
HAL Id: hal-00089612
https://hal.science/hal-00089612

Submitted on 21 Aug 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Feedback Control Learning Model for QoS, Power &
Performance Management of Reconfigurable Embedded

Systems
Jean-Philippe Diguet, Yvan Eustache, Milad Elkhodary

To cite this version:
Jean-Philippe Diguet, Yvan Eustache, Milad Elkhodary. Feedback Control Learning Model for QoS,
Power & Performance Management of Reconfigurable Embedded Systems. 2005. �hal-00089612�

https://hal.science/hal-00089612
https://hal.archives-ouvertes.fr


Feedback Control Learning Model for QoS, Power & Performance
Management of Reconfigurable Embedded Systems

Jean-Philippe Diguet, Yvan Eustache, Milad El Khodary
LESTER, CNRS/UBS University, Lorient, France, (Jean-Philippe.Diguet@univ-ubs.fr)

Abstract

This paper focuses on a usually ignored issue, the auto-
configuration modelling and decision in the context of re-
configurable embedded systems. We propose an original
and generic method based on control theory including sta-
bility analysis. Our approach addresses the question of lo-
cal vs global reconfiguration decision at hardware, software
and RTOS levels. We tackle the run-time uncertainty con-
ditions with a learning system model that balances trade-
offs between accuracy and complexity using sensors and
run-time light estimators based on signal processing the-
ory. Then we figure out how our method can be applied
to a smart camera.

1 Introduction

1.1 Problem formulation

Mobile multi-media systems are characterized by scarce
energy, memory and computation resources, which must
be used efficiently. However power, performance and qual-
ity of service (QOS) optimizations can only be partially
performed at design time since the system environment
can be very uncertain. The CPU and communications
loads vary with tasks’ changeable execution time. This
can be due to telecommunication conditions (e.g. chan-
nel signal-noise ratio), to the multimedia contents (object
speed and complexity) and the user choices. Thus a part of
design decisions should be dynamically performed at run
time in order to systematically optimize resource usage to
meet the application constraints in terms of QoS, through-
put and lifetime. To face the run-time design challenges,
the system must be flexible and reactive, it means that a
real-time operating system (RTOS) must be in charge of
resource management. The design of the resource man-
ager should validate three properties. First, the addition
of the control logic should be rentable i.e. additional over-
head due to the manager added logic must be smaller than
the expected absolute gain. Secondly, the system must be
adaptive so that it can estimate and apply on-line candi-
date configurations. Finally the system must be stable.
In this paper we present our approach to deal with these
antagonist constraints. Our method combines the usual
control theory with a learning-based simple modelling of
the system behavior.

The rest of the paper is organized as follows, in section
1.2 we present relevant relative work and formalize our
approach in section 2. Our global regulation global algo-
rithm is detailed in section 3, then we introduce the smart
camera case study, finally we conclude.

Figure 1: System Control Overview

1.2 Related work

In the domain of adaptive embedded systems four issues
are related to our work. Firstly, a lot of work has been
produced in the domain of adaptive architectures. Differ-
ent techniques have been introduced for clock and voltage
scaling [1], pipeline control [2], cache resource allocation
[3], functional units [4] and Network on Chip (NoC) band-
width adaptation [5]. These approaches can be classified
in the category of local configurations based on specific
aspects. Our aim is to add a global configuration man-
agement including both algorithmic and architectural as-
pects. In [6] dynamic algorithm selection combined with
an architecture parameterization for MPEG-4 is detailed.
Here, the association between algorithmic and architec-
tural views is pertinent, however the hardware controller
still remains local. Secondly, even thought dynamically re-
configurable coarse-grain architectures have been already
proposed, the conditions for reconfiguration decisions re-
main ignored.

Thirdly, RTOS for hardware reconfiguration manage-

1



ment have been recently introduced. Proofs of concepts
are demonstrated in [7] and [8]. These experiments show
that RTOS level management of reconfigurable architec-
tures can be considered as available from a research per-
spective. Finally, if we assume that specific adaptive and
reconfigurable architectures are also mature, we can con-
clude the need for decision strategies. The objective is
to take benefit from the reconfiguration space in order to
adapt embedded systems to application and user demands.

