zone with reasonable widths is not satisfying for many
aero-acoustic applications and for even smooth damping, reflections at the beginning of the9
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zone can be observed. Berenger [4] introduced a absorbing technique called Perfectly Matched
Layer (PML) that was builded up to be theoretically transparent for all fluctuations that entering
in it.

In this paper the PML will be applied to the linearized Euler equations only, because in
many aero-acoustic problems viscous and nonlinear effects can be neglected [5]. The linearized
Euler equations for non uniform flows can be written as :�

u����� A

�
u� 2 � B

�
u����� C � u � C 	 u ��
 (2)

where

A � ��� � � �� � ����� �� � � ���� � � ��� �
B � ����� � �� � � ���� � ��� ������ � � � �

C � � � �"! �#!�� �� �"! �$!%� �� � ! � ! � �� � ! ��� � ! � �
C 	 � �&�(' � �#' �� �$'�� �"' �� � ' � � ' �� � � ' � � ' �*)

Note, that the terms +-, � +�. containing the derivatives of the mean properties (denoted with
an overbar) become zero for a uniform mean flow field.

2 Perfectly Matched Layer

The PML equations can be derived by applying a complex change of variable to the Fourier
transformed Euler equations (2) such as

20/ � 2 �%12 �3�54 606�798;:,2 �
where 6 PML presents the absoption rate and 2�3 indicates the position of the interface between
the Euler and the PML domain. One can demonstrate easily by impedance theory that the PML
is theoretically transparent for disturbances that enters in it. The absorption rate can vary within
the absorbing layer along the coordinate direction vertical to the absorbing layer interface. The
distribution of 6 PML was chosen according to (1).

Unfortunately the derivation of the two and more dimensional case leads to a system of
equations that support exponentially growing unstable solutions [6]. Hu [7] proofed that uns-
table solutions occur when the component of the group velocity and the phase velocity in the
corresponding direction doesn’t have the same sign. Note, that this is only possible for convec-
ted acoustic modes whereas the group and phase velocity of the vortical and entropic modes are
always of the same sign.

To get the PML equations stable, Hu proposed to apply a proper time space transformation
before performing the complex change of variable in order to get a propagation of acoustic
waves in a medium at rest. This transformation is similar to the Prandtl-Glauert transformation
in aerodynamics and can be written as � � � �=< 2 �

>
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FIG. 1 – (a) Implementation of the PML as absorbing boundary layer. The vector q that contains
the auxiliary variables only have to be calculated and stored in the layer. (b) Time evolution of# � for incompressible vortex $ � 
 , $ �&% , $ � 9('

.

where < can be found for the case of a uniform mean flow in 2 -direction analytically as < �)�+*-, 9/. )�1032
. Solving the compressible Rayleigh equation, Hu [8] found out that even for the

nonuniform case such as subsonic shear layers, jet flows or Poiseuille flows a < can be found
that is constant. For the velocity and density mean profile of a jet, he found < � 9 * 
 ) >54 .Starting from the formulation of Hu [7], the PML equations can be rewritten in a quasi
conservative form, that is very simple to implement. They can be written in respect to the matrix
form (2) as follows : 6

U687 " 6
A 9 uq :6

+
" 6

B 9 uq ;68< " Hq " G �>=@? (3)�
q��� � u

�
where

U � ����� )����� )��	
���� �
uq � � u � 6�	 q �

uq 	 � u � 6�� q �
Hq �BA C C� . � A C� 2ED uq � � A C C	 . � B C�0� D uq 	 � G � � , 6�� � 6�	 2 u � 6�� 6�	 q � 6�� < Auq � ' C

and C indicates that the velocity components are multiplied with the mean density
)�
. The auxil-

lary variable q and its derivatives are only needed to be calculated and stored in the absorbing
layer as Fig. 1(a) illustrates, what reduces the computational and storage effort. Note, that for6�� � 6�	 � 
 the PML equations become the ordinary linearized Euler in the conservative form.

3 Performance of the PML

The 2-D PML equations were implemented in a linearized Euler 2-D code that uses an opti-
mized 11-pts finite difference scheme for the spatial discretization (4 points/ F ) and an optimized
6-steps Runge-Kutta algorithm [9] to advance in time with CFL = 0.9. Also selective filtering
was used ( $HG ��
 )JI ) in order to suppress grid-to-grid oscillations.

For testing the efficiency of the PML a benchmark test of [10] were used, consisting of an
incompressible vortex convected in a uniform mean flow. The tests were done on a uniform

I
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grid. The physical domain defined by a � 0 uniform grid with � � 9 
 9 was created such that. 4 
�� 2 � � � 4 
 . To limit the computational domain the boundary conditions of Tam and
Webb [2] were applied on three additional points along all boundaries.

To estimate the magnitude of acoustic waves reflected back into the computational domain
after the exit of disturbances, the time evolution of the residual fluctuating pressure

# � is recor-
ded. This residual pressure is based on the following

# 0 norm :

# � � � 9� 0�����
	��  � / 0	�� �� ��� 0 )
3.1 Vortex in a uniform flow

The vortex is upwinded in a uniform flow with
)
u � ,�� � 
 � 
 2 , constant mean density

)� � 9
and pressure

)� � 9 *��
were tested and

� � 9 ) ' . The initial conditions are��� ?�� � =@?� � + !������! #"1�%$ � +�& ! " +'&& %)( ?* � � + & �+�,�! -" �%$ � + & ! " + && %.( ?where / � ,
0�1 > 2	*'230
, the flow Mach number 3 � 
 ) 4 , the Gaussian half-width

2 � I and the
amplitude 4 � 9 
65-7 . Tests with different PML width $ were done. The parameters of the PML
are 698':<; � > and 8 � > )Figure 1 (b) illustrates the time evolution of the residual pressure. Once the vortex has im-
pacted the boundary at about

� � % 
 , # � strongly increases if only the radiation boundary
conditions are applied. Even with a layer of 7 points the reflections reduces

>
orders of ma-

gnitude. A layer of 14 points makes the reflections neglectable. Furthermore only neglectable
reflections can be observed when the vortex enters the PML. In addition with grid stretching,
the reflections can be reduced by another order of magnitude using a % point PML.

