
HAL Id: hal-00089411
https://hal.science/hal-00089411

Submitted on 18 Aug 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Reconfigurable Security Primitive for Embedded
Systems

Guy Gogniat, Tilman Wolf, Wayne Burleson

To cite this version:
Guy Gogniat, Tilman Wolf, Wayne Burleson. Reconfigurable Security Primitive for Embedded Sys-
tems. 2005, 8 p. �hal-00089411�

https://hal.science/hal-00089411
https://hal.archives-ouvertes.fr

Reconfigurable Security Primitive for Embedded

Systems

Guy Gogniat

Laboratory LESTER

University of South Britanny

Lorient, France

Email: guy.gogniat@univ-ubs.fr

Tilman Wolf

Department of Electrical and

Computer Engineering

University of Massachusetts

Amherst, MA 01003-9284 USA

Email: wolf@ecs.umass.edu

Wayne Burleson

Department of Electrical and

Computer Engineering

University of Massachusetts

Amherst, MA 01003-9284 USA

Email: burleson@ecs.umass.edu

Abstract— Embedded systems present significant security chal-
lenges due to their limited resources, power constraints and a
variety of inherent vulnerabilities. In this paper, we propose a
reconfigurable security primitive for secure embedded systems
that leverages the capabilities of reconfigurable hardware to
provide efficient and flexible architectural support to both se-
curity standards and a range of attacks. This paper stresses
design challenges for secure embedded systems and argues the
case for reconfigurable architectural support for security. The
reconfigurable security primitive is based on two main ideas:
1) an adaptable datapath, and 2) a hierarchy of controllers at
the primitive and system level. The first controller manages the
performance policy while the second one deals with the security
policy. The AES cryptography algorithm has been considered to
show the benefit of our approach compared to hardware and
software solutions.

I. INTRODUCTION

Embedded systems are expected to play an essential role

in the future and today they are already spread in many

electronic devices from low-end to high-end systems [1]. The

vision of ubiquitous computing is becoming a reality, however

there is a major bottleneck to its widespread adoption, the

security issue is a serious problem and attacks against these

systems are becoming more critical and sophisticated [2][3][4].

Confidentiality and privacy are major concerns for users and

today nearly 52% of cell phones users and 47% of PDA users

feel that security is the single largest concern preventing the

adoption of mobile commerce [5]. New solutions have to be

proposed in order to allow the definition of secure embedded

systems. Current technologies are facing several challenges as

stressed by Ravi et al. [1]. Architectures will have to meet high

performance, energy efficiency, flexibility, tamper resistance

and reliability to enable the vision of ubiquitous computing.

Reconfigurable technologies can address these requirements

and provide efficient security primitives. Their characteristics

enable the system to prevent attacks or to react when attacks

are detected while guarantying the required energy and com-

putation efficiency.

In this paper we propose a reconfigurable security primitive

which emphasizes high-security and high-performance. It is

based on a reconfigurable datapath in order to dynamically

adapt its architecture depending on the system and environ-

ment states. Such an approach enables the system to provide

the right security barrier leading to a high-performance and

security-efficient solution. Thus, energy, throughput and tam-

per resistance can be adapted to meet dynamic constraints.

The remainder of this paper is organized as follows. Section

2 reviews the main challenges to provide secure embedded

systems and stresses the benefit of using reconfigurable ar-

chitectures. Section 3 describes our proposition, a reconfig-

urable security primitive and highlights its flexibility. Section

4 demonstrates the efficiency of our approach dealing with

the AES security primitive as a case study. Finally, section

5 concludes the paper and proposes some extensions to our

work.

II. SECURE EMBEDDED SYSTEM DESIGN CHALLENGES

Designers are facing the critical task of guarantying the

security of increasing more complex systems while dealing

with very tight constraints. This new design metric for em-

bedded systems is very hard and gathers many aspects and

layers that are difficult to manage [2]. Several challenges have

to be addressed to provide an efficient and reliable solution.