From the software point of view, QoS management has
been deeply explored for web services applications. In [9]
a prototype operating system (OS) can handle different
QoS dimensions and allocation strategies in the context of
server / mobile video application. Finally, feedback con-
trol has been recently studied in the area of soft RTOS
to handle the uncertainty of worst case execution time
(WCET). In [10] authors present a complete model for
feedback control real-time scheduling. It is based on CPU
utilization and deadline miss ratio as references. The QoS
is strongly related to real-time deadlines and architectural
aspects and power are not considered. In [11] a relevant
two step approach is proposed. The target application
is PC-based video server that can select frame QoS de-
pending on its workload. However this kind of technique
doesn’t fit for embedded low power systems.

2 Concept formalization

2.1 Local/global separation of concerns

The reconfiguration issue encompasses different aspects
that drive the implementation of the reconfiguration de-
cision control. The first relevant point is the locality. A
reconfiguration can be decided at the application level or
at the system level. Based on application specific data,
a local decision provides a short reaction delay and met-
rics to compute the QoS. However some decisions must be
considered globally, in that case a trade-off can be decided
over the complete system including the power consump-
tion and the computation efficiency of the whole system.
An application is a set of dependent tasks so the choice
also impacts the application specification by means of task
and intra-task control definitions. Another relevant point
is the complexity of the decision implementation. In the
context of embedded systems only low cost solutions must
be considered. The third point is the reconfiguration type.
Actually it can be i) a hardware reconfiguration (FPGA,
dynamic, partial, coarse-grain), ii) an algorithmic recon-
figuration regarding the different versions for a given task,
iii) a NoC management including guaranteed traffic and
best effort paths and slot table definitions and iv) an OS
policy (priority assignment, scheduling techniques, time
slot allocation). To cope with these issues we implement
a two step configuration management.

2.2 Two step configuration strategy

Our Space Configuration Model is based on a two stages
structure. The Local Configuration Manager (LCM) is
the lowest level, located near the applications tasks. Its
role is to supervise all tasks, to read the metrics of each
task to compute them and to provide the desired config-
uration to the upper configuration level. This is equiva-
lent to the factory management where the executive office
needs to manage the production of factories and to in-
form the office head about the states of production and

desired configurations. The head office is in our system
the Global Configuration Manager (GCM). This task has
a global sight of the system. The System Parameters are
global parameters including the battery power consump-
tion, the Quality of Service and the execution time of the
application. Respectively, in the industry, the office head
gives some information from an audit commission ensuring
that resources are used efficiently and that products will be
correctly designed and provided in time. The GCM takes
care of algorithmic configuration LCM wishes and user
constraints. In our hierarchical configuration model, the
GCM is standardized and application independent. On
the contrary, the LCM is developed for each application
and some tasks have a metric layer to describe the actual
state of the application and to allow the choice of a new
configuration. Regarding, the application the LCM can be
designed as a hardware task to unload the processor from
the configuration tasks.

The LCM is in charge of the algorithm selection for
all the tasks of the application it controls. Given results
from all the application tasks, it first computes the QoS
as a kind of "application sensor" for the global manager
and secondly it restricts the global configuration space re-
garding local algorithmic decisions.

The GCM is in charge of global system parameters
(e.g. I/O data rates) and hardware/sofware implementa-
tions decisions. It receives data from sensors (gas gauge,
system cpu load, application specific QoS) and from esti-
mators when no measures are available. The GCM decides
the new system configuration according to user require-
ments (system references) and configuration restrictions
from the local managers.

2.3 OS API requirements

Global reconfiguration means to add new OS services in
order to facilitate a generic implementation of reconfigu-
ration control.

The uplink APIs provide the OS with i) application sta-
tus namely the local configuration decisions, the priority
choices (QoS, Power, Real-Time), ii) system status (QoS,
Power, Real-time features) and iii) global reconfiguration
decisions to be handled by the OS.

The downlink APIs enables the OS to apply algorithmic
and architectural global reconfiguration decisions, these
transformations are applied conjointly with task setup
(e.g. period specification).

2.4 Definitions

Reconfiguration space dimensions At a system level
we consider three generic dimensions:

• QoS means the processing quality for one iteration of
the application;

• T is the execution time for one application, namely
the Real-Time constraint;

• P is the average power consumption. In practice this
term is measured with a battery gauge [12] and re-
lated to the system lifespan.

From a system view, an application is defined as :

• Ac = [uQ, uT , uP ] represents the user choice con-
straints (i.e. references); in practice P is derived from
the user required span life.

