
HAL Id: hal-00089409
https://hal.science/hal-00089409

Submitted on 18 Aug 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Generic Design Space Exploration for Reconfigurable
Architectures

Lilian Bossuet, Guy Gogniat, Jean Luc Philippe

To cite this version:
Lilian Bossuet, Guy Gogniat, Jean Luc Philippe. Generic Design Space Exploration for Reconfigurable
Architectures. 2005, 4 p. �hal-00089409�

https://hal.science/hal-00089409
https://hal.archives-ouvertes.fr

 1

Generic Design Space Exploration for Reconfigurable Architectures

Lilian Bossuet, Guy Gogniat, Jean-Luc Philippe,

LESTER Lab
Université de Bretagne Sud, Lorient, France

{lilian.bossuet, guy.gogniat, jean-luc.philippe}@univ-ubs.fr

Abstract

We propose in this paper an original design space exploration
method for reconfigurable architectures adapted to fine and
coarse grain resources. The exploration flow deals with
communication hierarchical distribution and processing
resources use rate for the architecture under exploration. With
this information, designer can explore the architectural design
space to define a power-efficient architecture. Exploration
results for image computing and cryptography applications are
provided to demonstrate the efficiency of the method.

1. Introduction
Today new applications like software radio or security systems
require more and more flexibility. Execution platforms must
provide this flexibility and meet with application performances
(speed, power consumption, throughput...). Reconfigurable
computing is an efficient solution to this problem as it offers
flexible and powerful solutions [1]. However, reconfigurable
design space is increasing rapidly thus it becomes mandatory to
provide designer new tools to fill the gap between application
and reconfigurable architecture.
This paper targets this issue and is organized as follows.
Section 2 presents our work contribution and related work.
Section 3 presents the design space exploration method.
Section 4 provides exploration results for image computing and
cryptography applications; this section also details the
exploration steps to illustrate the whole approach. Finally,
section 5 concludes the paper.

2. Contribution and related work
Actually, several approaches have been proposed to perform
design space exploration for reconfigurable architectures.
Characterization metrics can be used to compare physical
architectures [2]. Nevertheless, with such approach, application
characteristics are not taken into account despite their strong
impact on final performances. Estimation tool using pre-
characterization of the architecture corresponds to another
solution. If so, designer can only explore a small design space
according to pre-characterization library size. With such
approach, algorithmic [3] or logical architecture exploration [4]

can be performed. However, these methods are too
technological-dependent and, deal with low level of abstraction
(furthermore only FPGAs are targeted to be able to perform
pre-characterization). To increase design space while
considering FPGAs, designer can use generic place and route
tools like [5]. Nevertheless, these tools are not adapted for high
level exploration since they are technological and target
dependent. For coarse grain architectures, only a small number
of design space exploration tools for specific architectures like
[6] have been developed. However, these tools are too specific
as only a small design space around the target architecture can
be explored.
Clearly, all existing methods are too specialized, too
technological-dependent or too architecture-dependent.
Exploration of large design space dealing with fine grain,
coarse grain or heterogeneous architectures is not supported.
In this paper, we propose a design space exploration method
based on communications distribution within the
reconfigurable architecture which leads to define power-
efficient architecture under a time constraint and, in synergy
with application or application domain. This work permits to
consider fine grain, coarse grain and heterogeneous architecture
for a same application. Thus, designer can explore a large
domain in the reconfigurable design space. An important
characteristic of the exploration method is to consider a high
level of abstraction for both application and architecture in
order to be performed during the first steps of the design flow.
In spite of relative estimation accuracy, it is possible to
compare numerous architectures quickly.

3. Design Space Exploration Method
In order to develop design space exploration method it is
necessary to emphasize some criteria to efficiently compare
physical architectures for a same application. The first criterion
we consider is time constraint since the inputs of the
exploration flow are a specific RTL architecture and a number
of cycles to run the application onto it. Power consumption
corresponds to the second criterion since for embedded
applications it corresponds to a major metric. According to
numerous studies [7-8], it appears that given an application and
a time constraint, physical reconfigurable architectures that

 2

emphasize clustering of application resources lead to better
solutions in term of power consumption.
To deal with these two criteria, application and architecture
specifications must respectively emphasize communications
between the resources required by the application and spatial
locality of resources within the architecture (from the routing
point of view). In our case the application specification is the C
language which is translated into a dedicated graph called
Average Communication Graph (ACG) [9]. This graph exhibits
how each type of processing and memory resources
communicate within the application for a specific RTL
architecture. The reconfigurable architecture model uses a
hierarchical view of the architecture in order to highlight
resources spatial locality; it is based on two types of element
[9]: 1) hierarchical elements are used to model the architecture
hierarchy. They are containers; they contain other hierarchical
elements or functional elements and, 2) functional elements
describe the computing and memory resources. They are
described by the list of functions they can realize.
The exploration flow considers two important hypotheses
concerning the communication costs within the hierarchical
elements to take into account routing cost without explicitly
dealing with an accurate physical description of the routing
resources within the architecture model. These hypotheses are:
1) communication cost inside a hierarchical element is
homogeneous and, 2) communications are less power
consuming in the lowest levels than in the highest levels of the
hierarchy. Hence the exploration flow aims to promote
communications within the lowest levels of the architecture
hierarchy in order to provide power-efficient solution while
meeting with time constraint.

