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Abstract

The Hardware (HW)/Software (SW) partitioning/scheduling relies on two subtasks
: the cost function and the real time (RT) analysis. Besides these two subtasks,
the proposed generic framework, also called RT Design Trotter (RTDT), processes
the problem of the Quality of Service (QoS) management. The aim is to add a new
dimensions to solution selection, namely the guarantee of QoS from both application
quality and RT issue points of view. The proposed framework defines an iteration
loop of three steps that solve the sub-problems. The cost function takes into account
the System on a Chip (SoC) area and the static and dynamic power dissipation. We
show how our tool can be used to rapidly evaluate the impact of the application
quality and the RT constraints choices (QoS parameters) over the final cost.

Key words: RT system, Power model, RT scheduling, Static QoS manager, SoC.

1 Introduction

The domain of CAD tools is now crucial for System On a Chip (SOC) indus-
try in order to get back a vital benefit from the joint evolution of applications
and VLSI circuits. Basically, the issue is no longer the amount of transistors
available on a chips but rather the way to follow up the potential they offer
with reduced design delays and cost methodologies. The questions related to
the the complexity of SOC are manyfold and include different issues like relia-
bility, design delay, power and real time constraints. As previously performed
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in other industrial domains like avionics and automobiles, the microprocessor
industry is evolving towards unavoidable knowledge management methods in
order to reduce design cost and delay while focusing on a few real value-added
innovations [1]. In the domain of SOC, the designers are relying on reuse of
reconfigurable HW or SW intellectual property blocks (IP). IP based frame-
work for simulations is stilling available in both academic [2] and industry [3]
areas. However, exhaustive IP libraries with qualified components in terms of
power and execution time for various targets, offer a real interest only if CAD
tools can speed up the associated design space exploration and validate the
set of selected solutions. Our objective is to provide such a tool in the context
of low power real time embedded systems.

This kind of systems is strongly used in several fields like industries, telecom-
munications, and avionics. These complex systems are typically reactive and
real time. Their design requires a high level design tool in order to rapidly
select and synthesize promising architectures. Due to a hard real time con-
straints, hardware implementation (e.g. IP based) of critical functions must be
performed. It is then necessary to use a software/hardware codesign approach
which must allow a minimal design cost and a minimum time to market. Such a
systems are increasingly control-dominated and data-dependent for optimiza-
tion purposes. It means that a dynamic scheduling should be theoretically
used in order to cope with the load variability. However, this kind of schedul-
ing techniques has drawbacks incompatible with embedded systems; actually
dynamic scheduling can not guarantee real time constraints and requires a
complex implementation. For these reasons, embedded real time operating
systems (RTOS) use fixed scheduling policies that consist in a priori time
slot reservation for each task. However, worst case execution time (WCET)
of tasks must be considered to guarantee real time constraints. So in case of
very variable execution delay, it can lead to a fall of the system performances
by means of architecture over-sizing. Thus the solution which appears is no
longer a real time management but rather a QoS management [4]. For these
reasons, we propose to use a notion of QoS instead of RT during the parti-
tioning/scheduling step. Thus we add a new category of tasks for periodic and
aperiodic ”soft RT” tasks. This kind of tasks respects the RT constraints with
a given probability. Our main goal consists in avoiding worst case assumptions
and deterministic guarantees for periodic and aperiodic tasks with real time
constraints by means of probabilistic scheduling.

The rest of the paper is organized as follows. In next section, we present
the problem specification and place our work within the state of the art. In
section 3 we present our architecture model. In section 4 the generic design
space exploration framework is detailed including area and power models, and
the basic RT scheduling assumptions. Section 5 presents the QoS model. A
football player robot application is experimented in section 6. Finally we draw
conclusions and perspectives.



2 Problem specification

In this section, we present our global approach suite for SoC design and we
place our work within the state of the art.