These have been stressed by Ravi et al. in [1] and a rapid

review is proposed below.

• The processing gap highlights that current embedded

system architectures are not capable of keeping up with

the computational demands of security processing.

• The battery gap emphasizes that the current energy

consumption overheads of supporting security on battery-

constrained embedded systems are very high.

• The flexibility stresses that an embedded system is often

required to execute multiple and diverse security proto-

cols and standards.

• The tamper resistance emphasizes that secure embedded

systems are facing an increasing number of attacks from

physical to software attacks. Side-channel attacks also

represent an important threat for these systems.

• The assurance gap is related to reliability and stresses

the fact that secure systems must continue to operate

reliably despite attacks from intelligent adversaries who

intentionally seek out undesirable failure modes.

Designing an embedded system architecture dealing with

all these requirements is a challenging task, however reconfig-

urable technologies provide several features to mitigate these

gaps, especially for security primitives. Potential advantages of

reconfigurable technologies for security compared to dedicated

hardware architectures are [7]:

• System agility, reconfigurable technologies provide agility

through dynamic reconfiguration. This enables switching

from one protection mechanism to another or balancing

protection mechanisms depending on run time require-

ments.

• System upload, reconfigurable technologies enable the

system to dynamically upgrade the protection mecha-

nisms in order to be always at the state of the art of

the security barriers.

Processors also provide adaptability through code update

but they do not meet the high performance and energy ef-

ficiency requirements. Potential advantages of reconfigurable

technologies for performance compared to processors are:

• Specialization, reconfigurable technologies can be dy-

namically designed for a specific set of parameters to

provide high efficiency.

• Resource sharing, reconfigurable technologies can be

dynamically reconfigured in order to share hardware

resources so that several applications can be run within

the same device.

• Performance tradeoffs, reconfigurable technologies can

be dynamically reconfigured to provide various tradeoffs

in terms of throughput, area, latency, reliability, power

and energy in order to meet dynamic constraints.

Using reconfigurable technologies to perform security prim-

itives is an interesting solution that mitigates processors work-

load and leads to more secure embedded systems. These

primitives can be seen as agile hardware accelerators.

Several works have already been published dealing with

security primitives and reconfigurable technologies, especially

for cryptography algorithms. In [7] and [8] a thorough analysis

of existing implementations for the AES candidates onto

FPGAs is presented. However, the mechanisms required to

manage the flexibility of these primitives is not considered.

In [9] an adaptive cryptographic engine is proposed which

enables the system to adapt the cryptography algorithm de-

pending on the requirements. Though, the reliability gap is

not addressed. In [10] the authors propose a thorough analysis

of existing implementations of the AES security primitive

dealing with both performance and reliability issues. However,

previous efforts do not address all of the challenges stated by

Ravi et al. [1]. Other solutions can be considered consisting

of programmable hardware accelerators. In [11] and [12]

the authors propose cryptography processor or co-processor

which can perform various execution modes and achieve high

throughput. However, they do not address the attack issue and

the energy efficiency metric is not considered. Finally, in [13]

the authors focus on architecture support for energy-efficient

security. In their work they deal with security primitives and

Processor core
Program/Data

Memory

Configuration
Memory

Datapath Datapath

SPC

Data I/O Data I/O

SPC

SSC SSC

Security I/O Security I/O

Reconfigurable Hardware

I/O
Module

Sensors

S
ec

u
ri

ty
 P

ri
m

it
iv

e

S
ec

u
ri

ty
 P

ri
m

it
iv

e

Fig. 1. Integration of the reconfigurable hardware within the embedded sys-
tem architecture. The reconfigurable hardware provides the security primitives

