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LESTER, CNRS/UBS University, Lorient, France, (email : yvan.eustache@univ-ubs.fr)

Abstract

This paper deals with the question of task communication and configuration dynamic management
in the context of hardware and software implementations. Our approach is based on a couple of local
and global reconfiguration managers that enable firstly to monitor the embedded system and secondly to
separate application specific and system level configuration decisions. Then we detail the abstraction
layer we introduce to handle inter-task communication and synchronization independently from their
implementations. Finally we present how our solution is implemented in the context of a smart
camera.
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1 Introduction

Upcoming embedded systems will implement complex multi-standard or mode applications competing
for resources within an heterogeneous architecture. One of the most important challenges in this context
is the trade-off between flexibility needed for fast design of mass products, the performance demands of
real-time application, the power management compelling with mobile systems and the quality of service
(QoS) to be adapted to application and user requirements. One of the most promising directions to
deal with such constraints are reconfigurable heterogeneous architectures that can be tuned accordingly
to resource requirements. A combination of software (SW) for flexibility and programmable hardware
(HW) for computation efficiency appears as a solution. Moreover embedded systems in the domain of
wireless networks and multimedia applications are strongly control-dominated at a system level and need
RTOS services for synchronization, communication and configuration management. A RTOS support is
also required for design time reduction.

The current state of the art shows that adaptive, reconfigurable and programmable architectures
are already available but there is no real complete solution proposed for a RTOS support suitable for
an efficient and unified management of reconfigurable tasks, that can be transparently implemented in
hardware or software. A second aspect is still missing, in this domain, this is the implementation of self-
adaptivity namely the way the system can dynamically decide the more efficient configuration regarding
multi-objective criterions as power, energy, QoS and security. The implementation of the reconfiguration
management must also be such that its overhead remains lower than expected gains. This is the aim of
this paper to propose a unified approach to deal with HW and SW tasks in the context of self-adaptive
systems. The objective of this work is to formalize and implement an abstraction layer suitable with
usual RTOS in order to handle hardware and software configuration management. In our experiments
we use pCOSII, which is compliant with the NIOS, PowerPC and MicroBlaze processor on Altera and
Xilinx devices respectively.

In this document we present our approach for the implementation of self-adaptive systems. First
we briefly present the pair of local and global manager for online configuration monitoring and control.
Secondly we detail the OS new services for the abstraction of HW tasks, the configuration control of HW
and SW tasks and the metric collection for monitoring.

2 Related work

In the domain of adaptive embedded systems three issues are related to our work. Firstly, a lot of work
has been produced in the domain of adaptive architectures. Different techniques have been introduced for
clock and voltage scaling [1], pipeline control [2], cache resource allocation [3], functional units [4] These
approaches can be classified in the category of local configurations based on specific aspects. Our aim
is to add a global configuration management including both algorithmic and architectural aspects. In
[5] dynamic algorithm selection combined with an architecture parametrization for MPEG-4 is detailed.



Here, the association between algorithmic and architectural views is pertinent, however the HW controller
still remains local.

Secondly, RTOS for HW management have been recently introduced. Proofs of concepts are exhibited
in [6] and [7]. These experiments show that RTOS level management of reconfigurable architectures can
be considered as available from a research perspective. In [7] the RTOS is mainly dedicated to the
management (placement / communication) of HW tasks. In [6] the OS4RS layer is an OS extension
that abstracts the task implementation in hardware or software, the main contribution of this work is
the communication API based on message passing where communication between HW and SW tasks
are handled with a Hardware Abstraction Layer that can associate logical and physical addresses on
the reconfigurable hardware. In [8], more details are given about a Network-On-Chip communication
scheme. Regarding this aspect, an interesting adaptive approach is described in [9], the OS can access to
traffic statistics by polling the network interfaces and then adapt bandwidth allocated to the processing
elements. This solution for adaptation is relevant but limited to communication tasks over a network. Our
paper doesn’t fit with the dynamic reconfiguration of hardware task and focuses on RTOS communication
and configuration abstraction. In [10] authors explain the need for adaptive terminal and propose a
solution based on a domain specific QoS controller and a global QoS manager that provides applications
with CPU utilization ratio. The objective of the controller for 3D graphic example is to maximize the
QoS value. This solution is illustrated on a software terminal (TriMedia) and experiments from [6] are
associated to this project in the context of reconfigurable architectures. Our approach is also hierarchical
and based on two controller levels, but in our approach a local controller compute a generic QoS value
with specific data and propose some HW /SW parameters configurations for the global manager that takes
the final decision with a complete view of the system status. Thus our decision method is generic and
moreover based on control theory ([11]). In this paper, we present the OS aspects of its implementation.