2.1 The proposed approach

Globally we address the partitioning of a dependent task graph over a mul-
tiprocessor architecture in a real time context. Solving this question directly
is extremely complex and heuristics can offer oversized solutions if dynamic
systems are considered. This aspect is becoming more critical since we observe
a trend toward systems with very unprecise WCET. This unpredictability is
increasing in modern embedded systems for various reasons that can be re-
lated to the adaptive or data dependent task specification or to the complexity
of processor architectures [5]. Given that fact, we have split the problem and
defined a realistic methodology and tool which are interactive and based on a
four steps strategy.

o PACM clustering : the first step consists in assigning a set of tightly depen-
dent and communicating tasks to an enhanced processor architecture com-
posed by a Processor, Accelerators, Coprocessors and Memories (PACM cf.
Fig. 1);

e QoS selection and Trade-off tuning : the second step interacts with the
designer in order to select a category for each task: Hard, Soft or No real
time. It uses the Radha Rathan Tool [6] to get the time constraint interval
for each task;

o HW/SW partitioning and real time scheduling : the third step proceeds the
HW /SW partitioning within a real time context. At this level, the designer
controls the cost function in terms of Area/Power tradeoff and the IP can-
didates for each task.

e Post partitioning memory optimization : finally, memory merging opportuni-
ties are analyzed, this step can not be included in the partitionning/scheduling
loop but can be efficiently performed over a small set of solutions.

This paper specifically addresses the second and third steps.

2.2  Related works

Our research results can be viewed in the context of two areas of related works
: high level Hw/Sw partioning-scheduling for RT embedded systems, and qual-
ity of service management. The codesign literature is an active domain that



embraces various topics like system specification, area/power/delay estima-
tions for HW/SW candidates, HW/SW partitioning, HW/SW/ communica-
tion synthesis and cosimulation. A recent overview of the different domains
can be found in [7]. The specific topic addressed in this paper is related to
the automatic HW/SW partitioning issue under QoS constraints based on
an optimization cost function involving power and area. Some other impor-
tant features relative to our work are the multi-rate, the task preemption (or
switching) overhead and the aperiodic task scheduling from a RTOS point of
view, the multi-granularity regarding the design space exploration, and finally
the genericity of the architecture / application specification concerning the

CAD tool.

A complete framework for automatic HW/SW partitioning is detailed in [8].
It includes multi-granularity selection in the context of performance optimiza-
tion. In the context of real time scheduling, static non preemptive scheduling
[9,10] is usually adopted in embedded real-time systems since dynamic schedul-
ing can not guarantee the real time constraints and incurs a computational
overhead. The objectives formulated in [11,12] are quite close from ours; the
multi-rate issue is handled and preemptive scheduling is considered. It also
includes the RTOS overhead but doesn’t take into account preemptions due
to the access to a critical or shared resources. The cost function includes area
and power but with a very simple model based on average power dissipation.
The method is extended to aperiodic tasks where the time slots are reserved
within the hyperperiod. This technique uses inter-instance minimum delay
which means a pseudo periodization, it can lead to very costly design if the
tasks are rarely launched or if their execution is not critical. An interesting
clustering method is used to reduce the partitioning complexity.

QoS has been often addressed in multimedia, video, and networking research
communities, but rarely in the design community. However, where there have
been some research efforts for co-synthesis of multi-task embedded systems
only a few research results exist for QoS management. Previous works whose
can be found in the domain of PC-based servers for video tracking [13] or
web applications [14], propose an interesting close-loop approach for QoS and
CPU Bandwidth adaptation. In the domain of mobile system, Agile [15] pro-
pose some extensions to the eOS NetBSD for media delivering. The authors
have implemented the concept of fidelity to drive the QoS management in
term of video cadence and picture quality. The main conceptual result in sys-
tem design literature was presented in [16]. The authors study how multiple
voltages can be used to simultaneously satisfy hardware requirements and
minimize power consumption while preserving the requested level of QoS; in
that case satisfying latency and synchronization requirements. Given task sets
and a processor with multiple voltages, they search all the feasible competi-
tive schedules with the minimal energy consumption and memory requirement
assuming that two schedules are competitive if neither outperforms the other



in both energy consumption and memory requirement. However, they do not
consider the resource sharing possibility between tasks and assume that all
tasks are run on the processor. Compared with this last previous approach,
our work differs in three aspects: first we address the domain of RT HW/SW
co-synthesis. Second, we process the problem of QoS in terms of application
quality and RT constraints choices. Third, we consider the possibility of hard-
ware resource and coprocessor sharing between tasks.