��������	
��������	���

�
�

�
�	

�
��

�
�

�
�
�

�
�	

�
��

�
�

��������	
��������	�����
���

��������	���������	��������

�����������
���������

�
�
��

	�
�
�

��������	
���������
��������

���

�
�
�
�

�
��

�
	�

�
�

������
��������

��������

�

	�

�
�
�

�
�
 	
�

!
�

 	
�
�
�

�

�

	

�

�
�
�
�

�
	�

�
�
 	
�
�
�
�
�
��

�
	�

�
��

��
��

�
�
 	
�

�
�

�
��

�

Fig. 2. The security primitive architecture. The Security Primitive Controller
manages the flexibility of the primitive and the Security System Controller
deals with the detection of abnormal activity using specific sensors

security protocols but they do not consider the attack issue.

The work presented in this paper differs from these efforts in

several respects. First, we propose an architecture for security

primitives which promotes the design of secure embedded

systems by targeting all of the challenges stated by Ravi et al.

[1]. Our architecture is based on a datapath and a hierarchy of

controllers which enables dealing with flexibility and security.

The performance and energy issues are considered by using a

reconfigurable datapath which enables the system to provide

several tradeoffs depending on the requirements and on the

security policy. The reliability issue is managed through the

use of different implementations from low to high reliability

(e.g. fault detection or fault tolerance). The underlying concept

of our approach is to dynamically adapt the security prim-

itive in order to deal with dynamic constraints (i.e. attacks,

performance, power). Such a solution enables the system to

face an unsecured and evolving environment while meeting

performance and constraints issues.

III. RECONFIGURABLE SECURITY PRIMITIVE

A. Toward a secure primitive

Before presenting our approach it is interesting to define

what could be an ideal primitive. As stated before several

features should be considered to provide an efficient solution.

Performance and energy are closely related and have to

be considered. Furthermore, it is mandatory to be able to

dynamically adapt these features depending on the system

state. Flexibility is another major feature as many standards are

continuously evolving to face the increase pressure of hackers.

Tamper resistance is becoming a major challenge, especially

for hardware implementations as many side-channel attacks

have been developed this last few years (e.g. timing, power and

electromagnetic analysis). The primitive should be symptom-

free so that providing any information (i.e. data leaks). Finally,

Reliability has to be considered to guarantee the functionality

of the system even in case of attacks (typically fault injection).

All these points raise several questions; What are the

performance and the security policies? What should be the

architecture of the security primitive? What are the overhead

costs to provide flexibility and reliability? What are the links

between the primitive and the system?

Answering all of these questions is a very complex task.

However, we believe that it is important to separate the flexi-

bility and the security management to provide a more reliable

solution and to reduce the penalty costs of the security. Thus,

a security primitive should be composed of a datapath and a

hierarchy of controllers (flexibility and security controllers).

The performance policy should be handle by one controller

and should cope with various constraints to define when re-

configuring the datapath. Typical performance policies should

be based on best effort and guaranteed throughput approaches.

The security policy is more complex and must be defined

through a defense-in-depth approach [14]. Depending on the

attack several scenarios should to be considered as discarding

some data or providing more secure architectures. In the

following sections a detailed presentation of our approach is

provided which stresses the role of each module within the

primitive. Then, the result section will highlight the overhead

costs to guarantee the flexibility of the system.

B. General overview of our primitive

The reconfigurable security primitive can be seen an agile

hardware accelerator which performs a security algorithm (e.g.

cryptography, IP filtering, key management). An embedded

system generally embeds several security primitives that can

evolve during its lifetime (flexibility gap). Figure 1 highlights

the links between the reconfigurable security primitives and

the other modules within the embedded system. A Security

Primitive Controller (SPC) is connected to the datapath in

order to manage its flexibility. The SPC control tasks are

related to reconfiguration of the datapath to change or adapt

its architecture. The SPC is connected to the system processor

in order to define the configuration of the security primitive.

