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Abstract 

We propose in this paper an original design space exploration 
method for reconfigurable architectures adapted to fine and 
coarse grain resources. The exploration flow deals with 
communication hierarchical distribution and processing 
resources use rate for the architecture under exploration. With 
this information, designer can explore the architectural design 
space to define a power-efficient architecture. Exploration 
results for image computing and cryptography applications are 
provided to demonstrate the efficiency of the method. 

1.  Introduction 
Today new applications like software radio or security systems 
require more and more flexibility. Execution platforms must 
provide this flexibility and meet with application performances 
(speed, power consumption, throughput...). Reconfigurable 
computing is an efficient solution to this problem as it offers 
flexible and powerful solutions [1]. However, reconfigurable 
design space is increasing rapidly thus it becomes mandatory to 
provide designer new tools to fill the gap between application 
and reconfigurable architecture. 
This paper targets this issue and is organized as follows. 
Section 2 presents our work contribution and related work. 
Section 3 presents the design space exploration method. 
Section 4 provides exploration results for image computing and 
cryptography applications; this section also details the 
exploration steps to illustrate the whole approach. Finally, 
section 5 concludes the paper. 

2.  Contribution and related work 
Actually, several approaches have been proposed to perform 
design space exploration for reconfigurable architectures. 
Characterization metrics can be used to compare physical 
architectures [2]. Nevertheless, with such approach, application 
characteristics are not taken into account despite their strong 
impact on final performances. Estimation tool using pre-
characterization of the architecture corresponds to another 
solution. If so, designer can only explore a small design space 
according to pre-characterization library size. With such 
approach, algorithmic [3] or logical architecture exploration [4] 

can be performed. However, these methods are too 
technological-dependent and, deal with low level of abstraction 
(furthermore only FPGAs are targeted to be able to perform 
pre-characterization). To increase design space while 
considering FPGAs, designer can use generic place and route 
tools like [5]. Nevertheless, these tools are not adapted for high 
level exploration since they are technological and target 
dependent. For coarse grain architectures, only a small number 
of design space exploration tools for specific architectures like 
[6] have been developed. However, these tools are too specific 
as only a small design space around the target architecture can 
be explored. 
Clearly, all existing methods are too specialized, too 
technological-dependent or too architecture-dependent. 
Exploration of large design space dealing with fine grain, 
coarse grain or heterogeneous architectures is not supported.  
In this paper, we propose a design space exploration method 
based on communications distribution within the 
reconfigurable architecture which leads to define power-
efficient architecture under a time constraint and, in synergy 
with application or application domain. This work permits to 
consider fine grain, coarse grain and heterogeneous architecture 
for a same application. Thus, designer can explore a large 
domain in the reconfigurable design space. An important 
characteristic of the exploration method is to consider a high 
level of abstraction for both application and architecture in 
order to be performed during the first steps of the design flow. 
In spite of relative estimation accuracy, it is possible to 
compare numerous architectures quickly.  

3.  Design Space Exploration Method 
In order to develop design space exploration method it is 
necessary to emphasize some criteria to efficiently compare 
physical architectures for a same application. The first criterion 
we consider is time constraint since the inputs of the 
exploration flow are a specific RTL architecture and a number 
of cycles to run the application onto it. Power consumption 
corresponds to the second criterion since for embedded 
applications it corresponds to a major metric. According to 
numerous studies [7-8], it appears that given an application and 
a time constraint, physical reconfigurable architectures that 
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emphasize clustering of application resources lead to better 
solutions in term of power consumption.  
To deal with these two criteria, application and architecture 
specifications must respectively emphasize communications 
between the resources required by the application and spatial 
locality of resources within the architecture (from the routing 
point of view). In our case the application specification is the C 
language which is translated into a dedicated graph called 
Average Communication Graph (ACG) [9]. This graph exhibits 
how each type of processing and memory resources 
communicate within the application for a specific RTL 
architecture. The reconfigurable architecture model uses a 
hierarchical view of the architecture in order to highlight 
resources spatial locality; it is based on two types of element 
[9]: 1) hierarchical elements are used to model the architecture 
hierarchy. They are containers; they contain other hierarchical 
elements or functional elements and, 2) functional elements 
describe the computing and memory resources. They are 
described by the list of functions they can realize.  
The exploration flow considers two important hypotheses 
concerning the communication costs within the hierarchical 
elements to take into account routing cost without explicitly 
dealing with an accurate physical description of the routing 
resources within the architecture model. These hypotheses are: 
1) communication cost inside a hierarchical element is 
homogeneous and, 2) communications are less power 
consuming in the lowest levels than in the highest levels of the 
hierarchy. Hence the exploration flow aims to promote 
communications within the lowest levels of the architecture 
hierarchy in order to provide power-efficient solution while 
meeting with time constraint. 