3 Monoprocessor architecture model

In this section we describe the PACM architecture. Note that the PACM
architecture is composed by one Processor, Accelerators, Coprocessors and
Memories. Then, we detail our approach for HW/SW communication model-
ing.

3.1 PACM Architecture

The figure 1 presents the PACM model. Basically our architecture is built
around a processor core (e.g. IP Nios), which offers a configurations oppor-
tunities for adding coprocessors acceded through the processor registers. The
processor is communicating with dedicated HW accelerators through a stan-
dard Bus (e.g. Avalon). Hence, three families of implementations can be con-
sidered : i) software ii) software with coprocessors that can be shared with
other tasks and iii) dedicated hardware.

3.2 HW/SW communications

3.2.1 (eneral case

The communications between hardware and software are implemented as a
particular new tasks during the partitioning / scheduling process. The period
of the communication task depends on the granularity level of the hardware
implementation as indicated in Figure 2. If we consider two tasks : T’» produces
a data for the consumer task T¢, four cases can be distinguished (see Fig.3):

e If Tp and T are software, there is no need for communication task neither
additional memory;

e If Tp and T are hardware there’s no need for communication task, however
a communication memory (output for Tp and input for T¢) is added;
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Fig. 1. Task graph assignment to the target architecture

e If Tp is software and T is hardware, a new communication task is created,
this task writes the data produced by Tp in a new input hardware memory;
e If T is hardware and T is software, a new communication task is created,
this task reads the data produced by T in a new output hardware memory.

3.2.2  Communication task features

The first point is the communication task period value and the amount of data
to transmit. The period of the communication task T, to be added between
two tasks Tp and T equals to the smallest period of the two dependent tasks.
The amount of data transmitted during the minimal period equals to the



Task T2 loop nest
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Fig. 2. Multi-granularity hardware solutions for a loop nest
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Fig. 3. Memory and Tasks implementations for HW/SW communications

amount of data produced or consumed during this period. The second point
relies to the communication task execution time C.,,,, which is computed as
follow :

If DataWidth < BusWidth :

BusWidth

N. Data
Ccom = Ncycles,im't + Ncycles,com ClOCkBus (1)
\‘DataWidthJ

FElse :

DataWidth

Ccom = Nc cles_ini N ata | "5 117 9.1
eles-init = Nbata | "B,

Ncycles,com CZOCkBus (2)

Where Neyeies_init 1s the number of cycles required to initiate the data transfer,
Npatq the amount of data to transmit, Neyees com the number of cycle par data
transfer. All these parameters are generic and can be easily specified.



3.2.8  Memory implementation

The task schedulability is computed while considering independent tasks; ac-
tually the question of task dependencies is solved by shifting release times
of consumer tasks[17]. However, this assumption is valid only if the commu-
nication memories have been correctly selected. Two main issues must be
considered :

e Data availability. The memory size must be large enough to store,without
overwritten data, the produced data to be read by the consumer task.

e Data access conflicts. This point is solved by the RTOS when tasks are
software, but if one of the tasks is hardware then conflicts can occur. Our
framework proposes two solutions to address this point. The first one is the
implementation of a critical resource with priority ceiling. The second one
is the data storage from successive iterations.

The default implementation (without any designer directive) is non blocking
communications. In that case the memory size M S is computed as follows (P:
producer, C: consumer):

[pr > PC (Pp:n*PC andnz 1)
MS = 2% NDataout_P = 2 xn x N Dataln_C (3)

Else if Pp < Po (nx Pp = Pc and n > 1)

MS = 2% nx NDataout_P = 2+ NDataIn_C (4)

3.2.4  Multiple inputs/outputs

Including memory reusing optimization during the partitioning / scheduling
process incurs a unacceptable complexity gap. Moreover, memory optimization
can efficiently be performed afterwards over a small set of promising solutions.
So, in case of multiple dependencies, ( 1 producer with several consumers or
1 consumer with several producers), HW/SW, HW/HW and SW/HW com-
munications are implemented as single links with one dedicated memory. A
shared memory must be explicitly defined by the designer within the specifi-
cation task graph.

