
HAL Id: hal-00089412
https://hal.science/hal-00089412

Submitted on 18 Aug 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Platform Selection According to SoC Architecture: a
case study

Yassine Aoudni, Nader Ben Amor, Guy Gogniat, Jean Luc Philippe,
Mohamed Abid

To cite this version:
Yassine Aoudni, Nader Ben Amor, Guy Gogniat, Jean Luc Philippe, Mohamed Abid. Platform
Selection According to SoC Architecture: a case study. 2004, 6 p. �hal-00089412�

https://hal.science/hal-00089412
https://hal.archives-ouvertes.fr

 1

Abstract

This work aims to compare several tools and SoC
platforms according to the following key
parameters: FPGA architecture, coprocessor and
accelerator integration, RTOS and HW-SW
refinement tools. These key parameters are required
to select a flexible and efficient SoC Platform (and
the associated tools) in order to implement an
efficient PACM (Processor – Accelerator –
Coprocessor – Memory) architecture model A case
study for the PACM architecture model has been
targeted in order to validate proposed key
parameters. Four Platforms were candidate to
implement the PACM architecture model. Finally,a
Nios development kit (Quartus, SOPC Builder and
STRATIX device)is used as a prototyping platform
for PACM architecture and a shading algorithm for
3D image treatment was implemented as an
application to prove the SoC platform adequacy
with our PACM architecture model.

1- Introduction

The designs of SoC in many application domains
are often subject to stringent requirements in terms
of processing performance and flexibility [1]. To
enable flexible low-cost designs in a short design
cycle, emerging designs are based on
hardware/software SoC platforms that integrate
multiple software (SW) programmable resources,
e.g. DSP and microcontroller cores, together with
dedicated hardware (HW) accelerators within a
single cost-efficient chip. Programmability is
introduced in these single-chip architectures (thus
offering the desired flexibility in the design), while
maintaining most of the advantages of customized
VLSI solutions (such as the potential to optimize
the processing performance and power dissipation)
[2].

Hardware/software co-design method exists today
for designing the different hardware and software
resources of a SoC architecture [3]. As time to
market pressures and product complexities climb,
the need to reuse complex building (also known as
Intellectual Property (IP) or Virtual Component
(VC)) also increases. These components represent
functions for specific domain like signal processing
(DCT, FFT), telecommunication and multimedia
(VLC, Turbo codes) etc. In this area, SoC

implementation management requires a robust co-
design environment in order to master the
complexity and the different refinement steps of the
system from a high level specification.

Depending on the application, different
application-specific architectures using different
execution models and combinations of software and
hardware components may be required (e.g. driven
by programmability, performance, and power
computing requirements). Even the choice of the

programmable processor to use is heavily
dependent on the application. Briefly, the question
to answer is: can the same CAD tools and
prototyping platforms address all architecture
models or is there a trade-off between these
platforms and architecture models? In this paper we
propose an answer and demonstrate it using our
case study.

In literature we find many proposed architecture
for digital applications that can be classified with
different granularity levels: finite, coarse and multi-
grain. For example, the FPGA families represents
the finite grain level: Altera Stratix II, Xilinx Virtex
II, etc. Systolic Ring [4], DART [5], RAW [6] and
KressArray[7] beyond to the coarse grain level.
And for multi-grain level we find GARP [8],
Chameleon [9],etc. Each of these architectures
targets a specific domain like DART for mobile
application, Systolic Ring and KressArray for data
flow application. But in reactive/dataflow system

µP core

Program
RAM

Data
RAM

High speed
accelerators

RTOS routines

On chip bus

Software
module

Communication
module

Hardware
module

Figure 1: reactive/dataflow SoC architecture
model

Platform Selection According to SoC Architecture: a case study

Y. Aoudni1, 2, N. Ben Amor1, 2, G. Gogniat1 J.L. Philippe1, M. Abid2
1LESTER, Université de Bretagne Sud CNRS FRE 2734, Lorient, France,

2GMS, ENIS engineering school, Sfax, Tunisia
Email : aoudni@iuplo.univ-ubs.fr

 2

we need another vision for the system architecture.
As a solution we proposed in figure 1 SoC
architecture model for reactive/data flow system.
This is the model we have selected to implement the
PACM (Processor – Accelerator – Coprocessor –
Memory) architecture model as will be explained in
the following.