The exploration flow starts with the ACG study as shown in 
figure 1. This study provides information related to the number 
and type of communications within the application. Designer 
uses this information to build the architecture lowest level 
hierarchical elements. The main issue during that step is to 
define the granularity and the type of resources of the different 
functional elements within the lowest hierarchical elements. To 
define the right parameters designer models the resources and 
runs the performance estimation tool within the exploration 
flow [9]. This step is repeated until an efficient solution is build 
(an efficient solution corresponds to a high rate of 
communications inside the lowest level hierarchical elements). 
Then designer refines his architecture model to define the size 
of each lowest hierarchical element in order to promote spatial 
locality of communications. The size is defined by the number 
of resources embedded inside the hierarchical element. As 
previously, once the architecture is defined the designer runs 
the performance estimation tool to compute the 
communications ratio within the lowest hierarchical elements. 
These two steps leads to the definition of the memory size and 
the type/number of each functional element embedded in the 
lowest hierarchical elements. To fully explore the architecture, 
hierarchy within the architecture has to be defined. The goal is 
to define how many levels of hierarchy are considered and how 
many elements are embedded in each hierarchical level (current 
version of the tool is limited to three levels). To perform this 
exploration step, designer refines his architecture model by 
defining the hierarchy within the architecture and runs the 
performance estimation tool. The results provided by the 
performance estimation tool are the communication rates 
within each hierarchical element and the use rates of the 
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Figure 1: Design space exploration flow. 
Inputs of the flow are the Average 
Communication Graph and the Architecture 
Model. The exploration flow leads to the 
definition of a power-efficient reconfigurable 
architecture 



 3

processing resources within the architecture. Based on these 
results, the designer can compare different architectures and 
select the best one in term of power-efficiency. Once an 
architecture has been defined, the designer can go through classical 
design flow to build his architecture. 

4.  Applications 
Four applications are considered to illustrate the exploration 
flow and to demonstrate its ability to guide designer toward the 
definition of power-efficient reconfigurable architecture. ICAM 
(motion estimation), Matching Pursuit decoder (image 
compression), MPEG-2 encoder (video compression) and AES 
core (encryption) are considered. Table I gives the inputs of the 
exploration flow for each application. Results provided in 
Table I are obtained using Design Trotter framework [10] and 
correspond to the characteristics of each selected RTL 
architecture. Table I gathers the number of communications 
within the application, the number of cycles to run the 
application and the numbers and types of processing/memory 
resources. Table II gives the results of the ACG study for the 
four applications. This study provides the percentage of 
communications in the RTL architecture between: 1) Coarse 
grain resources (inter coarse grain), 2) Coarse grain and fine 
grain resources (coarse/fine grain), 3) Coarse grain and memory 
resources (coarse grain/memory), 4) Fine grain resources (fine 
grain), 5) Fine grain and memory resources (fine grain/memory) 
and, 6) memory resources (memory). 
These results enable to define the lowest level hierarchical 

elements (also called clusters) and particularly to define 
whether it is required to mix fine grain and coarse grain 
resources. 
Results provided in table II highlight that it is interesting to 
separate fine grain and coarse grain clusters for the three first 
applications since communications between both grains 
represent less than 1% of the total amount of communications. 
However, for the AES core nearly 16% of the communications 
correspond to data exchange between coarse grain and fine 
grain resources and there is no inter-grain communications, 
thus for the AES core it is interesting to mix both grains. 
According to these results we define four clusters that will be 
used to build the final architectures which are: 1) Cluster 1 
(coarse grain cluster) has two coarse grain resources, 
adder/subtracter and multiplier, and one memory resource, 2) 
Cluster 2 (fine grain cluster) has two fine grain resources, 
comparator and look-up table, and one memory resource, 3) 
Cluster 3 (memory cluster) only has one large memory resource 
and, 4) Cluster 4 (heterogeneous cluster) has four processing 
resources, adder/subtracter, multiplier, comparator and look-up 
table, and one memory resource. 
Table III gives the number and the type of resources embedded 
within each cluster and for each application. According to ACG 
study, cluster 4 is only used for the cryptographic application. 
Image computing applications use the three other clusters. 
Table III and table IV must be considered concurrently to 
understand the whole architecture particularly the hierarchical 
levels. Table IV gives the number of clusters within the whole 

TABLE I – INPUTS OF THE DESIGN SPACE EXPLORATION FLOW 
Application Comm Cycles Add/Sub Mul/Div Comp Logic Memory 

ICAM 29.086.8 373.872.3 512 125 516 328 3,1Mbytes 
MPEG-2 encoder 40.745.3 45.476.0 398 279 153 33 60Kbytes 

Matching Pursuit decoder 3.751.4 239.2 232 162 69 0 6,3Mbytes 
AES core 1120 471 11 16 16 15 1Kbytes 

TABLE II - ACG COMMUNICATIONS CHARACTERIZATION 
Communications repartition between  Application 

Coarse grain Coarse/fin grain Coarse grain/memory Fine grain Fine grain/memory memory 
ICAM 2,9% 0,2% 15,0% 19,9% 36,9% 25,1% 