Thirdly from the software point of view, QoS management has been deeply explored for web services
applications. In [12] a prototype operating system (OS) can handle different QoS dimensions and alloca-
tion strategies in the context of server / mobile video application. Feedback control has been studied in
the area of soft RT'OS to handle the uncertainty of worst case execution time (WCET). In [13] authors
present a complete model for feedback control real-time scheduling. In [14] a relevant two-step approach
is proposed. However this kind of technique doesn’t fit for embedded low cost systems.
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Figure 1: Overview of communication between tasks and configuration managers

3 Local / Global Manager

3.1 Local/global separation of concerns

The reconfiguration issue encompasses different aspects that drive the implementation of the reconfigu-
ration decision control. The first relevant point is the locality. A reconfiguration can be decided at the
application level or system level. Based on application specific data, a local decision provides a short
reaction delay and metrics to compute the QoS. However some decisions must be considered globally
when a trade-off has to be found over the complete system between power consumption and computation
efficiency. An application is a set of inter-dependent tasks so the choice also impacts the application
specification by means of task and intra-task control definitions. Another pertinent point is the com-
plexity of the decision implementation. In the context of embedded systems only low cost solutions must



be considered. The third point is the reconfiguration type. Actually it can be i) a HW reconfiguration
(FPGA, dynamic, partial), ii) an algorithmic reconfiguration regarding the different versions for a given
task, iii) a NoC management including bandwidth and path adaptation and iv) an OS policy.

3.2 Two step configuration strategy

To cope with these issues we implement a two-step configuration management. The Local Configuration
Manager (LCM) is the first level of management, it is application-specific. The second level is the Global
Configuration Manager (GCM), it is generic namely independent of embedded the applications.

The LCM is in charge of the algorithm selection for all the tasks of the application it controls.
Given results from all the application tasks, it first transform application specific metric into normalized
QoS metrics for the GCM. This is a kind of ”application sensor” for the global manager. Secondly it
restricts for the GCM the global configuration space regarding local algorithmic decisions. Finally the
LCM control the application configuration while applying the GCM decisions.

The GCM is in charge of global system parameters (e.g. I/O data rates) and HW /sofware im-
plementations decisions. It receives data from sensors (gas gauge, cpu load from the OS, application
specific QoS) and from estimators when no measures are available. The GCM decides the new system
configuration according to user requirements (system references) and configuration solutions issued from
the local managers design space restrictions.

As a new RTOS components the LCM and GCM can be implemented in hardware or software in
order to improve performance or minimize HW surface. In that sense, this is a RTOS codesign issue as
presented in [15]. However, the managers are also tasks that can be dynamically configured in hardware or
software regarding resource demands. The main tunable parameters of the managers are the monitoring
rates, namely the period between configuration evaluations and decisions.

4 Unified Communication and Configuration Interface (UCCI)
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Figure 2: Task FSM extension for configuration management

We have defined an abstract state FSM issued from the traditional Task state FSM in order to
modelize task configuration independently from task implementation behaviors. Our reconfiguration
management requires to take into account new states. First, the task needs to test if a new configuration
flag is raised. In this case, the task moves to the ”Wait” configuration state and pends for a new
configuration on a semaphore request. It moves to the ”Run” state only if the semaphore is released. At
the end of the run process, the task evaluates its own specific metrics and produces normalized [0 — 1]
QoS values. For instance, a noise ratio is a QoS metric for an image filtering task. Finally the task
signals that metrics are ready to its LCM. Our approach involves minor modifications of the task design
as detailed hereafter.

4.1 Interface for OS SW Task Control

For SW tasks, the new state FSM will be implemented with the usual RTOS FSM as the initial task with
some additional code. Thus, the state Run” and ”Test Config” of the Configurable Task FSM will be
both executed in the "Run” state of the FSM RTOS, whereas the ” Wait Config” state will correspond
to a wait service on a semaphore release. As shown in Fig.3-(b), the task sequentially tests and waits



if new configurations are set. Otherwise, the original task runs with the last configuration. At the end
of the process, the task evaluates its metrics and reports them to the LCM. In case of emergency, the
task can raise a specific flag and the LCM immediately read the metrics. The emergency situation is
bounded with metric thresholds set during the configuration process. In a regular context the metrics of
each task will be read according to the LCM acquisition rate.

4.2 Interface for OS HW Task Control

Contrary to the software case, each HW task implements as shown in Fig.3-(a) a UCCI component in
a Task State Manager process, that is directly mapped from the abstract state FSM. The ”Dead” state
is a state where a task is not implanted in the FPGA or has no clock if no dynamic reconfiguration
is available (Altera Stratix for instance). The "Ready” state waits for a ”Config” signal to move to
the ”Wait” state or for a ”Start” signal to move to the "Run” state. This last one is divided in two
parts: the "Run Stoppable” state, which can be stopped to accept a new configuration and the ”Run
Non Stoppable” state, which has to finish its process before stopping. Finally, the ”Wait” state is active
when a reconfiguration occurs. When reconfiguration is done, the task can die or continue running the
process with the new configuration. A ”Stop” signal allows to pass from each state except the ”Run Non
Stoppable” to the ”Ready state”. In case of emergency the task can exit the ”Run Non Stoppable” state
if "HW Reset” or ”Delete” signals are raised.