The exploration flow starts with the ACG study as shown in
figure 1. This study provides information related to the number
and type of communications within the application. Designer
uses this information to build the architecture lowest level
hierarchical elements. The main issue during that step is to
define the granularity and the type of resources of the different
functional elements within the lowest hierarchical elements. To
define the right parameters designer models the resources and
runs the performance estimation tool within the exploration
flow [9]. This step is repeated until an efficient solution is build
(an efficient solution corresponds to a high rate of
communications inside the lowest level hierarchical elements).
Then designer refines his architecture model to define the size
of each lowest hierarchical element in order to promote spatial
locality of communications. The size is defined by the number
of resources embedded inside the hierarchical element. As
previously, once the architecture is defined the designer runs
the performance estimation tool to compute the
communications ratio within the lowest hierarchical elements.
These two steps leads to the definition of the memory size and
the type/number of each functional element embedded in the
lowest hierarchical elements. To fully explore the architecture,
hierarchy within the architecture has to be defined. The goal is
to define how many levels of hierarchy are considered and how
many elements are embedded in each hierarchical level (current
version of the tool is limited to three levels). To perform this
exploration step, designer refines his architecture model by
defining the hierarchy within the architecture and runs the
performance estimation tool. The results provided by the
performance estimation tool are the communication rates
within each hierarchical element and the use rates of the

C code of the application

Design Trotter framework

RTL architecture
Time constraint

Algorithmic
Exploration

Parser

Average Communication
Graph

Architecture modelACG study

Exploration of the
granularity and type of

resources within the lowest
level hierarchical elements

Exploration of the size of
each lowest level

hierarchical elements

Promote high rate of
communications inside the

lowest level hierarchical
elements

Promote spatial locality of
communications within the

lowest level hierarchical
elements

Exploration of the
architecture hierarchy.

Definition of middle level
and highest level

hierarchical elements

Definition of hierarchical
elements that respect

homogeneous
communication costs within

each hierarchical level

Communication rates
within each hierarchical

element
Use rates of the

processing resources
within the architecture

Design Space
Exploration Flow

Architecture
refinement

from lowest
to highest
hierarchical

levels

(1)

+

–×

14

20

8

(2) (2)

(1)

+

–×

14

20

8

(2) (2)

Figure 1: Design space exploration flow.
Inputs of the flow are the Average
Communication Graph and the Architecture
Model. The exploration flow leads to the
definition of a power-efficient reconfigurable
architecture

 3

processing resources within the architecture. Based on these
results, the designer can compare different architectures and
select the best one in term of power-efficiency. Once an
architecture has been defined, the designer can go through classical
design flow to build his architecture.

4. Applications
Four applications are considered to illustrate the exploration
flow and to demonstrate its ability to guide designer toward the
definition of power-efficient reconfigurable architecture. ICAM
(motion estimation), Matching Pursuit decoder (image
compression), MPEG-2 encoder (video compression) and AES
core (encryption) are considered. Table I gives the inputs of the
exploration flow for each application. Results provided in
Table I are obtained using Design Trotter framework [10] and
correspond to the characteristics of each selected RTL
architecture. Table I gathers the number of communications
within the application, the number of cycles to run the
application and the numbers and types of processing/memory
resources. Table II gives the results of the ACG study for the
four applications. This study provides the percentage of
communications in the RTL architecture between: 1) Coarse
grain resources (inter coarse grain), 2) Coarse grain and fine
grain resources (coarse/fine grain), 3) Coarse grain and memory
resources (coarse grain/memory), 4) Fine grain resources (fine
grain), 5) Fine grain and memory resources (fine grain/memory)
and, 6) memory resources (memory).
These results enable to define the lowest level hierarchical