4 Design space exploration & evaluation

In this section we outline some basic RT scheduling assumptions. Then, we de-
tail the generic design space exploration framework including area and power



model.

4.1 RT scheduling strategy

4.1.1 Task classification

Usually, the real-time embedded systems require a simple and safe scheduler
which can guarantee that critical aperiodic or periodic tasks meet their dead-
lines. For these reasons, a static HPF (High priority first) scheduling policy
has been adopted, where the fixed priorities are computed as the inverse of the
task period. The worst case response time is computed with an exact analysis
[18].

In a first approach we consider two kinds of tasks (we will see in section 5
how the QoS management can bring a third kind of task). The first category
is composed by the periodic tasks that are scheduled by means of hard real
time constraints (RTC), and sporadic tasks with hard RTC. Like in [11], we
consider the sporadic tasks as a periodic tasks with a period equals to the
minimum delay between two subsequent executions; this value is provided by
the Radha Ratan tool. The second category includes the non critical sporadic
tasks which are handled by a server task with the lowest priority that can
be fixed by the designer. The task priority is computed as the inverse of the
task period. The question of multi-rate dependencies is solved by shifting the
release time computation as detailed in [17].

4.1.2  Response time computation

The exact response time is computed iteratively with the following equation :

VT, € HP(i),3R, < DA\R, = (Ci + B) + Fﬂ (C+Ca) ()

JEHP(i) b

Where :

HP(i) : set of tasks with higher priority comparing to task i;

R; : worst case response time of task i;

C; : execution time of task i;

B; : longest time that task i can be delayed by lower priority tasks (e.g.
resource sharing)

e P; : period of task j

o (g = 0o+ X 0(k) with 0y the context switching overhead without any
coprocessor and ¢ the overhead due to the coprocessor k.



The context switching overhead is the delay between the preemption of a given
task and the activation of another task. The difficulty is that Cj,, depends not
only on the target processor and on the RTOS and its configuration but also
on the number of tasks in the system and on the number of coprocessors.
The influence of the number of tasks is not insignificant but can be neglected
compared with the coprocessor context saving influence. Moreover, without
coprocessor, the available overhead metric is usually an average value esti-
mated with different task sets. The influence of the coprocessor is obviously
related to the number of data and status registers.

4.2 Design space exploration for HW/SW partioning

4.2.1 Cost function

The cost function takes into the global area of the SOC and its energy con-
sumption. At a high level of abstraction, only relative estimations can be used
for SW and HW IPs, the cost function is used to guide the selection of reduced
set of solutions. In order to eliminate units, relative costs are used to evaluate
the cost value for a given schedulable solution S:

Area(S) — MinArea
MinArea

Pw(S) — MinPw

Cost(S) = « VinPu

+ 0

(6)

with o + 6 = 1 and where MinArea is the schedulable solution with minimal
area without any power consideration and MinPw the schedulable solution
with minimal power without any area consideration. Note that the area cost
influences the power consumption through the static power evaluation. So, the
« parameter also act on the power optimization.

4.2.2  Area Cost

The area cost includes the data and code memory size for software implemen-
tations, the area of coprocessors that can be shared by various tasks, the area
of hardware accelerators and finally the area of memories added for commu-
nications.

4.2.8  Power Cost
The model for power evaluation is much more complex. Firstly, the dynamic
power consumption depends on the SoC activity, which is strongly related to

the task scheduling and switching. Secondly, the evolution of VLSI technology
shows that static power consumption [19], especially in FPGAs, can no more
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be neglected. Finally, in mobile embedded systems the important metric is the
system life span. It means that the energy used must be optimized. However,
in our context of periodic tasks the energy optimization is equivalent to the
average power minimization over the hyper period. Our power model for an
implementation S is given by :

Pw(S) = Pwy + Pws (7)

where : Pw,y the average dynamic power dissipated during a hyperperiod T
and Pwg the average static power.