For example, in the case of cryptography it corresponds to

Init

Config. run

stop

Security

��������	
�
��
�����
����������
�
��

��������
���������
�����

��
�����
����������	

�
��������
�	�
�	
����
������	

��
�����
����������	
�
��������
�	
�
�	��������

��������
���������
����������

�������
��������	
���������

Fig. 3. The Security Primitive Controller FSM deals with the different states
of the primitive to dynamically adapt the architecture of the primitive

the parameters of the algorithm (i.e. key size, mode and key

value). A System Security Controller (SSC) is also connected

to each security primitive to monitor the primitive and to check

the system state to detect if some faults injection or abnormal

operations are performed. The role of the SSC is to detect

attacks against the system. The SSCs are connected to sensors

to analyze the different parts of the system (e.g. battery, buses,

other security primitives, communication channel).

C. Detailed architecture of the primitive

The reconfigurable security primitive is composed of the

datapath and the two previous controllers (SPC and SSC)

as shown in figure 2. The SPC is connected to the sys-

tem processor through a memory mapped mechanism (i.e.

hardware accelerator). Depending on the primitive, different

configuration registers are used to define its configuration.

These registers provide the algorithm (i.e. execution mode

and key size for cryptography algorithm) and architecture

parameters (i.e. throughput, area and reliability). As stated

before, the SPC manages the flexibility of the primitive. When

the processor needs a security primitive it first configures the

SPC which starts to check what execution modes can be used.

To define the algorithm and architecture parameters the SPC

polls via the SSC the current state of the system. For example,

battery level and communication channel quality sensors can

be considered to define this state. Based on this information

the SPC defines what type of parameters can be selected and

provides these values to the processor.

Then, the processor selects the right parameters depending

on its constraints and writes them into the configuration regis-

ters to control the SPC. The SPC performs the configuration of

the datapath so that the primitive can be used. Once configured

the datapath is independent and the SPC does not manage

its I/Os. Such a solution allows the primitive to provide

high performance. While the data are computed through the

datapath, the SPC continues to poll via the SSC the state of

the system to check if the mode of the security primitive needs

State name Action

Init. The SPC asks to the SSC the information related to the system state (i.e. battery level and communication
channel quality) in order to define what implementations can be performed within the primitive. Once the
algorithm and architecture parameters are checked, the SPC provides this information to the processor
core.

Config. The processor core has selected the algorithm parameters so that the security primitive can be configured.
The SPC selects the corresponding configuration data and starts the configuration of the datapath.

Run The security primitive is ready to run and handle the data. While the datapath is running, the SPC
regularly checks the system state through the SSC to define if the primitive needs to be reconfigured.

Stop Once the data have been computed, the security primitive can be stopped or can be removed from the
reconfigurable hardware. If the security primitive remains within the reconfigurable hardware this state
corresponds to an idle state before running again the primitive.

Security This state is particular in the sense it is always active. The security state is driven by the SSC to indicate
that a reconfiguration must be done in order to fend off or to anticipate an attack against the primitive.
Whatever the state of the SPC, the security state enforces to activate the configuration state to reconfigure
the security primitive with the appropriate parameters.

TABLE I

STATES DESCRIPTION OF THE SECURITY PRIMITIVE CONTROLLER FSM

to be changed (the aim is to change the mode if for example

the battery is running low and the functionality is still to be

available). If so, it computes the new architecture parameters

and performs a reconfiguration of the datapath depending on

the performance policy associated with the security primitive

(i.e. best effort, guaranteed throughput). An interrupt to the

processor is also generated to indicate that new architecture

parameters have been implemented. Figure 3 presents the

FSM corresponding to the SPC and Table I details each state.

