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Abstract 
  

This work aims to compare several tools and SoC 
platforms according to the following key 
parameters: FPGA architecture, coprocessor and 
accelerator integration, RTOS and HW-SW 
refinement tools. These key parameters are required 
to select a flexible and efficient SoC Platform (and 
the associated tools) in order to implement an 
efficient PACM (Processor – Accelerator – 
Coprocessor – Memory) architecture model A case 
study for the PACM architecture model has been 
targeted in order to validate proposed key 
parameters. Four Platforms were candidate to 
implement the PACM architecture model. Finally,a 
Nios development kit (Quartus, SOPC Builder and 
STRATIX device)is used as a prototyping platform 
for PACM architecture and a shading algorithm for 
3D image treatment was implemented as an 
application to prove the SoC platform adequacy 
with our PACM architecture model. 
 
1- Introduction 

The designs of SoC in many application domains 
are often subject to stringent requirements in terms 
of processing performance and flexibility [1]. To 
enable flexible low-cost designs in a short design 
cycle, emerging designs are based on 
hardware/software SoC platforms that integrate 
multiple software (SW) programmable resources, 
e.g. DSP and microcontroller cores, together with 
dedicated hardware (HW) accelerators within a 
single cost-efficient chip. Programmability is 
introduced in these single-chip architectures (thus 
offering the desired flexibility in the design), while 
maintaining most of the advantages of customized 
VLSI solutions (such as the potential to optimize 
the processing performance and power dissipation) 
[2].  

Hardware/software co-design method exists today 
for designing the different hardware and software 
resources of a SoC architecture [3]. As time to 
market pressures and product complexities climb, 
the need to reuse complex building (also known as 
Intellectual Property (IP) or Virtual Component 
(VC)) also increases. These components represent 
functions for specific domain like signal processing 
(DCT, FFT), telecommunication and multimedia 
(VLC, Turbo codes) etc. In this area, SoC 

implementation management requires a robust co-
design environment in order to master the 
complexity and the different refinement steps of the 
system from a high level specification. 

Depending on the application, different 
application-specific architectures using different 
execution models and combinations of software and 
hardware components may be required (e.g. driven 
by programmability, performance, and power 
computing requirements). Even the choice of the 

programmable processor to use is heavily 
dependent on the application. Briefly, the question 
to answer is: can the same CAD tools and 
prototyping platforms address all architecture 
models or is there a trade-off between these 
platforms and architecture models? In this paper we 
propose an answer and demonstrate it using our 
case study.  

In literature we find many proposed architecture 
for digital applications that can be classified with 
different granularity levels: finite, coarse and multi-
grain. For example, the FPGA families represents 
the finite grain level: Altera Stratix II, Xilinx Virtex 
II, etc. Systolic Ring [4], DART [5], RAW [6] and 
KressArray[7]  beyond to the coarse grain level. 
And for multi-grain level we find GARP [8], 
Chameleon [9],etc. Each of these architectures 
targets a specific domain like DART for mobile 
application, Systolic Ring and KressArray for data 
flow application. But in reactive/dataflow system 
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we need another vision for the system architecture. 
As a solution we proposed in figure 1 SoC 
architecture model for reactive/data flow system. 
This is the model we have selected to implement the 
PACM (Processor – Accelerator – Coprocessor – 
Memory) architecture model as will be explained in 
the following.   

This paper presents a case study comparison of 
several CAD tools and reconfigurable SoC 
prototyping platforms to select the suitable ones for 
the target architecture (see figure 1). Firstly, we 
explain the new main features for SoC co-design 
environment. Then we present the comparative 
study and the key parameters of selection extracted 
from the PACM architecture model. A 3D shading 
algorithm example has been implemented to 
demonstrate the SoC platform adequacy with our 
PACM architecture model. Finally, we end with 
conclusion.  