2



• As = [yQ, yT , yP ] is the controlled application status,
i.e. the real performances;

• Ap = [QoS, T, P ] is the priority order chosen by the
user, i.e. Ap = [0, 1, 2] means that the constraint
order is QoS,T, P.

• Ae = [ŷQ, ŷT , ŷP ] is the estimation of system outputs.
In practice, we implement the estimator only for the
main priority magnitude (e.g. P).

Each task of the controlled application can be imple-
mented with various algorithms or algorithm parameter
choices (LCM). Those solutions can be implemented with
different hardware modules or software version that may
use specific coprocessors (i.e. wired set of instructions).
Finally, if a NoC is available, various NoC configurations
can extend the solution space.

• Cs[1..N ] is the task status register where Cs[i] is the
algorithm version for task i. 0 means that the task
is not activated, 1 is the simplest version with guar-
anties regarding the QoS and so on. N is the size of
the controlled application task set. Cs[] is exclusively
controlled by the LCM.

• Is[1..N ] is the current task implementation, Is[i] is
the number of the implementation configuration for
task i.

• Ic[1..N ] is the next task implementation decided by
the controller to be handled by the OS.

Reconfiguration space table As previously men-
tioned, we face two kinds of problems. The first one is
the trade-off between accuracy, search space complexity
and low cost implementation in the context of embedded
systems. The second one is the fluctuating nature of data.
Actually for a given configuration, [QoS, T, P ] can have
important variations depending on the data flows within
the system.

To cope with these issues we have implemented a solu-
tion based on a sorted reconfiguration space table (RST)
where values are regularly updated with online measures
or estimations. As indicated in Fig.1, each line Lj charac-
terizes a configuration solution for the system i.e. values
affected to the Ic[i] for each i such as Cs[i] 6= 0. We note
Lc the current RST line.

For each configuration line Lj , Lj(QoS), Lj(T ), and
Lj(P ) values are available. These values are regularly
measured from sensors or counters or estimated, as ex-
plained in section 3.2. Thus we benefit from a low cost
flexible learning system aware of its own behavior in a
changeable environment. In a context of multiple con-
trolled applications, multiple tables are maintained.

Regulation parameters Three different rates are used
to control regulation :

• Ra is the rate of algorithmic reconfigurations, when
measures are not available, estimations are also com-
puted with this rate.

• Rm ≤ Ra is the sensor acquisition rate for task execu-
tion delays and power consumption for As[QoS, T, P ]
updates.

• Rh ≤ Rm is the hardware reconfiguration rate.

These different rates must be adaptive to consider the
tradeoff between the regulation cost and the expected
gains provided by reconfiguration choices. This point is
detailed in section 3.4.

3 Regulation

3.1 Close-loop modelling

Control theory methodology requires first to settle an ana-
lytical model close the real system to be controlled. In our
case, the system is composed of a reconfigurable SoC con-
taining an applicative set of tasks that can be implemented
with various versions on different HW/SW resources and
control, estimation and configuration tasks. Our model,
depicted in Fig.2 is based on three elements. R is the
control function and S the configuration adaptation. O is
the system observer, which provides estimates for the next
time slot.The observer implements a system model that is
updated when measures are available. In the following we
consider P as the controlled magnitude for clarity sake.

Figure 2: Close-loop model

u(t) is the power reference, which is derived from the
user time-life constraint.

e(t) = u(t)− ŷ(t) is the difference between the reference
and the observer’s prediction output i.e. the expected av-
erage power consumption of the system in the next time
slot.

x(t) = ke(t) is the output of the proportional regulator
(R). We don’t use the derivative effect, which can lead to
sudden output variations with this kind of very fluctuating
input nor the integral one since it appears in the system
modelling as explained hereafter.

y(t) = y(t−1)+x(t) is the output of the system after the
reconfiguration adaptation (S). This function introduce an
integrator effect that can in theory annihilate the steady
state error.

ŷ(t + 1) = a0y(t) + a1y(t − 1) + a2y(t − 2) produces
an estimate of the next average power consumption. We
detail in 3.2 the estimation model i.e. how the coefficients
{ai} are updated.

y(t) is a noisy signal, since the power and delay in
the configuration table are approximated. The first er-
ror source εT is the load of non controlled sporadic tasks
that can run on the processor simultaneously. The second
source is the data dependency εD, which implies that the
execution delay and power consumption fluctuate with the
data values. This aspect is particulary true with applica-
tions based on video frame analysis or 3D graphics. Thus
in practice ỹ(t) = y(t − 1) + x(t) + εD + εT . Close-loop
feedback control suits well for controlling such a change-
able environment.