D. Protection against attacks

Two main scenarios have been considered in our work to

protect the system from being pirated and to guarantee the

execution of the security protections. The first one is managed

by the SSC and the second one by the SPC. The SSC can

interrupt the SPC if an irregular activity is detected within

the module or the system. In that case the SSC indicates to

the SPC what configuration has to be implemented. Example

of attacks are hijacking, denial-of-service (e.g. draining of

battery or causing battery to overheat) and extraction of secret

information (e.g. user’s phone book). In case of hijacking

attack the security primitive needs to be reconfigured with

a secure configuration. In case of denial-of-service attack the

primitive needs to be enhanced by fault tolerance mechanisms

to be able to guarantee its functionality and in case of

extraction of secret information attack, I/Os of the primitive

need to be stalled.

Once the attack has been fended off the SPC defines a new

configuration to provide the best performance tradeoff, for

example in term of throughput versus energy when dealing

with cryptography. Protected modes like fault tolerant archi-

tecture consume more area and power so it is essential to

run these modes only when required and not by default to

guarantee the power efficiency of the system. The security is

also provided through the SPC since it continuously checks

the state of the system to guaranty the best performance for

the security primitive. Mobile devices are characterized by

two main parameters, the power limitation and the evolving

environment which leads to various level of quality of the

communication channels. Hence, depending on both the SPC

selects which parameters have to be considered. For example,

in case of a best effort performance policy, when the level of

battery is low or the channel quality decreases under some

thresholds then the SPC reconfigures the module with a lower

throughput but a better energy-efficient architecture. In case

of guaranteed throughput, the SPC keeps the same parameters

event if the thresholds are crossed.

The performance and security policies are essential to take

benefit of the reconfigurability of the system and to provide

efficient solutions. These policies are very dependent of the

primitive and have to cope with its intrinsic specificities. In

this study, we have defined very simple policies as the goal

was mainly to demonstrate the advantages of such a solution

instead of focusing on new policy algorithms. However, for

interested readers, there are several papers that have been

published about performance policy [15][16].

IV. AES RECONFIGURABLE SECURITY PRIMITIVE CASE

STUDY

To illustrate the reconfigurable security primitive described

in this paper an implementation of the AES algorithm is

proposed in the following sections [17]. The AES algorithm

as been selected for that study since it is expected to be

one of the major cryptography algorithm in the future. Our

implementation has been performed on a Xilinx FPGA Virtex-

II Pro device (xc2vp30-5ff896) [18]. Figure 4 presents the

reconfigurable security primitive architecture and the links be-

tween the processor and the memory that contains the different

bitstreams (each bitstream corresponds to a configuration). The

two registers within the SPC contain respectively the algorithm

and architecture parameters. In our case the algorithm para-

meters are related to the type of algorithm (i.e. AES), to the

execution mode of the primitive (i.e. feedback, non-feedback)

and to the key and data sizes. The architecture parameters

are focusing on the reliability (i.e. no, fault detection, fault

tolerance), on the throughput, the area (use rate of the device)

and the energy consumption.

��������������
�	
�

��������
��������

��������
������

������ ���������

�������������

�	
�����

������ ���������

�
��
�
�
�

��
�
�

�
��
�
�
�

��
�
�

!�
�
�
�
"

#

$
�
�
�
�
"

#

�
�

�
�
�
�

�
�
�
�

�%�"

%�"
#

�
�
�
��

������	
�����

�����������
�������
������	

�������

��������

��&

!%��

'
	

�
�
�

Fig. 4. Implementation of the AES reconfigurable security primitive within the Xilinx Virtex-II Pro device

The next section provides a comparison between several im-

plementations of the AES datapath to define the performance

and the costs of security. Then, the last section discusses the

efficiency of the whole AES security primitive.

A. AES datapath implementations comparison

Four different datapaths have been considered to demon-

strate the flexibility provided within the primitive, feedback

mode (FB), non-feedback mode (N FB), feedback mode with

fault detection (FB FD), and feedback mode with fault tol-

erance (FB FT). For that study we have considered a 128-

bit key. Feedback solutions provide throughput on average

hundreds of Mbits/s whereas the non-feedback solution is

around the Gbits/s. Fault detection mechanisms enable the

system to detect if a fault occurs during the computation

of the AES algorithm but without correcting the result. In

our case we have used a parity-based technique to detect

the fault [19]. Fault tolerance mechanisms provide a tamper

resistant architecture. We have considered a TMR technique

as it provides an efficient solution [20].