4.2.4  Dynamic power/energy metric

Let Pwy the average dynamic power dissipated during a hyperperiod Tg.
P Wqg = — (8)

Eq = Ey(sw) + E4(hw) //Eq: energy consumed during a period : T(9)

Eqi(sw) = Ey(idle) + Eq(switch) + E4(exe) (10)
L Ci : :
Eq(exe) =Tg Pwd(z)F /| Pua(i):average power for task i (11)
iESW i
. . Osw . . .
Eq(switch) = Tg Pya(switch) Y 2 /] Pua(switch): avg task switching power(12)
ieSw L
. . 07, + Csw . .
Ey(idle) = Pyy(idle)Te |1 — > —5 // Pualidle): avg proc. idle power(13)
i€eSW g
N
Ed(hw) = TG Z Pwd(l)ﬁ (14)

i€ HW

Important Note : For flexibility and genericity concerns, the task average
dynamic power values P,4(i) are normalized versus the supply voltage and
clock frequency and the average task static power is expressed by area unit
(W/gate or W/um? as indicated in [20]).

4.2.5 Static power/energy metric

The available static power, usually given by means of mW /area, depends
mainly of the leakage power, the supply voltage, the transistor count and a

11



technology-dependent parameter :

Pws = f (NtTKdesignIleakageV:id)

Our model uses Pwg(sw) and Pwg(hw) for software and hardware parts re-
spectively. A dynamic strategy can be adopted for static power management if
hardware accelerator power supply can be switched off when unused. In such
a case the average static power dissipation is given by :

Pws = Pw,grsw * Area(SW) + Pwosraw * Z Area(i)ﬁZ

iI€cHW g

Without HW dynamic power supply management, we obtain :

Pw, = Pwospsw * Area(SW) + Pwosrgw * > Area(i)
i€HW

4.2.6  Partitioning Algorithm
Solution evaluation

The main difficulties during the partitioning / RT scheduling algorithm are
firstly the size of the design space, especially, since multiple granularity solu-
tions can be considered for each hardware task implementation, and secondly
the iterative scheduling of task worst case response time.

A solution is valid if firstly all tasks meet their deadlines and secondly if the
current cost belongs to the N first best costs. Contrary to the response time
computation, the cost is not iterative and must be evaluated first. Thus the
schedulability is computed in a three steps (see Fig.4) in order to restrict
the use of iterative response time computations. The algorithm first test if
the processor rate is lower than 1. As a second test, the fast rate monotonic
analysis (RMA) is performed, it gives a sufficient but not necessary condition
for schedulability. Finally if the first tests are valid an exact analysis is per-
formed. Note that the designer can specify the CPU ratio rs to be guarantied
for the server task.

Design space exploration

Two methods are currently available, the first one is exact and based on the
Branch & Bound algorithm, the second one is heuristic and uses a simulated
Annealing approach (SA). The B&B starts with a left edge branch represent-
ing a complete software solution and progresses towards a complete hardware

12



Boolean Schedulable (S){
U = ProcUseRate(S) // Processor use rate
if (U+rs > 1) //rs: server task cpu ratio
return false;
1

elseif U+rs< n* (2; —1) return true;

else {
for all Ti by Increasing Priority Order
Ri = ExactResponseTimeAnalysis(Ti);
if Ri > Pi return false;
return true;
}

Fig. 4. Schedulability test

solutions with the finest granularity degree. the Tasks are ranked in a branch
according to the priority order. On a given branch, for each task added, the
cost is first evaluated; if the cost is lower than the best current solution then
the task schedulability is computed according to the method described in Fig-
ure 4. When the cost is larger than the best value or when the solution is not
schedulable then a new task implementation is evaluated. If no more imple-
mentation is available, another implementation is considered for the previous
task in the current branch and so on. The main difficulty occurs when a hard-
ware solution with a fine granularity implies the insertion of a communication
task with a shorter period than its predecessor in the branch. In such a case,
the schedulability of previous tasks with a lower priority must be computed
again. The B&B is efficient even for large graphs (100 tasks) when there are a
few schedulable solutions, but it’s computation is prohibitive when numerous
solutions are proposed for each task. When the response time computation
dramatically slows down the design space exploration, the SA heuristic can
efficiently relay the B&B.

4.3  Generic codesign framework

One of our objectives was to carry out an interactive tool for designers to
easily test various configurations in terms of tasks versions and architectural
implementations. Our flow is described in Figure 5.

We have opted for the task graph defined in [6] in order to use the Radha
/Ratan tool to obtain internal task constraints from Input/Output system
constraints. The uncertainty on I/O events and periods are expressed as a
Period intervals [PminPmazx] for each system task.