3.2 Online estimation / prediction

The observer regularly updates a model that estimates the
system behavior. The aim is firstly to predict the mag-
nitude evolution in order to anticipate the right decision
for reconfiguration. Secondly sensors acquisition introduce
delay and power overheads when a model-based approach

3



enables to rapidly estimate the system behavior even when
new measures are not available. Basically it enables to
tune the tradeoff between accuracy and cost. y(t) can be
considered as a noisy signal, the model objective is to pre-
dict y(t + n) representing for instance the average power
consumption of the system at time t + n. Various digi-
tal signal processing techniques have been defined to solve
this kind of problem. However in the context of embedded
systems the aim is to save power, so the control technique
overhead must be lower than the expected gains. It means
that only low cost solutions can be implemented. For these
reasons methods like adaptive least square or Kalman filter
are prohibited. The same kind of tradeoff has already been
considered in the domain of audio coding (e.g. echo cancel-
lation), where simplified solutions have been successfully
implemented. The LMS (Least Median Square) algorithm
is equivalent to the recursive least square (RLS) algorithm
when the autocorrelation matrix is diagonal In the context
of QoS, P and T signals such a model provides a relevant
tradeoff for embedded system modelling. Moreover, the
model coefficients are updated at a sampling rate (Rm),
which is dynamically modified to tune the cost/accuracy
tradeoff. For instance if Rm = 4Ra, it means that 3 over 4
ŷ(t) values are estimated with constant ai coefficient with-
out any new acquisition, this downsampling is particulary
efficient when the considered magnitude evolution is sta-
bilized. In Fig.3 simulations are given with a a 10db SNR
ratio, the black (.) line is the reference with a gaussian
noise (namely ε = εD + εT ), the red (+) line is the estima-
tion of ŷ(t + 1) with the LMS algorithm and the blue line
(+) is obtained with the RLS algorithm with only two taps
in order to produce a relatively simple matrix inversion.
The dotted lines are the prediction errors. Considering
the algorithm complexity for adaptation and estimation
(13 mult, 1 div, 9 +/- for a 2 taps RLS and 9 mult, 6 +/-
for a 3 taps LMS ) and the filter length we have opted for
a 3 taps (NTaps) LMS. Under the assumption that ε is a
gaussian noise, the algorithm stability is guaranteed if K
is such as given in eq.2.

ep(t) = y(t)− ŷ(t)

∀i ∈ {0, 1, 2} ai = K ∗ y(t)y(t− i)ep(t)

ŷ(t + 1) =
2

∑

i=0

aiy(t− i) (1)

0 < K <
2

3 ∗NTaps ∗ σ2
ε

(2)

3.3 Stability analysis

Equation 2 indicates the stability condition for the estima-
tion algorithm, however the close-loop system still remains
potentially instable. Conditions of stability must be guar-
anteed for all ai possible values, hereafter we develop the
close-loop function in the Z domain and set the conditions
of stability for the feedback control.

Open loop function

G(z) =
(

a0 + a1z
−1 + a2z

−2
) k

1− z−1

G(z) =
b0 + b1z

−1 + b2z
−2

1− z−1
where bi = kai (3)

0 10 20 30 40 50 60 70 80 90 100
−0.2

0

0.2

0.4

0.6

0.8

1

1.2
Average Power One Step Prediction − SNR = 10db

LMS (3 taps)
Reference
RLS (2 taps)
LMS error
RLS error

Figure 3: Signal modelling for QoS/P/T prediction.

Close-loop function

H(z) =
G(z)

1 + G(z)
=

b0 + b1z
−1 + b2z

−2

D(z)
(4)

D(z) = (b0 + 1) + (b1 − 1)z−1 + b3z
−2 (5)

From 5 we derive necessary conditions for stability :

case 1 : b0 = −1; b1 6= 1; |b2| < |1− b1| (6)

case 2 : b0 6= −1; |b2| < |1 + b0| (7)

3.4 Control of regulation parameters

One of the main issue is the cost of configuration, actu-
ally a reconfiguration choice is inefficient if the power and
delay gain obtained are lower than power and delay due
to the reconfiguration management (observation, decision,
configuration processing).