MPEG-2 encoder 66,9% 0,7% 31,1% 1,1% 0,2% - 
Matching Pursuit decoder 92,3% 0,1% 7.6% - - - 

AES core - 15,7% 28,9% - 25,0% 30,4% 

TABLE III – PROCESSING FUNCTIONAL ELEMENTS EMBEDDED IN THE LOWEST HIERARCHICAL LEVEL ELEMENT 
Application ADD/SUD 

luster 1 
MUL 

cluster 1 
COMP 

cluster 2 
LUT 

cluster 2 
ADD/SUD 
cluster 4 

MUL 
cluster 4 

COMP 
cluster 4 

LUT 
cluster 4 

ICAM 20 10 21 13 - - - - 
MPEG-2 encoder 4 4 2 1 - - - - 

Matching Pursuit decoder 8 6 3 0 - - - - 
AES core - - - - 1 1 1 1 

TABLE IV – NUMBER OF LOWEST HIERARCHICAL LEVEL CLUSTER 
Number of clusters in the whole architecture Number of clusters within each middle level 

hierarchical element Application 
cluster 1 cluster 2 cluster 3 cluster 4 cluster 1 cluster 2 cluster 3 cluster 4 

Number of middle level 
hierarchical elements within 
the highest level hierarchical 

element 
ICAM 26 26 26 0 2 2 2 0 13 

MPEG-2 encoder 105 105 0 0 7 7 0 0 15 
Matching Pursuit decoder 30 25 5 0 6 5 1 0 5 

AES core 0 0 0 16 0 0 0 4 4 

TABLE V – USE RATE ESTIMATION OF EACH PROCESSING FUNCTIONAL ELEMENT TYPE 
Application Use rate Communication hierarchical distribution 

 ADD/SUB MUL COMP LUT High level Middle level Low level 
ICAM 98,5 % 48,0 % 94,5 % 97,0 % 13 % 30 % 57 % 

MPEG-2 encoder 67,0 % 70,0 % 13,0 % 2,0 % 29 % 8 % 63 % 
Matching Pursuit decoder 97,0 % 90,0 % 92,0 % - 31 % 32 % 37 % 

AES core 63,8 % 100 % 100 % 93,8 % 21 % 10 % 69 % 
AES core  architecture TI - - - - 36 % 14 % 50 % 
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architecture and details the repartition between the three 
hierarchical levels. As ICAM and MPEG-2 applications are the 
most complex ones they require more and larger clusters than 
the two other applications. AES application is less complex, so 
the cluster used for this application is smaller. 
During the exploration flow, once the types and numbers of 
clusters are defined, the exploration of the hierarchical middle 
and highest levels is performed. The middle-level embeds 
hierarchical elements like cluster 1, cluster 2, cluster 3 and 
cluster 4 depending on the application characteristics. The 
number of clusters within the middle level for each application 
is given in table IV which provides also the number of middle 
level hierarchical elements embedded in the highest level 
hierarchical element. 
Table V gives the use rate estimation of each type of processing 
resources for each application. An efficient architecture leads 
to the highest use rate for each resource since unused resources 
reduce the power efficiency, particularly for coarse grain 
processing resources. Furthermore an efficient architecture 
leads to the highest communication rate within the lowest level 
hierarchical elements. However, during the exploration flow 
there is often a tradeoff between use rate and communication 
distribution. For example, we have defined a high use rate for 
Matching Pursuit (table V) and a low use rate for MPEG-2 
decoder (table V). However, the number of communications 
estimated in the lowest levels is higher for MPEG-2 decoder 
than for Matching Pursuit. Moreover, the number of 
communications estimated in the highest level is lower for 
MPEG-2 decoder than for Matching Pursuit. So, the 
communication hierarchical distribution is better for the 
MPEG-2 decoder than for the Matching Pursuit, but this is not 
the case for the use rate. Hence, there is generally a tradeoff 
between use rate and communication distribution, the solution 
depends on the underlying technological process. The AES 
application uses another type of architecture compared to the 
previous ones since it has only one type of lowest level clusters 
containing fine grain and coarse processing functional element 
(heterogeneous cluster). Exploration result for the 
communication distribution is very good since 69% of the 
communications are inside the architectural lowest levels and 
only 21 % inside the highest level. The last row in table V 
considers the architecture defined for image processing 
applications to perform AES core; as we can notice it results in 
a degradation of the performances. Therefore as expected the 
exploration flow leads to the definition of power-efficient 
architecture depending on the application; it promotes the 
synergy between application and architecture and decreases the 
gap between both to reduce the design cycle.   

5.  Conclusion 
We propose an original exploration flow based on a high level 

representation for both application and architecture which deals 
with fine grain, coarse grain and heterogeneous architectures. 
Two metrics have been defined to promote the definition of 
power-efficient architecture; the architectural processing use 
rate and the communication hierarchical distribution. First 
results highlight that power-efficiency requires application 
domain specific reconfigurable architectures.  
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