This paper presents a case study comparison of
several CAD tools and reconfigurable SoC
prototyping platforms to select the suitable ones for
the target architecture (see figure 1). Firstly, we
explain the new main features for SoC co-design
environment. Then we present the comparative
study and the key parameters of selection extracted
from the PACM architecture model. A 3D shading
algorithm example has been implemented to
demonstrate the SoC platform adequacy with our
PACM architecture model. Finally, we end with
conclusion.

2- SoC co-design environment

Figure 2 describes a typical SoC co-design
environment. Starting from a high level system
model entry a HW/SW partitioning tool to select the
hardware (HW) or the software (SW)

implementation of the functions composing the
system. Then, each function is treated by the
appropriate refinement environment. The two next
subsections discuss the HW and SW refinement
environments presented with clear (HW) and dark
(SW) grey color in figure 2. Then we present the
synthesis of communication.

2-1 Software refinement environment

If we analyze needs concerning the development
of the SW parts, we can do the following reports. In
fact the environment of software refinement allows
to build executable codes from a specification
described with high level languages (e.g. C
language, C ++, Java). So, the generation of binary
codes is made by means of compilers. Generally, a
compiler is specific to a language of high level
description and a model of execution. Basically, a
SoC based on integrates a processor core (ARM,
SPARC, Power PC…) [10] requires a specific
compiler. Moreover, an emulator should be used as
a tool to verify the execution of SW functions at a
high level abstraction before any implementation. In
addition, new embedded reactive systems need to
implement a scalable RTOS (Real Time Operating
System), so the software environment must support
this new option which will be used for the
management of the memory, the access time to the
tasks, etc. Examples of RTOS are Embedded Linux,
MicroC/OS-II, RTEMS, etc. In practice, if a RTOS
is present it is necessary to port it to the processor
core and to generate a scalable operating code [11].
Then, programs generated by compilers must be
downloaded into the target electronic modules
(RAM, ROM, flash memory). Thus it is necessary
to have binary utilities which allow the designer to
build specific binary codes for the target electronic
devices. These binary utilities such as Objdump,
Objcopy must be able to generate also data files
needed for co-simulation with HDL simulator like
ModelSim [12].

2-2 Hardware refinement environment

If we analyze needs concerning the design of the
HW parts, we can do the following reports. The
hardware refinement environment contains the
following tools: synthesis, place&route as well as
HDL simulation tools. As the design of SoC
corresponds to complex applications in terms of
architecture and functions, it is necessary to have a
design environment able to support this complexity.
For that reason, researchers in the SoC field turn to
the use of new generation of commercial HDL
simulation tools (ModelSim, NC-Verilog, NC-
VHDL, Synopsys, VCS, Verilog-XL, VSS),
synthesis tools (Leonardo Spectrum, Synplify Pro,
Express Synopsys FPGA Tools) and place&route
tools (Alliance, Quartus, Cadence). In [12] we

System model Entry

HW/SW

partitioning

C/C++
code

HDL
code

Processor
Emulator

HDL
Simulators
ModelSim,

Active HDL,
etc.

Synthesis of communication

Compiler
SPARC, ARM,

Intel Synthesis tools
Synplify,
Leonardo

Spectrum, etc.

Binary utilities
Objdump,

Objcopy, Srec
Place&route tools
Alliance, Quartus,

Cadence

Target technology
ASIC, FPGA, CPLD

Terminal for
test

Serial, parallel
Interfaces

IPs

Figure 2: SoC Environment Design

RTOS

IPs

IPs

 3

presented the benefits of using design tools for
simulation and synthesis to analyze the
performances of SoC in terms of quality, computing
time, allocated area, etc. Furthermore, these
refinement tools target a particular range of FPGA
families depending on the vendors. For example we
find a specific HDL simulation tool for the Altera
FPGA family (ModelSim-Altera) or Xilinx FPGA
family (ModelSim Xilinx Edition).

The new features added to HW refinement
environment are the use of IP model libraries at
different abstraction levels and the HW/SW on chip
communication. To be able to re-use IPs, CAD
tools vendors provide the designer IP models
library. But generally the designer must also specify
some parts of the SoC or adapt the IP models to his
specific SoC [13].

2-3 Synthesis of communication

Synthesis communication task aims to identify
and generate the communication protocols between
HW and SW modules [14]. For the HW/SW
communication, we find new type of resources like
on chip buses, internal networks, etc. These new
communication resources use communication
protocols that are not standardized yet [15], what
complicates the HW/SW interface in SoC design.