3.2 PML vs. Laplacian filter

In the following the performance of the PML is compared with the performance of a simple
Laplacian filter according to (1). The maximum absorption rate was chosen to be 6>=�?#� � 
 )A@and the smoothness to be 8 � 9 ) 4 for both absorbing layers. The damping zones were applied
over 30 additional points that were added at the outflow boundary condition. Fig. 2 (a) displays
the results for the residual pressure that was recorded only in the physical domain � 0

. The solid
line represents the residual pressure when no absorbing layer ( 6 � 
 ) is applied by using the
same computational domain. The oscillations at

� � 9!B 
 are due to purely numerical distur-
bances that are generated when the vortex leaves the computational domain. Propagated by the
numerical schemes many times faster than physical acoustic waves they reach and contaminate
the physical domain � 0 earlier than acoustical waves.

Figure 2 (a) underlines how much better the PML works compared to the Laplacian filter.
Constructed to be transparent the PML generates only small reflections, when the vortex impacts
in the damping zone indicated by the first peak, whereas the classical damping zone generates
acoustic waves that are about one order higher in magnitude. Moreover the Laplacian filter can’t
reduce the amplitude of the vortex sufficiently Fig. 2 (b) leading to a high residual pressure. In
practice the Laplacian filter only works well in addition with strong grid stretching.

'
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FIG. 2 – (a) Residuel pressure without absorbing layer 6 ��
 ) , 6 � 
 )JI ,6 ��
 ) @ ; upper curve Laplacian filter, lower curve PML. (b) Vorticity along
� ��


initial condition ; PML, Laplacian filter at
� � 9 > @ ; beginning of

damping zone.

4 Test cases for linearized Euler equations with non uniform mean flow

The results of a simulation of a more complex test case with the mean flow of 2-D subsonic
jet is presented now. Having an inflexing point in the velocity profile, the considered mean flow
support solutions that are unstable. In the real physical problem, these Helmholtz instabilities
are limited by non-linear and viscous effects and are the reason for the creation of vortices and
turbulent structures. In the linear case they rise exponentially and without limitation making it
very difficult to exit them properly by means of ordinary sponge zones such as (1). The test
that was made, is the benchmark problem proposed by Morris et al. [11] that tries to model the
radiation and refraction of sound waves through a two-dimensional subsonic and sub critical
jet by means of the linearized Euler equations. The instability wave is excited by an acoustical
source and absorbed with the PML technique.

The mean flow variables are given by)� � � ��� ���! -"1� ����� � % � ; - �	� - % & (
< 
 �� � = � < � �

The mean density
)�

is derived by using the Crocco-Busemann relation9 )� � . 9> � . 9� )� , )� . �  2 )� � 9� E)��  � 9�� �  . )��  �
where the index � designs the other parameters of the jet and � the ambient properties. The jet
Mach number is calculated by

�  � �  *��  ��
 ) % 4 @ . The speed of sound
� 

is calculated by
using the ideal gas law

�  ��� ����� 
. The mean pressure was assumed to be constant in the

whole computational domain. The parameters of the problem can be found in [11]. The Strouhal
number based on the jet velocity

� 
and an estimation of the jet diameter

> 2
defines 2 � such as��� � '�� 2 � 2�* �  � 
 ) B54 .The Simulation was made on a uniform grid

4 ' %�� '5' I with
. 454 ) >54! � 2 � 9 4�" ) ># ,. 4�" ) >$ � � � 4�" ) ># and carried out over 6000 iterations. As the jet is considered to be

symmetric, a symmetry boundary condition was applied along
� �&
 . The PML is applied

over 20 points at the inflow and outflow boundaries and over 17 points at the upper and lower

4
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boundaries. The maximum absorption rates of the PML are taken to be 6 � � =�?#� � 9 *��
and6�	 � =�?#� � > *�� , where

�
is the length of a grid cell.

Figure 3 presents a screen shot of the pressure field
� * 4 that was taken after 3600 iterations.

As expected an instability develops and is convected downstream. The PML has no difficulty to
dissipate and exit this instability wave without any spurious reflections.
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FIG. 3 – Screen shot of the pressure contours
�1* 4 between � 
 ) 
 
 I and � 
 ) 9 
 >84 following a

geometrical ratio of 2.

5 Conclusion

The PML is a very efficient absorbing boundary condition for linearized Euler equations for
subsonic problems in CAA. In combination with the radiation boundary condition this technique
is able to exit exponentially growing solutions very efficiently. This is very difficult and compu-
tational costly, using the classical Laplacian filter for example. The instability of the PML could
always suppressed by tuning the crucial value < and the maximum absorption 6 = ? � . Because of
the efficiency it will be possible to calculate very difficult problems of CAA, where very exact
methods are required as for numerical integration of the Green function. Finally nonlinear cases
should be considered in future.
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