Each Task is described in a C code file, the Design Trotter framework [21] first

13



System Specification
Task Graph & ApplicationQoS

v
File.gtg
¢ Design Space Exploration File
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c
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Constraint Derivation 4 (0) Task_E{
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i

{
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Periode 2/ Task Period =2 ut
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l Dataln 0 /Nb input channels (input task)

File.c — 10 DataOut 1/ Nb of output channels
File.sim 11 {
1
}

12 / Nb of data transmitted (1) period (2) with Task Ty

14 AreaCost 200 / Area Cost (us)

. Characterized IP Lib 15 PwdnCost 0.5 j/ Normalised power for sw implementation
DT HCDFG Generation 16 ExeCycls 45 /i Cycles Budget
17

}
Implantations Cops 1 #/ Nb of SW + Coprocessor implementations

2 i 19 {
File.hcdf] 20 ImpCop 1
21 {
22 AreaCost 150 // Area cost without coprocessors.

23 PwdnCost 0.6 */ Normalised Power with coprocessors.
5 24 ExeCycles 250
DT Area/Cycles Estimator 25 NCops 2/ Nb of coprocessors used
DT/Soft Explorer SW Power Estimator %g t L1 index & Nbof
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DT/Xpower HW Power Estimator 28 22 /2 cop with index 2
29
30 }
31 }
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33 {
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Interactive IHM | —p2 QoS Specification and checking iq- 35 {
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v 37 Dataln 0
1 38 DataOut 1
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............. 1. 40 12
V41 )
: 42 NmbImpHw 1 /1 Nb of solutions with granularity level 1
File.arch 1 43 ImpHW 1/ Implementation Hw Nb 1
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vdd, Clogk, Bus o HW/SW R’.[“Scl.iedulmg/ L---1 45 AreaCost 600
selection Partitioning 46 PwnCost 15
47 ExeCycles 32
48 H

RTDT b !
52 (1) Task I...

53(2) Task S...

Fig. 5. RTDT Codesign Flow

generates a hierarchical data flow graph (HDFG) from which different kind
of estimation can be produced like delay / area of FPGA HW components
[22] or power software estimation by hierarchically combining of C/Data Flow
Graph from [23]. Another solution consists in using qualified SW or HW IP
specification.

By combining estimations data, the initial task graph and designer choices, a
new file is generated, this "file.cde” (see Fig.5) includes the task constraints
selected and the description of all task implementations. The ”file.Arch” gives
the architectural parameters, like the Vdd/clock modes Vg, f for hardware
and software parts, the bus protocol and so on.

The final solutions selected after the partitioning / scheduling step are finally
stored in the "file.imp”.
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5 Static QoS manager

In this section, we present the justifications and components of the QoS model.
Then, we address the coherency checking for the static QoS manager.

5.1 Context definition

One of the major issues in real time embedded systems is the question of task
execution time which can vary depending on data and on environment events.
The second point is the question of periodic and aperiodic tasks with very
versatile inter- iteration delays. In such uncertain context, the choice of the
worst case can lead to very costly and oversized implementations. As systems
are growing in complexity, this overestimation become unacceptable and new
method must be considered.

5.2 Model

We propose to insert a new step within the codesign flow. This step is based
on a QoS model and produces the specification file according to the designer
choices. Thus, we add a new kind of tasks for periodic and aperiodic ”soft real
time” tasks. This category of tasks respects the real time constraints with a
given probability. the aim is to avoid worst case assumptions and deterministic
guarantees for periodic and aperiodic tasks with soft eal time constraints by
means of probabilistic scheduling. Each task can be represented by a QoS
array of N parameters:
TQoS;[x1, ..., xN]

Where z; is a ratio representing different aspects of QoS measurement. In this
paper, we consider two dimensions:

TQoS(i1)[AQoS, RTQoS)|

The first term AQoS represents the QoS specific to the task, namely the
application quality. For instance, it can be a data rate for network management
task or a number of bits for pixel coding. The second term RT QoS is related
to the real time constraints and means the minimum ratio of deadlines that
must be met. It means that the execution time W (7) considered for task i
during RT analysis is such as:

Probability(RL — Ezecution — Time(i) = W (i)) = RTQoS(i)

Where : RL — Ezxecution — Time means the real life execution time of task
1. Regarding the RT'QoS dimension, the designer must choose the minimun
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ratio of deadline that must be met for each task. According to the appropriate
probability law, the correspondent execution time is computed and considered.
For example, If the RT'QoS(7) is set to 1, then we consider the WCET (i)
for task 7. The QoS task choices are usually not independent and the QoS
specification step must check the relation that exist between task application
qualities according to these choices. Regarding the real time issue, a task with
a RT'QoS equals to 1 (W (i) = WCET(i)) should not be delayed by another
to miss its deadline.

5.3 QoS decision € generation step

In this subsection, we detail the QoS specification and checking step that is
shown in figure 6. The entry of that step is a tasks configurations file, in which
we save all the possible versions for each task. As mentioned above, a version
or a QoS task choice of a task is an application quality/W (i) couple. By
combining estimation data from the implementation library and the designer
choices, a new file is generated. This "file.cde” (see Fig.5) includes the tasks
constraints selected and the description of all task implementations.

Static QoS Interface

Designer QoS Selection S—
Implementation Library

4

Static QoS Manager
Configurations :
Consistency QoS *Time Constraints (e.g. file.cde
. Checking Task Period) : AQoS A
® Task Priority ® Worst Case Exec —
A . Time / Implementation
Data Dependencies - RT-QoS

Fig. 6. QoS specification and checking

The QoS coherency checker tests three cases that can lead to a QoS inconsis-
tency:

e T1 Data dependency
e T2 Resource sharing

e T3 Task priority

For each QoS dimension i, the designer can select the exclusive rule that he
wants to be applied regarding QoS homogenization :
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e R1 QoS Round down
e R2 QoS Round up
e R3 QoS Unchecked

If we consider AQoS as a minimum data-rate, then the designer must configure
the QoS checker in order to verify QoS homogenization. Namely, for T1 the
designer will select R1, or R2 if he wants to favour power optimization or
application quality respectively. In that particular case, the task priority and
resource sharing tests can be ignored since they do not influence the AQoS.

For example, if power optimization is favoured, the QoS checker is configured
as follows for AQoS dimension : {(T1,R1) ; (T2,R3) ; (T3,R3)}

The RT'QoS dimension is only influenced by priority assignment and resource
sharing tests since the data dependency question is solved during the RT
scheduling analysis as explained in section 4.1. Thus, the QoS checker must
perform the T2 and T3 tests with rules R1 or R2 depending on the designer
choices. Besides these test/rule specifications, the QoS checker must verify
that, for all couples of tasks T; and 7}, if priority(T;)<priority(T;), then
RTQoS(T;)<RT'QoS(T}). Similarly, tasks that share resources must have the
same RT'(QQoS. If these tests are not valid, then rule R1 or R2 must be per-
formed. For example, if power optimization is favoured, the QoS checker is
configured as follows for dimension RT'QoS : {(T1,R3) ; (T2,R1) ; (T3,R1)}.
The QoS aware codesign flow is illustrated in section 6.

5.4 Feedback scheduling analysis

After the HW/SW RT partitioning/scheduling step, a timing analysis report
is returned to the designer. This report contains the probability scheduling
results. it indicates the scheduling safety rate (SSR), namely, the rate of
success of the server task capacity to support the probably deadlines violations,
such as:

Probability( Y RL — Execution — Time(i) < Ts+ > W(i)) =SSR
ieSw ieSw

Where Ty is the server task delay, RL — FExecution — Time(i) is the real
life execution time, and W (i) is the execution time considered for taski, as
mentioned above.
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6 Case study : a football player robot application

The case study described in Figure 7 is a football player robot application with
video tasks for object detection, HF communications for message exchanging
with other devices, motors controls, sensor acquisition, image processing and
decision computation. Various HW with different granularities, SW and SW
with coprocessor implementations are considered for the set of tasks. Note
that Tig is the server task with the lowest priority; it includes all aperiodic
software tasks with soft real time constraints or without real time constraints.