All these new aspects of IPs re-use, SoC
communication synthesis and RTOS scalability lead
us to use a SoC co-design environment able to
support all these new features. In addition, the CAO
tools and platforms considered within the SoC co-
design environment must be compatible with the
SoC architecture model. This point is explained in
next the section where we present the PACM
architecture model.

3- SoC co-design environment for the PACM
architecture model

In this section, for the architecture presented in
figure 3 and based on the model presented in figure

1, we show that several CAO tools and platforms,
similar in first view, do not present the same
adequacy degree with the targeted model of
execution. The figure 3 presents the PACM model.
Basically our architecture is built around a
processor core (for example Nios, ARM, LEON…)
which offers configuration opportunities for adding
coprocessors reached through the main processor
registers (for example floating point unit, HW
divider, HW mathematic functions ...).

The processor communicates with dedicated HW
accelerators through a standard on chip HW/SW
bus (e.g. Amba, Avalon, IBM CoreConnect…)
using control logic and specific memory blocks.
Coprocessors and HW accelerators usage depends
on the application complexity and on the computing
constraint requirements. In order to give more
flexibility and adaptability to the SoC, we have
chosen the reconfigurable technology to implement
our SoC.

If we analyze the key parameters of the PACM
architecture model, the adequate platform must
integrate the following features:

• The platform must integrate a FPGA device
characterized by a heterogeneous architecture
(logic elements, DSP blocks, RAM blocks, I/O
pin…) and by a size able to integrate the HW
and SW parts of the SoC.

• The platform must provide a processor core
that gives opportunities to integrate some
coprocessors within its ALU and reached
through the processor main registers to get an
ASIP model.

• The HW accelerators integration must be
supported using an on chip HW/SW bus or
other on chip HW/SW communication module.

• RTOS option with the corresponding port to
the targeted processor core must be present.

• The HW and SW refinement tools must be
robust and efficient to limit the time-to-market
constraint.

 All these key parameters correspond to the
criteria to select a suitable SoC platform. We made

Platforms

Key
parameters

LEON Nios kits Excalibur
kit

PowerPC
Microblaze

kits

FPGAs
architecture

Xilinx
family >=

Virtex

Altera
family

>=APEX

APEX
family only

Xilinx
family>Virtex

Coprocessors
integration

+ +++ +++ ----

Accelerator
integration

+ +++ +++ +++

RTOS ++ +++ +++ +++
SW and HW
refinement

tools
+++ +++ +++ +++

Table 1: Platforms comparison

Processor
core

(RTOS option)

Acc_2

Acc_1

(Accelerator)

Min 10

Mio23

Min 11

Mout 10

Acc_3

Main Memory

Min 20

Mout 30

Cop1 Cop2

Coprocessors

O
n

 c
h

ip

H
W

/S
W

b

u
s

Figure 3: PACM architecture model

 4

a qualitative study for different representative
platforms, and evaluate their adequacy with the
PACM architecture model.

We performed an experimental study based on
the main features of SoC platforms. The results are
presented in table 1. We notice that all presented
SoC platforms provide a robust and efficient HW
and SW refinement tools like ISE Xilinx tool and
Quartus, on chip HW/SW bus as AMBA (LEON
and Excalibur kits) and IBM CoreConnect
(PowerPC and Microblaze kit) and also a port for
many RTOS like RTEMS ported on LEON and
ARM, WindRiver port on PowerPC and
Microblaze, etc. However, only Nios, ARM and
LEON cores can support coprocessor feature. In
addition, coprocessor integration in Nios and ARM
cores is more rapid and flexible using the
virtualization and custom instruction generation
given by SOPC Builder tool. Also, Nios SoC can be
implemented in large STRATIX family [16] which
contains DSP blocks and different sizes of RAM
blocks, unlike ARM development kit which is
restricted to APEX device and its core is a hard IP
and not a soft one like the Nios core. Thus, we
notice that the SoC platform based on Nios
processor core kit [17] provided with Quartus and
SOPC Builder environments by Altera [18] is the
most suitable to design a reconfigurable SoC using
the PACM architecture model. Indeed, SOPC
Builder tool gives the designer a virtual image of
the Nios processor soft core and the accelerators
can be linked to the Nios processor core through the
Avalon on chip bus. Custom instructions are also
provided with this platform in order to facilitate the
coprocessors integration within the Nios ALU.
Namely, our choice is based on this last feature in
order to implement a reconfigurable ASIP core.

As a conclusion of this analysis we can see that
the available CAD tools and SoC platforms can not
address all the architecture models and that a study
must be done in order to select the suitable platform
for the appropriate architecture model. In our case
the Nios processor core kit is suitable to the PACM
architecture model.