Each HW task implements an interface to communicate with the RTOS and the other SW or HW
tasks. Two ports are in slave mode, the configuration and metric ports, the other ones are masters.
The configuration port receives data from LCM, upstream Tasks or RTOS in the configuration registers
stack. The LCM sends to the tasks its own base address, the configuration ID, the base address for input
and output data transfers, which can be implemented with shared memories or FIFO. The different
communications schemes are presented in section 5. The last data input received by the task is the
pointers to the last valid data produced by the upstream tasks. The tasks registers store the Task Status
and the Task Metrics, which are read by the OS and the LCM respectively. The first one indicates
the task current state. The second one is the result of QoS computation. Masters are classical input
and output data ports for a process. Moreover, the tasks write the addresses of the final valid data in
the Data Pointer registers of each downstream tasks. Finally they signal the processor with interrupt
requests.

Each UCCI implements a local HAL with communication facilities as an address generator and a
counter with a comparator to control access to valid input data. The HAL table is set by the LCM and
contains all ISR and SW tasks IDs pertinent for the tasks communication. The Task State Manager
corresponds to a layer of control and implements the task state FSM.

Experiments currently under development in the context of smart camera application show that the
UCCI overhead remains acceptable and slightly depends on the number of input and output memories,
which impacts the size of pointer stack. For instance it can be implemented with approximatively 84
combinational Logic cells and 117 register logic cells (less than 0.5% of total logic cells) on an Altera
Stratix-1T ep2s60 after fittering.
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5 Abstraction layer for communication & configuration

Tasks and managers (N local managers, 1 global manager) can be either implemented in hardware
or in software, depending on configurations. For each solution, algorithms or parameters can also be
modified depending on resource availability and application data. In this context, communications,
synchronization and configuration must be routed between HW and SW tasks. This is the objective
of the Abstract Extended OS Service (AEOS) to make the tasks communication independent from the
implementation. The Local HAL, configured by the LCM, implemented in the UCCI contains HAL
information required for the communication of the HW task.

5.1 AEOS for communication & configuration abstraction layer

The communication abstraction layer between HW and SW tasks adds several services to the traditional
RTOS. The first type of service is used to manage the HW tasks states in the OS. The second one
provides an abstraction layer for the HW tasks. The last one allows the communication management
between HW and SW tasks.

A HW task table is required since the OS needs to also be aware of the HW task state. In our model,
each HW task in the system is coupled with a light SW task, which is the HW legal representative (LR)
in the task descriptors table.

The HAL is a table linking the HW task logical addresses to physical addresses. It is updated after each
configuration according to the implementation of the tasks. The HAL API is used for communication
between SW (or OS service) and HW tasks.

The communication layer is baed on a set of API, it allows tasks to communicate independently
to the implementation in HW or SW. The communication protocols based on traditional OS message
passing (mailbox or message queue) and event (flag, semaphore, mutex) is presented below.

The UCCI is the implementation of all the services described above in the HW task interface. It is
composed of TRQ signal to communicate with the CPU, a task state FSM to manage the process and
wait state, a bank of registers for the storage of status, addresses and messages for communication.

5.2 The communication abstraction layer

Our aim is to be able to handle all usual OS schemes of synchronization and communication. between
HW and SW tasks. We have classified this question in two classes of problems, the "Pend” and the
"Post” operations, for which we propose generic solutions based on a set of API.

”Pend” communications This kind of communication deals with mail box (MB), message queues
or flag setup (implemented as an event flag, a mail box or a semaphore) when one task waits for a
message or a synchronization signal from another HW or SW task. We present in Fig.4 how the ”Pend”
communications are implemented for a HW and a SW task. For a SW task, the ”Pend” communication
is a traditional use of the RTOS communication communication service (mailbox, queue, mutex,...), the
Task is suspended by the OS until this service receives a ”Post” signal.

”Pend” communications for a HW task need an abstracted layer to send a traditional OS ”Pend” signal.
The HW task emits an Interrupt Request to the CPU and moves to the wait state. The Interrupt
Service Routine (ISR), which can not directly execute a "Pend” operation, read the IRQ instruction
Register in the HW task UCCI and postes the signal in the message queue of the corresponding LR, SW
task. The LR task translates the message as a traditional "Pend” event and waits until the associated
”Post” event is setup. When it occurs, the LR task signals directly the HW task (a flag, a message or a
signal to enter in a critical resource in response respectively to a "flag pend”, "mailbox or queue pend”
and a ”semaphore or mutex pend”) passing through the HAL API to read the physical address of the
correspondent HW task.