For that study, we have used the Xilinx ISE Foundation 6.3i

tool to implement the different datapaths. Power estimations

have been performed using the Xilinx XPower 6.3i tool. As

shown in table II, each solution corresponds to different levels

of performance in terms of area, throughput and power. The

highest throughput (3151.1 Mbits/s) is obtained with the non-

feedback mode as all rounds are computed in parallel and

pipelined but the area and the energy for this mode are also

the highest ones (respectively 13689 slices and 1724 mW).

Depending on the state of the system, lower throughput or

higher reliability have to be considered. Fault tolerance solu-

tion is the most secure one but the area and energy overheads

are very high (respectively 6302 slices and 1673 mW). Fault

detection using parity code does not lead to a significant

difference in area and power consumption, respectively +2.1%

of slices and -2.7% of power consumption compared to a non

secured implementation of AES in feedback mode. For the

three feedback mode implementations the throughput is almost

equivalent.

Another metric is interesting to compare these implemen-

tations, the energy efficiency which represents the throughput

per energy (Gbits/J). The non-feedback solution is the most

efficient solution but its main drawback is related to its lack

of reliability, a fault injection could compromise the whole

system. Feedback with and without fault detection provide

the same efficiency. Fault tolerance guarantees the security

of the primitive but has a high overhead in energy efficiency.

Thus, fault detection is a good compromise to guarantee the

performance and to increase the security of the primitive and

could be considered as an implementation by default.

Figure 5 allows the comparison of the energy efficiency

between FPGA, ASIC and processor. ASIC implementation

is the best in term of performance (2 decades better in term

of Gbits/J compared to the fault detection implementation).

But ASIC does not provide any flexibility (flexibility gap).

The implementation has to be always secured or never, there

is no tradeoff. Processor implementations provide flexibility

but their performances are poor compared to an FPGA imple-

mentation (processing gap). Hence, FPGA implementation is

the best compromise in terms of performance and flexibility.

Furthermore, depending on the security policy several imple-

mentations can be considered and dynamically reconfigured.

AES Slices Period Frequency Power Energy Throughput Energy efficiency
version (% of the (% compared (ns) (MHz) (mW) (% compared (nJ) (Mbits/s) (% compared (Gbits/J)

total amount) to FB) to FB) to FB)

FB 2192 - 26.4 37.8 996 - 316 403.7 - 0.4
(16%)

FB FD 2240 +2.1 25.3 39.4 970 -2.7 295 420.9 +4 0.4
(16%)

FB FT 6302 +65.2 25.2 39.6 1673 +40.5 507 422.2 +4.4 0.25
(46%)

N FB 13689 +83.9 40.6 24.6 1724 +42.2 70 3151.1 +87.7 1.8
(99%)

TABLE II

PERFORMANCE COMPARISON OF THE FOUR AES CONFIGURATION (I.E. DATAPATH). EACH CONFIGURATION CORRESPONDS TO A SPECIFIC TRADEOFF

BETWEEN THE SECURITY LEVEL AND THE PERFORMANCE

����

����

����

����

����

����

���

���

���

�	�
�������
����

�������������

�����

���� !�"

�������������

�����

���� !�"
�!#$��

��������

�������������

�����
���� !�"

�!#$��

��$��!���

�������������

�����

%������� !�"

&!����'��(��

�))�� $*�����

�������#����

�

�'!��

+!,!