In the next section, to illustrate the efficiency of
using the Nios processor core kit to implement the
PACM architecture model we present a case study
on shading algorithms for 3D image treatment. Our
platform is composed of Quartus and SOPC Builder
environments, Nios soft core processor, a EP1S40
STRATIX device and the MicroC/OS-II RTOS
[19]. Note that the RTOS implementation will be
done in future work.

4 – Application

4-1 LAMBERT and GOURAUD algorithms

In this case study, we have implemented two 3D
shading algorithms used in image synthesis:
LAMBERT and GOURAUD [20]. These
algorithms consist to cut an object in a number of
polygons and then to determine the intensity of the
light in every polygon of the object. Several
mathematic expressions and vectors analysis must
be done in order to get a light intensity value for
one polygon. The basic operations of these
computing operations are the addition, subtraction,
multiplication and square root. Indeed, for each
polygon we must calculate the area normal vector,
light direction vector and the angle between these
two vectors. The difference between the two
algorithms is that GOURAUD takes into account
the continuity between neighbor polygons unlike
LAMBERT (see figure 4a and 4b).

4-2 Implementation

LAMBERT and GOURAUD algorithms can be
implemented in the Nios as a SW program. But in
order to accelerate the execution a solution consists
to use HW accelerators. Another solution can be
done by extracting coprocessors from the SW
execution in order to speedup some critical parts of
the code. In general these critical parts correspond
to nested loop body operations that are executed a
large number of time. These two types of
implementation are presented in the following
paragraphs right after the full SW algorithms
implementation.

Firstly, we implemented these two algorithms as
two accelerators linked to the Avalon on chip bus.
Indeed in the Quartus environment, we can design a
HW accelerator using a Block Design File (BDF) as
presented in figure 5, then we can generate the
specific VHDL or Verilog code and finally we can
run the compilation to simulate and to get the
bitstream file. The BDF feature in Quartus
environment helps the designer to get a right HDL
code in less time with optimized components
provided within the vendor library. We have used
the PIO interface feature in SOPC Builder to link
the HW accelerators with the Avalon bus. This tool
is able to generate automatically the interface

F

Figure 4a: shading with
LAMBERT algorithm

Figure 4b: shading with
GOURAUD algorithm

 5

between the HW and the SW components that is
helpful to reduce the HW/SW SoC time design.

Secondly, we integrated mathematic coprocessors
as custom instructions within the Nios soft core. In
this case, the virtual design entry of the Nios in
SOPC Builder is very helpful and efficient to
configure the processor core, especially for adding
either 16 or 32 bits coprocessors via two main ALU
registers. The key point in this feature is the
generation of specific coprocessor custom
instruction known by the Nios C compiler.

Table 2 gives the results obtained for the
LAMBERT and GOURAUD algorithms using the
accelerators and the coprocessors. The results are
given in term of required logic elements and in term
of execution time speedup compared to a full
software implementation using the Nios. We can
notice that the speedup obtained using GOURAUD
accelerator is more important than the coprocessor
one, but it needs more area (i.e. FPGA resources).
On the other hand coprocessors LAMBERT
implementation is more benefit than accelerator
ones in terms of logic cell and speedup. Thus, the

selection between accelerators or coprocessors
implementation depends on the SoC execution time
and FPGA resources constraints. Note that using
this SoC platform a few workdays are just needed
for an effective implementation of these two
complex algorithms which prove the efficiency of

the key parameters to select a SoC platform for the
PACM architecture model.

5- Conclusion

In this paper we have presented the new features
of SoC platform and co-design environment and the
main role of hardware and software refinement
tools to implement SoC especially on FPGA device.
Based on the PACM architecture model, we have
shown that the available CAO tools and platforms
can not address all the SoC architecture models and
an analysis must be done to select the suitable
platform for the appropriate architecture model. The
key parameters that we have considered to select
the right SoC platform are the following ones:
FPGA architecture, coprocessor and accelerator
integration, RTOS and HW-SW refinement tools
Based on these parameters a platform based on the
Nios STRATIX development kit was chosen to
implement the PACM architecture model. To
validate our choice two 3D shading algorithms were
implemented on the Nios platform using the
Quartus and SOPC Builder. Results have
demonstrated the benefits using such platform for
the PACM architecture model. In future work, we
propose to implement the RTOS subroutine and to
study the SoC power performance for the PACM
architecture with video compression algorithms.