2- SoC co-design environment  

Figure 2 describes a typical SoC co-design 
environment. Starting from a high level system 
model entry a HW/SW partitioning tool to select the 
hardware (HW) or the software (SW) 

implementation of the functions composing the 
system. Then, each function is treated by the 
appropriate refinement environment. The two next 
subsections discuss the HW and SW refinement 
environments presented with clear (HW) and dark 
(SW) grey color in figure 2. Then we present the 
synthesis of communication.  

2-1 Software refinement environment 

If we analyze needs concerning the development 
of the SW parts, we can do the following reports. In 
fact the environment of software refinement allows 
to build executable codes from a specification 
described with high level languages (e.g. C 
language, C ++, Java). So, the generation of binary 
codes is made by means of compilers. Generally, a 
compiler is specific to a language of high level 
description and a model of execution. Basically, a 
SoC based on integrates a processor core (ARM, 
SPARC, Power PC…) [10] requires a specific 
compiler. Moreover, an emulator should be used as 
a tool to verify the execution of SW functions at a 
high level abstraction before any implementation. In 
addition, new embedded reactive systems need to 
implement a scalable RTOS (Real Time Operating 
System), so the software environment must support 
this new option which will be used for the 
management of the memory, the access time to the 
tasks, etc. Examples of RTOS are Embedded Linux, 
MicroC/OS-II, RTEMS, etc. In practice, if a RTOS 
is present it is necessary to port it to the processor 
core and to generate a scalable operating code [11]. 
Then, programs generated by compilers must be 
downloaded into the target electronic modules 
(RAM, ROM, flash memory). Thus it is necessary 
to have binary utilities which allow the designer to 
build specific binary codes for the target electronic 
devices. These binary utilities such as Objdump, 
Objcopy must be able to generate also data files 
needed for co-simulation with HDL simulator like 
ModelSim [12]. 

2-2 Hardware refinement environment 

If we analyze needs concerning the design of the 
HW parts, we can do the following reports. The 
hardware refinement environment contains the 
following tools: synthesis, place&route as well as 
HDL simulation tools. As the design of SoC 
corresponds to complex applications in terms of 
architecture and functions, it is necessary to have a 
design environment able to support this complexity. 
For that reason, researchers in the SoC field turn to 
the use of new generation of commercial HDL 
simulation tools (ModelSim, NC-Verilog, NC-
VHDL, Synopsys, VCS, Verilog-XL, VSS), 
synthesis tools (Leonardo Spectrum, Synplify Pro, 
Express Synopsys FPGA Tools) and place&route 
tools (Alliance, Quartus, Cadence). In [12] we 
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presented the benefits of using design tools for 
simulation and synthesis to analyze the 
performances of SoC in terms of quality, computing 
time, allocated area, etc. Furthermore, these 
refinement tools target a particular range of FPGA 
families depending on the vendors. For example we 
find a specific HDL simulation tool for the Altera 
FPGA family (ModelSim-Altera) or Xilinx FPGA 
family (ModelSim Xilinx Edition). 

The new features added to HW refinement 
environment are the use of IP model libraries at 
different abstraction levels and the HW/SW on chip 
communication. To be able to re-use IPs, CAD 
tools vendors provide the designer IP models 
library. But generally the designer must also specify 
some parts of the SoC or adapt the IP models to his 
specific SoC [13].  

2-3 Synthesis of communication  

Synthesis communication task aims to identify 
and generate the communication protocols between 
HW and SW modules [14]. For the HW/SW 
communication, we find new type of resources like 
on chip buses, internal networks, etc. These new 
communication resources use communication 
protocols that are not standardized yet [15], what 
complicates the HW/SW interface in SoC design.  

All these new aspects of IPs re-use, SoC 
communication synthesis and RTOS scalability lead 
us to use a SoC co-design environment able to 
support all these new features. In addition, the CAO 
tools and platforms considered within the SoC co-
design environment must be compatible with the 
SoC architecture model. This point is explained in 
next the section where we present the PACM 
architecture model. 