-�,��#!$��!�.��

�'!��

�/! �)�'���0�#$�

����

����

��	
���	�

Fig. 5. Energy efficiency comparison of ASIC, FPGA and processor implementations of the AES algorithm. ASIC and processor figures are obtained from
[13]

���������	
���
���
���������

���������	
���
��������������
�

���������	
���
���������
�������

������

���

���

Fig. 6. Layout of the three configurations of the AES reconfigurable security primitive. Three modules are defined which are the datapath, the SPC and the
SSC

B. AES reconfigurable security primitive efficiency

The three previous feedback implementations (FB, FB FD,

FB FT) have been considered for the definition of the whole

AES security primitive. The non-feedback solution consumes

to many slices (99% of our device) to manage its integration

within our architecture and to allow dynamic reconfiguration.

We have defined three reconfigurable modules which are the

datapath, the SPC and the SSC. An area constraint has been

associated to each module as shown in figure 6. In this

experiment we have considered a single primitive but there

is no limitation concerning that point. The communications

between the modules has been performed through 3 bus macro

which are pre-defined Xilinx hard IPs. One bus macro is

used to provide the fault signal between the datapath and

the SSC. The two others are used between the datapath and

the SPC and correspond to control signals (e.g. start, reset,

done). The reconfiguration is performed by the SPC through

the ICAP interface which allows the dynamic and partial auto-

reconfiguration of the FPGA. The reconfiguration is dynamic

since it is performed while the system is running which is

mandatory to react to an attack or to adapt the computation

based on the performance policy. It is partial since only the

datapath is changed and it corresponds to auto-reconfiguration

since the SPC reconfigures its associated datapath. Figure 6

shows the three possible configurations. As we can see, the

area overhead for the fault tolerant implementation is high

compared to the two other solutions. The SPC and SSC

modules are very small and remain constant for the three

configurations. Their complexity is small compared to the

datapath so that they represent a negligible area overhead.

For this study we have considered very simple performance

and security policies which are basically based on a threshold

crossing or on an attack or a fault detection. For real embedded

systems, these policies might use more advanced techniques.

However, the overhead costs should remain small compared

to the datapath.

Concerning the performance of such a solution, the recon-

figuration time is directly related to the size of the bitstream.

The full bitstream which is used at power up represents 1415

kB and the three partial bitstreams for the FB, FB FD, FB FT

configurations are respectively equal to 356 kB, 356 kB and

463 kB. In our case the clock of the ICAP interface is 50

MHz which leads to an average reconfiguration time around

8 ms. Each time a reconfiguration is performed there is also

an overhead cost in term of power. However, this overhead is

negligible for the FPGA power core and represents an increase

of around 6% for the FPGA power supply [21].

The results presented in both previous sections show the

benefit of using reconfigurable technologies to increase the

reliability, the performance and the flexibility of security

primitives. Dynamic reconfiguration allows the system to adapt

its behavior depending on its state and on the environment

state. Such a solution is very promising to provide more secure

embedded systems.

V. CONCLUSION

We have presented a reconfigurable security primitive that

leverages the security of embedded systems. The main con-

cepts that drive the definition of this architecture is to use

reconfigurable hardware to provide various levels of protec-

tion and performances. Such a solution mitigates the design

challenges for security and is to our knowledge an original

work that enables targeting both security standards and attacks

on the system. Results on the AES algorithm demonstrate

that the flexibility of our solution enables the definition of

an energy-efficient solution while guaranteeing the security.

Future work includes the precise definition of sensors to detect

attacks. This point is important as low complexity solutions

have to be defined not to increase prohibitively the global cost

of the system. Solutions based on signatures seem promising

and will be investigated. Performance and security policies are

also major issues and will be addressed within this research

project.