This control is organized in two steps, first the upper
bounds of Ra, Rm and Rh are computed off-line, the aim
is to compute the maximal values for Ra, Rm and Rh for
which power and delay gains can potentially be obtained.
Secondly these values are updated dynamically regarding
the system behavior.

Two kinds of stability metrics are used for control rate
management as described in Algo.1. The first one ad-
dresses the system pertinent magnitudes (QoS,T,P) evo-
lution, it is used to adapt the basic control rate Ra namely
when the system is stable Ra can slow down. The second
one is the prediction error used to control the measure-
ment rate. When the prediction model is correct the Rm

can slow down down. Hereafter Ra and Rm controls are
based on yP (i) and ŷP (i) the average power at time i mea-
sured and estimated respectively. We set Rm = Ra/L with
L ≤ 1, this model is applicable identically to QoS and T
while respecting Rm = Ra/L < Rmax

m .

3.5 Global configuration control

The global configuration control is described in Algo.2.
The inputs are the current configuration and algorithm
choices. The algorithm can be decomposed into four parts.

(i) (lines 1-2,15) Configuration space restriction
(i.e. legal RST lines). The current system status is loaded,

4



Alg. 1 Dynamic rate management (P case)

Ra dynamic management

If
∣

∣

∣

yP (i)−yP (i−1)
yP (i−1)

∣

∣

∣
< Th1 then Ra ← Ra/2

If
∣

∣

∣

yP (i)−yP (i−1)
yP (i−1)

∣

∣

∣
> Th2 then Ra ← max{Rmax

a , 2Ra}

Rm dynamic management

If
∣

∣

∣

ŷP (i)−yP (i)
yP (i)

∣

∣

∣
< Th3 then L← 2L

If
∣

∣

∣

ŷP (i)−yP (i)
yP (i)

∣

∣

∣
> Th4 then L← min{1, L/2}

Th1 < Th2 < Th3 < Th4 are thresholds to be set with
regards to accuracy vs cpu load tradeoff.

Cs[1..N ] provides the configuration controller with local
decisions that delimit the configuration space. Moreover,
at Rh rate, moves between RST including HW reconfigu-
ration lines are authorized (line 15).

(ii) (lines 6-13,31) Configuration characteristics up-
date At Rm sensor acquisition rate the LMS coefficients
are updated and errors (eRST ) between the QoS,P and T
values in Lc RST line and real values are computed. The
control rates are updated.

(iii) (line 17-30) Configuration decision, ŷ(t+1) pre-
diction is computed to obtain the error e(t) between the
references and the expected values. QoS, P and T esti-
mator can possibly be implemented, however we made the
choice of using the estimator for the first priority magni-
tude for simplicity reason. In Algo.2 the priority is the
power reference (i.e. time-life constraint). The configu-
ration decision is implemented with fast sort algorithms.
Firstly a L0 set is built with configurations that guar-
anty the power constraint at t + 1. The RST errors are
only known for the current Lc configuration. Without
any other information and to avoid complex estimation
for the whole configuration space, we assume that these
errors, due to data dependency and non controlled spo-
radic tasks, are the same for all configurations (Li 6= Lc).
This assumption fits also for the concept of a learning sys-
tem where data are regularly updated. Then a second set
L1 is built with L0 configurations respecting the second
priority (QoS in Algo.2) and finally a third set L2 con-
tains configurations according to the last priority (T in
Algo.2). Finally the best solution is selected and Ic[1..N ]
is updated.

(iv) OS controled configuration Ic[1..N ] is the next
configuration computed by the decision task. The config-
uration process is handled by the OS for synchronisation
and data integrity purpose, it is applied when the appli-
cation is idle.

4 Object tracking case study

4.1 Overview

The object tracking (OT) application (see table in Fig.4) is
designed for an embedded smart camera. We are currently
implementing it on a Stratix platform enhanced with dif-
ferent peripherals : battery gauge, camera and VGA con-
troller. This platform has been selected for the NIOS con-
figuration facilities (SOPC) and the availability of µCOSII
that can be modified to integrate control API described
in 2.1. Altera technology unfortunately doesn’t provide
dynamic reconfiguration capabilities, however for proving
the concept of our feedback configuration control this as-

Alg. 2 Global control algorithm, case Power priority.