3- SoC co-design environment for the PACM 
architecture model  

In this section, for the architecture presented in 
figure 3 and based on the model presented in figure 

1, we show that several CAO tools and platforms, 
similar in first view, do not present the same 
adequacy degree with the targeted model of 
execution. The figure 3 presents the PACM model. 
Basically our architecture is built around a 
processor core (for example Nios, ARM, LEON…) 
which offers configuration opportunities for adding 
coprocessors reached through the main processor 
registers (for example floating point unit,  HW 
divider, HW mathematic functions ...). 

The processor communicates with dedicated HW 
accelerators through a standard on chip HW/SW 
bus (e.g. Amba, Avalon, IBM CoreConnect…) 
using control logic and specific memory blocks. 
Coprocessors and HW accelerators usage depends 
on the application complexity and on the computing 
constraint requirements. In order to give more 
flexibility and adaptability to the SoC, we have 
chosen the reconfigurable technology to implement 
our SoC. 

If we analyze the key parameters of the PACM 
architecture model, the adequate platform must 
integrate the following features: 

•  The platform must integrate a FPGA device 
characterized by a heterogeneous architecture 
(logic elements, DSP blocks, RAM blocks, I/O 
pin…) and by a size able to integrate the HW 
and SW parts of the SoC. 

•  The platform must provide a processor core 
that gives opportunities to integrate some 
coprocessors within its ALU and reached 
through the processor main registers to get an 
ASIP model.  

•  The HW accelerators integration must be 
supported using an on chip HW/SW bus or 
other on chip HW/SW communication module. 

•  RTOS option with the corresponding port to 
the targeted processor core must be present. 

•  The HW and SW refinement tools must be 
robust and efficient to limit the time-to-market 
constraint. 

 All these key parameters correspond to the 
criteria to select a suitable SoC platform. We made 
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a qualitative study for different representative 
platforms, and evaluate their adequacy with the 
PACM architecture model.  

We performed an experimental study based on 
the main features of SoC platforms. The results are 
presented in table 1. We notice that all presented 
SoC platforms provide a robust and efficient HW 
and SW refinement tools like ISE Xilinx tool and 
Quartus, on chip HW/SW bus as AMBA (LEON 
and Excalibur kits) and IBM CoreConnect 
(PowerPC and Microblaze kit) and also a port for 
many RTOS like RTEMS ported on LEON and 
ARM, WindRiver port on PowerPC and 
Microblaze, etc. However, only Nios, ARM and 
LEON cores can support coprocessor feature. In 
addition, coprocessor integration in Nios and ARM 
cores is more rapid and flexible using the 
virtualization and custom instruction generation 
given by SOPC Builder tool. Also, Nios SoC can be 
implemented in large STRATIX family [16] which 
contains DSP blocks and different sizes of RAM 
blocks, unlike ARM development kit which is 
restricted to APEX device and its core is a hard IP 
and not a soft one like the Nios core. Thus, we 
notice that the SoC platform based on Nios 
processor core kit [17] provided with Quartus and 
SOPC Builder environments by Altera [18] is the 
most suitable to design a reconfigurable SoC using 
the PACM architecture model. Indeed, SOPC 
Builder tool gives the designer a virtual image of 
the Nios processor soft core and the accelerators 
can be linked to the Nios processor core through the 
Avalon on chip bus. Custom instructions are also 
provided with this platform in order to facilitate the 
coprocessors integration within the Nios ALU. 
Namely, our choice is based on this last feature in 
order to implement a reconfigurable ASIP core. 

As a conclusion of this analysis we can see that 
the available CAD tools and SoC platforms can not 
address all the architecture models and that a study 
must be done in order to select the suitable platform 
for the appropriate architecture model. In our case 
the Nios processor core kit is suitable to the PACM 
architecture model. 

In the next section, to illustrate the efficiency of 
using the Nios processor core kit to implement the 
PACM architecture model we present a case study 
on shading algorithms for 3D image treatment. Our 
platform is composed of Quartus and SOPC Builder 
environments, Nios soft core processor, a EP1S40 
STRATIX device and the MicroC/OS-II RTOS 
[19]. Note that the RTOS implementation will be 
done in future work. 