REFERENCES

[1] S. Ravi, A. Raghunathan, P. Kocher, and S. Hattangady, ”Security in

Embedded Systems: Design Challenges”, ACM Transactions on Embedded
Computing Systems, Vol. 3, No. 3, August 2004, Pages 461-491

[2] S. Ravi, A. Raghunathan, and S. Chakradhar, ”Tamper Resistance Mech-

nisms for Secure Embedded Systems”, IEEE International Conference on
VLSI Design, January 2004

[3] D. Dagon, T. Martin, and T. Staner, ”Mobile Phones as Computing

Devices: The Viruses are Coming!”, IEEE Pervasive Computing, October-
December 2004

[4] T. Martin, M. Hsiao, D. Ha, and J. Krishnaswami, ”Denial-of-Service

Attacks on Battery-powered Mobile Computers”, Proceedings of the 2nd
IEEE Pervasive Computing Conference, Orlando, Florida, March 2004, pp.
309-318.

[5] ePaynews - eCommerce Statistics,
http://www.epaynews.com/statistics/index.html

[6] P. Kocher, R. Lee, G. McGraw, A. Raghunathan, and S. Ravi, ”Security

as a New Dimension in Embedded System Design”, ACM/IEEE Design
Automation Conference, June 2004

[7] A. Elbirt, W. Yip, B. Chetwynd, and C. Paar, ”An FPGA-based perfor-

mance evaluation of the AES block cipher candidate algorithm finalists”

IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
volume 9, issue 4 (August 2001), pp. 545-557

[8] T. Wollinger and C. Paar, ”Security aspects of FPGAs in cryptographic

applications”, Chapter in ”New Algorithms, Architectures, and Applica-
tions for Reconfigurable Computing”, editors Wolfgang Rosenstiel and
Patrick Lysaght, Kluwer, 2004

[9] A. Dandalis and V.K. Prasanna, ”An Adaptive Cryptography Engine for
Internet Protocol Security Architectures” ACM Transactions on Design
Automation of Electronic Systems (TODAES), Vol. 9, N 3, July 2004,
Pages 333-353

[10] Gogniat G., Burleson W., and Bossuet L., ”Configurable computing
for high-security/high-performance ambient systems” accepted for the
Embedded Computer Systems: Architectures, MOdeling, and Simulation
Conference, Samos, Greece, July 18-20, 2005

[11] A. Hodjat and I. Verbauwhede, ”High-Throughput Programmable Cryp-

tocoprocessor”, IEEE Micro, May-june 2004, pp. 34-45

[12] D. Oliva, R. Buchty, and N. Heintze, ”AES and the Cryptonite Crypt

Processor”, In proceedings of CASES 2003, Oct-Nov 2003, San Jos,
California USA

[13] P. Schaumont and I. Verbauwhede, ”Domain-Specific Codesign for

Embedded Security”, IEEE Computer, April 2003

[14] J. M. Wing, ”Beyond the Horizon: A Call to Arms”, IEEE Security and
Privacy. November/December 2003, pp. 62-67.

[15] H.Van Antwerpen, N.Dutt, R.Gupta, S.Mohapatra, C.Pereira,
N.Venkatasubramanian, and R.Von Vignau, ”Energy-aware system

design for wireless multimedia” IEEE DATE, Paris, France, Feb. 2004.

[16] J.L.Wong, G.Qu, and M.Potkonjak, An on-line approach for power

minimization in qos sensitive systems” in IEEE ASP-DAC, 2003.
[17] J. Daemen and V. Rijmen, ”The Design of Rijndael AES-The Advanced

Encryption Standard” Springer-Verlag 2002
[18] www.xilinx.com
[19] K. Wu, R. Karri, G. Kuznetsov, and M. Goessel, ”Parity Based Concur-

rent Error Detection for the Advanced Encryption Standard”, International
Test Conference 2004 (ITC), 2004, Charlotte

[20] C. Carmichael, ”Triple Module Redundancy Design Techniques for

Virtex FPGAs” Xilinx Application Note 197 (XAPP197) November 1,
2001

[21] J. Becker, M. Huebner, and M. Ullmann, ”Power Estimation and Power

Mesurement of Xilinx Virtex FPGAs: Trade-offs and Limitations, IEEE
Symposium on Intregated Circuits and System Design, September 2003