1 Inputs : Cs[1..N ],Is[1..N ],
2 As[QoS, T, P ], Ap[QoS, T, P ], Lc,
3 ∀ i = {P, T,QoS} eRST (i) = 0 %% RST errors

4 For each (t = nTa), n ∈ N do %% adaptation base rate

5 If (t = mTm),m ∈ N %% measures available

6 UpdateAs[yQoS , yT , yP ]
7 ep(t) = y(t)− ŷ(t)
8 Model {ai} LMS adaptation
9 Ra dynamic management Algo.1
10 Rm dynamic management Algo.1
11 eRST (P ) = yP (t)− Lc(P )
12 eRST (T ) = yT (t)− Lc(T )
13 eRST (Q) = yQoS(t)− Lc(QoS)
14 If (t = pTh), p ∈ N

15 HW reconfiguration allowed from Is[] to Ic[]
16 %%%% Configuration decision; power priority

17 ŷP (t + 1) computation
18 e(t) = uP (t)− ŷ(t + 1)
19 %% system output error

20 Sort RST according to Ap[QoS, T, P ] priorities
21 %% for simplicity we assume PQoST order : Ap = [2, 1, 0]

22 L0={RST Li|Li(P ) + eRST (P ) + e(t) < uP (t)}
23 If L0 6= ∅
24 L1 = {Li ∈ L0 | Li(QoS) + eRST (Q) < uQ(t)}
25 If L1 6= ∅
26 L2 = {Li ∈ L1 | Li(T ) + eRST (T ) < uT (t)}
27 If L2 6= ∅ Ic[]← 1st L2 wrt increasing T
28 Else Ic[]← 1stline from L1 wrt increasing QoS
29 Else Ic[]← 1stline from L0 wrt increasing P
30 Else Ic[]← 1stline from RST wrt increasing P
31 Update line Lc in RST with As[QoS, T, P ]
32 Output : Ic[1..N ]

pect can be emulated. This application fetches numerous
sources of uncertainty from data like light variations, ob-
ject count, shape and speed, and the number of white
pixels after threshold processing. We have also added un-
controlled sporadic tasks with random release times.

OT is an image processing balanced with a Kalman pre-
diction filter for object location. When a new frame is
available, OT first performs an average from 2,3 or 4 prece-
dent images and suppresses the background before com-
paring the result to a threshold. The threshold value can
be computed with an adaptive or static threshold. The
resulted binary image contains white objects in motion
on a black background. An erosion dilatation processing
is computed followed by a reconstruction which can be
done or not depending on a QoS / performance trade-off.
Finally a task labels the detected objects and computes
their center of gravity. Based on their position, two tasks
manage and include the static objects in the background
image. The results are displayed on a VGA screen ac-
cording to the user choice (camera image, binary objects,
with or without gravity center marks). Finally, the two
last tasks are the Kalman prediction and QoS calculation
processing. This QoS is the result of the variation between
predictions and measures. When the QoS is greater than a
given threshold, the image acquisition and processing are
not launched but replaced by Kalman predictions.

The video rate and image size can be adapted (1) re-
garding the QoS, which is the relative location prediction
error. Conjointly different other combinations of configu-
rations can be adopted: the number of frames for the av-
erage frame computation (2), the use of adaptive or fixed

5



threshold (3) and the Kalman filter adaptation (4). The
configuration space includes tens of HW/SW implementa-
tions offering various parallelism exploitation solutions (5)
according to different algorithm configurations. Choices
(2-4) are local decisions based on specific information while
(1,5) are global and based on decisions and QoS computa-
tions from LCM. Fig.4 gives the OT local configurations
and metrics.

4.2 Example of configuration schemes

We discuss three kinds of configuration schemes in the
context of the OT application.

Let’s consider first the Byte2bit and the erosion-
dilatation tasks that compute the number of white pix-
els after the threshold and after the erosion processing
respectively. The erosion processing suppresses the iso-
lated white pixels from the threshold image. Those metrics
represent the image noise. Then, the LCM retrieves and
compares the metrics with a threshold and provides the
new configuration to the GCM. For instance, the Byte2bit
task is in the "two images averaging" configurations, the
image is noisy, the difference of metrics are greater than
the threshold. The new Byte2bit configuration is set to
the "three images averaging". The LCM provides also
the QoS value from the QoS tasks to the GCM. In the
RST table all configurations that allowing "three images
averaging" are valid. Finally, the GCM sorts and selects
the best future configuration according to the system pa-
rameters priority. The new configuration is then sent to
the tasks by the OS. The Byte2bit configuration decision
needs metrics from two tasks.