4 – Application 

4-1 LAMBERT and GOURAUD algorithms 

In this case study, we have implemented two 3D 
shading algorithms used in image synthesis: 
LAMBERT and GOURAUD [20]. These 
algorithms consist to cut an object in a number of 
polygons and then to determine the intensity of the 
light in every polygon of the object. Several 
mathematic expressions and vectors analysis must 
be done in order to get a light intensity value for 
one polygon. The basic operations of these 
computing operations are the addition, subtraction, 
multiplication and square root. Indeed, for each 
polygon we must calculate the area normal vector, 
light direction vector and the angle between these 
two vectors. The difference between the two 
algorithms is that GOURAUD takes into account 
the continuity between neighbor polygons unlike 
LAMBERT (see figure 4a and 4b).   

4-2 Implementation 

LAMBERT and GOURAUD algorithms can be 
implemented in the Nios as a SW program. But in 
order to accelerate the execution a solution consists 
to use HW accelerators. Another solution can be 
done by extracting coprocessors from the SW 
execution in order to speedup some critical parts of 
the code. In general these critical parts correspond 
to nested loop body operations that are executed a 
large number of time. These two types of 
implementation are presented in the following 
paragraphs right after the full SW algorithms 
implementation. 

Firstly, we implemented these two algorithms as 
two accelerators linked to the Avalon on chip bus. 
Indeed in the Quartus environment, we can design a 
HW accelerator using a Block Design File (BDF) as 
presented in figure 5, then we can generate the 
specific VHDL or Verilog code and finally we can 
run the compilation to simulate and to get the 
bitstream file. The BDF feature in Quartus 
environment helps the designer to get a right HDL 
code in less time with optimized components 
provided within the vendor library. We have used 
the PIO interface feature in SOPC Builder to link 
the HW accelerators with the Avalon bus. This tool 
is able to generate automatically the interface 
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between the HW and the SW components that is 
helpful to reduce the HW/SW SoC time design.  

Secondly, we integrated mathematic coprocessors 
as custom instructions within the Nios soft core. In 
this case, the virtual design entry of the Nios in 
SOPC Builder is very helpful and efficient to 
configure the processor core, especially for adding 
either 16 or 32 bits coprocessors via two main ALU 
registers. The key point in this feature is the 
generation of specific coprocessor custom 
instruction known by the Nios C compiler.  

Table 2 gives the results obtained for the 
LAMBERT and GOURAUD algorithms using the 
accelerators and the coprocessors. The results are 
given in term of required logic elements and in term 
of execution time speedup compared to a full 
software implementation using the Nios. We can 
notice that the speedup obtained using GOURAUD 
accelerator is more important than the coprocessor 
one, but it needs more area (i.e. FPGA resources). 
On the other hand coprocessors LAMBERT 
implementation is more benefit than accelerator 
ones in terms of logic cell and speedup. Thus, the 

selection between accelerators or coprocessors 
implementation depends on the SoC execution time 
and FPGA resources constraints. Note that using 
this SoC platform a few workdays are just needed 
for an effective implementation of these two 
complex algorithms which prove the efficiency of 

the key parameters to select a SoC platform for the 
PACM architecture model. 

5- Conclusion 

In this paper we have presented the new features 
of SoC platform and co-design environment and the 
main role of hardware and software refinement 
tools to implement SoC especially on FPGA device. 
Based on the PACM architecture model, we have 
shown that the available CAO tools and platforms 
can not address all the SoC architecture models and 
an analysis must be done to select the suitable 
platform for the appropriate architecture model. The 
key parameters that we have considered to select 
the right SoC platform are the following ones: 
FPGA architecture, coprocessor and accelerator 
integration, RTOS and HW-SW refinement tools 
Based on these parameters a platform based on the 
Nios STRATIX development kit was chosen to 
implement the PACM architecture model. To 
validate our choice two 3D shading algorithms were 
implemented on the Nios platform using the 
Quartus and SOPC Builder. Results have 
demonstrated the benefits using such platform for 
the PACM architecture model. In future work, we 
propose to implement the RTOS subroutine and to 
study the SoC power performance for the PACM 
architecture with video compression algorithms. 
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