Title Period (ms) (min, med, max) | Data In Data Out
(32 bits)
T, HF Acquisition 20, 50, 100 ---- 6
T3 Decryption 20, 50, 100 6 6
T Sensor Acquisition 20, 50, 100 ---- 20
T, Video Acquisition 40, 100, 200 -—-- 2048
T, Bayer Interpolation 40, 100, 200 2048 2048
Ts, T, Threshold (Red, Green, Blue) | Granularity dependent : 2048 2048
Ty (40, 40/256), (100, 100/256),
(200, 200/256)
Ty T7 Filtering (Red, Green, Blue) Granularity dependent : 2048 2048
Tio (40, 40/256) (100, 100/256),
(200, 200/256)
Ts Tg, | Object position computation | Granularity dependent : (40, 2048 6
T, (Red, Green, Blue) 100, 200)
Tis Data Merging 20, 50, 100 44 16
Tis Trajectory computation 20, 50, 100 16 20
Ty HF Emission 20, 50, 100 20 -—--
Tig 20 Motor Command 20, 50, 100 20 -—
Ty Server Task 200 40 ——--

Regarding the period values, the video tasks 77, ..., T} have lower priorities
than the other remaining tasks T}», ..., T1s. We consider that all tasks from 12

Fig. 7. Football player robot application

to 18 are hard real time, namely:




Vi € {12,...,18}, TQoS; = [1,1]

For tasks from 1 to 11, different tradeoffs are experimented. Three video rates
are considered: 40ms (High : Pmin), 100ms (Medium : Pmedium) or 200ms
(Low : Pmax).

The software RL-Execution-Time is obviously different for all these tasks. it
also vary within the interval [Tmin, WCET]. For instance, the video acquisi-
tion and the Bayer interpolation delay variation are reasonably limited, but
for tasks like filtering interpolation or object positioning, the gap is much
more important (e.g. from 90 to 450ms for 75). Regarding the RT'QoS, we
usually consider a Gaussian G (1,4, 5) RL — Execution — Time distribution
for each of these tasks as presented in Figure 8. Four particular values can be
distinguished : Tmin, Topt, Tavg, and WCET such as:

o Probability(RL — Execution — Time < T,,,) = 0,50

o Probability(RL — Execution — Time < T,,) = 0,75
e Probability(RL — Execution — Time < WCET) =1

Y
Proba density (RL-Executio.

>

Topt WCET  RL-Execution-Time

Fig. 8. RL-Execution-Time distribution

Various QoS tradeoffs have been evaluated with our codesign framework. The
different solutions are detailed in Figure 9. The case 1, 4 and 7 correspond to
hard real time conditions (RT'QoS =1) with three different video data rates
(AQoS = 1; 0,4; 0,2). The results are presented in Figure 10 with a cost
function tuned with a= 0.3 (area) and $=0.7 (power). We present relative
values to show out the influence of QoS choices. Thus we observe in Figure
10 that the power and the area costs can be efficiently reduced when the
QoS constraints are relaxed. For instance, by reducing the video data rate, we
observe that 40% of power reduction can be obtained for a medium quality.
Another point is the cost of hard RT (HRT), actually if a soft RT (SRT) is
used and tune to 75% of the WCET we note that meaningful power and area
savings are achieved.
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Fig. 10. QoS / Power / Area Tradeoffs

7 Conclusion

The design space related to embedded systems is extremely large, it involves
functional specification decisions, implementations choices including SW, HW
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with various granularities and coprocessors choices and also low level Clock
frequency-Vdd couple alternatives, moreover it requires a complex real-time
analysis. A tool is required to handle the problem complexity but this tool
must be controllable by the designer in an interactive way. In this paper,
a HW/SW co-synthesis framework is proposed for multitask RT embedded
systems. The proposed iterative co-synthesis procedure with user interaction
consists of three steps : selection of QoS choices, HW/SW partitioning and
schedulability test. Unlike the previous approach, we take into account the
resources and the coprocessors sharing between tasks. We have shown that
the proposed approach for QoS management performs well with nine QoS
versions. It can lead to 40% of power reduction by reducing the video data
rate. The proposed approach for static QoS management can be used as a
starting point for the development of a dynamic QoS manager which is the
subject of our future work.
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