The next example describes the configuration of one
task from the metric of a second task. The Adaptive
Threshold task depends on the labeling task metric. This
task provides the LCM with the number of detected ob-
jects. The LCM compares it with the previous value. The
number of detected objects may increase abnormally due
to a bad threshold value. It’s then important to compute
a new one. Consequently, the GCM selects the best con-
figuration among the valid configurations that allow the
Adaptative Thresholding processing.

Those two previous examples take care of task metrics
to configure a task. Another case of configuration is given
by the LCM internal timer to select the measure or pre-
diction processing. It provides regularly the GCM with
the desired configuration of prediction. In this configura-
tion, all tasks have the "bypass" configuration except the
Kalman task which processes the prediction.

5 Conclusion

This paper presents a new approach for a self-
reconfiguration control in the context of embedded recon-
figurable systems with fluctuating working conditions. We
propose a generic feedback control modelling with stabil-
ity conditions, the magnitudes considered are QoS, Power
and Real-Time constraints according to a priority order
fixed by the user. Based on a learning system with pre-
diction capabilities, our global control algorithm offers a
completely tunable tradeoff between accuracy and com-
plexity, moreover it enables to handle local and global con-
figuration decisions. The smart camera implementation is
progressing on Altera Stratix, we conjointly study the im-
plementation on a Xilinx Virtex II to get online dynamic
reconfiguration.

Figure 4: Object tracking local parameters

References
[1] J.L.Wong, G.Qu, and M.Potkonjak, “An on-line approach for power

minimization in qos sensitive systems,” in ASP-DAC, 2003.

[2] S.Manne and A.Klauser D.Grunwald, “Pipeline gating: speculation

control for energy reduction,” in 25th Int. Symp. on Computer
Architecture, Spain, 1998, pp. 132–141.

[3] D.H.Albonesi, “Selective cache ways: On-demand cache resource al-

location,” in 32nd Annual International Symposium on Microar-
chitecture, 1999.

[4] R.Maro, Y.Bai, and R.I.Bahar, “Dynamically reconfiguring proces-
sor resources to reduce power consumption in high-performance
processors,” in Work. on Power-Aware Computer Systems, 2000.

[5] V.Nollet, T.Marescaux, D.Verkest, J-Y.Mignolet, and S.Vernalde,

“Operating-system controlled network on chip,” in 41th Acm/Ieee
Design Automation Conf., USA, 2004.

[6] J.Liang, A.Laffely, S.Srinivasan, and R.Tessier, “An architecture
and compiler for scalable on-chip communication,” Ieee Trans. on
Vlsi Systems, vol. 12, no. 7, pp. 711–726, July 2004.

[7] J-Y.Mignolet, V.Nollet, P.Coene, D.Verkest, S.Vernalde, and
R.Lauwereins, “Infrastructure for design and management of relo-
catable tasks in a heterogeneous reconfigurable system-on-chip,” in
Design, Automation and Test in Europe conf. (DATE), Munich,
Germany, Mar. 2003.

[8] H.Walder and M.Platzner, “Reconfigurable hardware operating sys-
tems: From design concepts to realizations,” in Int. Conf. on Engi-
neering of Reconfigurable Systems and Algorithms, ERSA’03, Las
Vegas, USA, June 2003.

[9] B.Noble, M.Satyanarayanan, D.Narayanan, J.E.Tilton, J.Flinn, and
K.R.Walker, “Agile application-aware adaptation for mobility,” in
Acm Symp.on Operating Systems Principles, 1997.

[10] C.Lu, J.Stankovic, G.Tao, and S.Son, “Feedback control real-time
scheduling: Framework, modeling and algorithm,” Jour. of Real-
Time Systems, vol. 23, no. 1/2, pp. 85–126, jul./sep. 2002.

[11] B.Li and K.Nahrstedt, “A control-based middleware framework for
quality of service adaptation,” IEEE Journal on Selected Areas in
Communication, Sept. 1999.

[12] TI, “Gas gauge bq 2084,” http://www.ti-estore.com/.

6