”Post” communications The "Post” communication is also different for the HW and the SW tasks.
The "Post” deals with a signal if a synchronization is wanted or a message for a communication. For
SW tasks, the implementation is done as usual. In the HW case, the tasks sends an IRQ. This ISR reads
the IRQ instruction and translates the message directly to the OS synchronization messaging services.



Exception for the HW — HW data communications If two HW tasks have to communicate, they
don’t use the OS messaging services in order to not overload the CPU and speed-up the communication.
A post signal is implemented as a message (flag for a synchronization, @ pointer for a mail box). The
consumer task moves to a wait state (local "Pend” operation) until the signal or the @ pointer is not
available in the communication registers. The mutex and semaphore synchronization use the OS mutex
and semaphore signals following the Pend and Post protocol presented above. The HW tasks becomes
aware that their communication partner is also in HW with the configuration of an UCCI register.

6 The Smart camera case study

Our application is an embedded smart camera for object tracking presented in [11] implemented on an
Altera Stratix II. It is composed of several tasks which can be implemented in hardware or in software.
There are two types of tasks. The first one is the set of application tasks for image processing (e.g.
averaging, erosion, dilatation, labeling ...). The second one are called the sensor & peripheral tasks and
include the camera, vga and gas gauge controllers, the regulation and the prediction tasks. The first
one has one LCM controlling the application tasks (the LCM computes metrics and provide a desired
configuration) whereas the second one have a lightweight LCM integrated in each task.

The application tasks After a job completion, each task sends metrics to the LCM. In the smart
camera experience, it can be be for instance the number of white pixel after threshold or after erosion,
the number of cycles for the reconstruction process, the number of detected objects and so on. The
LCM computes the metrics from different tasks and apply an application-specific policy to transmit the
possible configuration to the GCM at the end of the application process. If a critical configuration is
required before the end of the process (e.g. unacceptable QoS), the LCM stops the application and alerts
the GCM through a ”"Post” operation. The desired configuration is sent with one mailbox whereas the
alert signal implies to stop each task with a ”Stop” mailbox and to signal the GCM with another mailbox.
After computation, the GCM sends back the configuration ID to the LCM which sends the configuration
to each task and activate them finally. The application tasks could be stopped, in running mode, in a
data wait state until the precedent task provides sufficient data. This last task answers a data request
by sending the address pointer of the last valid data. The LCM provides the GCM with the application
QoS normalized metrics. In our application, the QoS metrics is a normalized value representing the
quality of the tracking namely this is the distance between the predicted and the computing position of
objects. Each communication between tasks, LCM and GCM are implemented with OS mailbox except
for the HW/HW communication that use ”Post” and "Pend” HW implementations based on UCCI I/O
registers and local state FSM.

The sensor & peripheral tasks There is two main differences between the sensor and peripheral
tasks and the application tasks. The first one is the light implementation of simple LCM attached to a
single HW task. The second point is that each task has an independent data rate for metric computation
and configuration management. The camera and the VGA send metrics which are the number of frames
non-processed and lost by the camera and the number of same frame displayed respectively. The VGA
configuration is the frame size, the camera configuration choice is related to the acquisition frequency.
The gas gauge sends normalized values of power measures and life duration estimations based on different
average current assumptions, the Gas Gauge configuration choice is the measurement frequency and the
number of average current to consider for life span estimation. In the same way, the Least Mean Square
predictor can exchange data between the GCM and have parameters (e.g. the computing frequency).
All message passing use mailbox or message queues.

7 Conclusion

This work is a part of the RaaR project dedicated to auto-adaptive systems on embedded reconfigurable
SOCs. Our method is based on a hierarchy of controllers that allows a separation of concerns between
specific QoS measures and a global resource management. This approach implies to unify OS services for
the resource and reconfiguration management dealing with HW tasks. In this paper, we have presented
the AEOS services and the interfaces we have designed for implementing the monitoring and control
of HW and SW tasks. The first interest of our work is that both HW and SW task specifications
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can be implemented in this new adaptive architecture with minor modifications through a systematic
encapsulation procedure. The second point is that all usual OS services are available transparently
between HW and SW tasks. The last point is the integration of services required for the implementation
of the configuration controller. As a proof of concept we currently implement a smart camera application
for object tracking on a Stratix device. Currently we test different strategies for the management of the
QoS/Power/Real-Time trade-off. In parallel we have implemented the OS service for the auto and
dynamic reconfiguration on a powerPC within a Virtex II. The aim is to migrate our case study on
Xilinx device in a second development stage.
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