References

[1] Julio C, B.Mattos, Luigi Carro, Efficient architecture
for FPGA-based microcontrollers, ISCAS paper number
2825, 2002.

[2] Amit Singh, Malgorazta Marker-Sadowska, Efficient
circuit clustering for area and power reduction in FPGAs,
SIGDA 2002.

[3] Bill Lin, Karl Van Rompaey, Stenven Vercauteren,
Designing single chip systems, ASIC 1996.

[4] G. Sassatelli, L. Torres, P. Benoit, T. Gil, C. Diou, G.
Cambon, J. Galy, Highly Scalable Dynamically
Reconfigurable Systolic Ring-Architecture for DSP
Applications. In IEEE Design Automation and Test in
Europe Paris 2002, pp. 553-557, DATE 202.

[5] Raphaël David, Daniel Chillet, Sebastien Pillement,
and Olivier Sentieys. Dart : A dynamically reconfigurable
architecture dealing with next generation
telecommunications constraints. In 9th IEEE
Reconfigurabel Architecture Workshop RAW. IEEE CS
Press, April 2002.

[6] Waingold, E.; et al. Baring it all to software: Raw
machines. Computer, vol. 30(9), pp. 86-93, 1997.

[7] R. Kress et al. A Datapath Synthesis System for the
Reconfigurable Datapath Architecture. In Asia and South
Pacific Design Conference, Asp-DAC 95.

[8] Callahan, T.J.; Hauser, J.R.; Wawrzynek, J. The Garp
architecture and C compiler. Computer, vol. 33(4), pp.
62-69, 2000.

 Logic
cell

DSP
block

RAM Block
(bits)

Speedup

Nios32 Core 6164 0 669696 -
lambert 922 8 4096 10,8% Nios with

accelerators gouraud 4201 28 12288 55,3%
Adder32 32 0 0
Sub32 34 0 0
Mult32 0 8 0

Nios with
coprocessors

Sqrt32 21 0 0

68,9%
(lambert)

11,3%
(gouraud)

Table 2: Results obtained for the LAMBERT and GOURAUD

algorithms

Figure 5: LAMBERT and GOURAUD Block Design
Files

 6

[9] B. Salefski, L. Caglar. Re-Configurable Computing in
Wirless. In 38th Design Automation Conference, DAC
2001, Louisana, USA, June, 2001.

[10] F. Campi, A. Cappelli,A. La Rosa, L. Lavagno,R.
Canegallo, A Reconfigurable Processor Architecture and
Software Development Environment for Embedded
Systems, Reconfigurable Architecture Workshop, Nice
France RAW’2003.

[11] V. Nollet, P. Coene, D. Verkest, S. Vernalde, R.
Lauwereins, Designing an Operating System for a
Heterogeneous Reconfigurable SoC, Reconfigurable
Architecture Workshop, Nice France RAW’2003.

[12] Y .Aoudni, I. Maalej and al., Analysis of
hardware/software System on Chip: Case Study, IEEE
Conference on Signal, Systems, Decision and information
theory, Sousse, Tunisia, 26-28 Marsh, SSD’2003.

[13] M. Bolado1, H. Posadas1and All, Platform based on
Open-Source Cores for Industrial Applications, Design
Automation and Test in Europe February 16-20, Paris
DATE’2004.

[14] I. Maalej, G. Gogniat, M. Abid, J-L Philippe,
'Generic bus communication for system on chip
communication Design', SSD’03 26-28 Mars, 2003
Sousse, Tunisie.

[15] Vesa Lahtinen, Kimmo Kuusilinna, Tero Kangas,
Timo Hamalainen, Interconnection scheme for
continuous-media systems-on-chip, pages 123-138
Microprocessors and Microsystems 26, 2002.

[16] Altera web site STRATIX family data sheet, April
2004

http://www.altera.com/literature/hb/stx/stratix_section_1_
vol_1.pdf

[17] Altera web site, Nios Developpement Kit STRATIX
Edition, Getting Started User Guide July 2003

http://www.altera.com/literature/ug/ug_nios_gsg_stratix_
1s10.pdf

[18] Altera web site, SOPC Builder User Guide, June
2003

http://www.altera.com/literature/ug/ug_sopcbuilder.pdf

[19] Jean J. Labrosse, MicroC/OS-II The Real Time
Kernel Second Edition, CMP Books 2002.

[20] Tomas Akenine Moller, REAL-TIME RENDERING
second edition page 70, AK Peters Ltd 2002.