elements (also called clusters) and particularly to define
whether it is required to mix fine grain and coarse grain
resources.
Results provided in table II highlight that it is interesting to
separate fine grain and coarse grain clusters for the three first
applications since communications between both grains
represent less than 1% of the total amount of communications.
However, for the AES core nearly 16% of the communications
correspond to data exchange between coarse grain and fine
grain resources and there is no inter-grain communications,
thus for the AES core it is interesting to mix both grains.
According to these results we define four clusters that will be
used to build the final architectures which are: 1) Cluster 1
(coarse grain cluster) has two coarse grain resources,
adder/subtracter and multiplier, and one memory resource, 2)
Cluster 2 (fine grain cluster) has two fine grain resources,
comparator and look-up table, and one memory resource, 3)
Cluster 3 (memory cluster) only has one large memory resource
and, 4) Cluster 4 (heterogeneous cluster) has four processing
resources, adder/subtracter, multiplier, comparator and look-up
table, and one memory resource.
Table III gives the number and the type of resources embedded
within each cluster and for each application. According to ACG
study, cluster 4 is only used for the cryptographic application.
Image computing applications use the three other clusters.
Table III and table IV must be considered concurrently to
understand the whole architecture particularly the hierarchical
levels. Table IV gives the number of clusters within the whole

TABLE I – INPUTS OF THE DESIGN SPACE EXPLORATION FLOW
Application Comm Cycles Add/Sub Mul/Div Comp Logic Memory

ICAM 29.086.8 373.872.3 512 125 516 328 3,1Mbytes
MPEG-2 encoder 40.745.3 45.476.0 398 279 153 33 60Kbytes

Matching Pursuit decoder 3.751.4 239.2 232 162 69 0 6,3Mbytes
AES core 1120 471 11 16 16 15 1Kbytes

TABLE II - ACG COMMUNICATIONS CHARACTERIZATION
Communications repartition between Application

Coarse grain Coarse/fin grain Coarse grain/memory Fine grain Fine grain/memory memory
ICAM 2,9% 0,2% 15,0% 19,9% 36,9% 25,1%

MPEG-2 encoder 66,9% 0,7% 31,1% 1,1% 0,2% -
Matching Pursuit decoder 92,3% 0,1% 7.6% - - -

AES core - 15,7% 28,9% - 25,0% 30,4%

TABLE III – PROCESSING FUNCTIONAL ELEMENTS EMBEDDED IN THE LOWEST HIERARCHICAL LEVEL ELEMENT
Application ADD/SUD

luster 1
MUL

cluster 1
COMP

cluster 2
LUT

cluster 2
ADD/SUD
cluster 4

MUL
cluster 4

COMP
cluster 4

LUT
cluster 4

ICAM 20 10 21 13 - - - -
MPEG-2 encoder 4 4 2 1 - - - -

Matching Pursuit decoder 8 6 3 0 - - - -
AES core - - - - 1 1 1 1

TABLE IV – NUMBER OF LOWEST HIERARCHICAL LEVEL CLUSTER
Number of clusters in the whole architecture Number of clusters within each middle level

hierarchical element Application
cluster 1 cluster 2 cluster 3 cluster 4 cluster 1 cluster 2 cluster 3 cluster 4

Number of middle level
hierarchical elements within
the highest level hierarchical

element
ICAM 26 26 26 0 2 2 2 0 13

MPEG-2 encoder 105 105 0 0 7 7 0 0 15
Matching Pursuit decoder 30 25 5 0 6 5 1 0 5

AES core 0 0 0 16 0 0 0 4 4

TABLE V – USE RATE ESTIMATION OF EACH PROCESSING FUNCTIONAL ELEMENT TYPE
Application Use rate Communication hierarchical distribution

 ADD/SUB MUL COMP LUT High level Middle level Low level
ICAM 98,5 % 48,0 % 94,5 % 97,0 % 13 % 30 % 57 %

MPEG-2 encoder 67,0 % 70,0 % 13,0 % 2,0 % 29 % 8 % 63 %
Matching Pursuit decoder 97,0 % 90,0 % 92,0 % - 31 % 32 % 37 %

AES core 63,8 % 100 % 100 % 93,8 % 21 % 10 % 69 %
AES core architecture TI - - - - 36 % 14 % 50 %

 4

architecture and details the repartition between the three
hierarchical levels. As ICAM and MPEG-2 applications are the
most complex ones they require more and larger clusters than
the two other applications. AES application is less complex, so
the cluster used for this application is smaller.
During the exploration flow, once the types and numbers of
clusters are defined, the exploration of the hierarchical middle
and highest levels is performed. The middle-level embeds
hierarchical elements like cluster 1, cluster 2, cluster 3 and
cluster 4 depending on the application characteristics. The
number of clusters within the middle level for each application
is given in table IV which provides also the number of middle
level hierarchical elements embedded in the highest level
hierarchical element.
Table V gives the use rate estimation of each type of processing
resources for each application. An efficient architecture leads
to the highest use rate for each resource since unused resources
reduce the power efficiency, particularly for coarse grain
processing resources. Furthermore an efficient architecture
leads to the highest communication rate within the lowest level
hierarchical elements. However, during the exploration flow
there is often a tradeoff between use rate and communication
distribution. For example, we have defined a high use rate for
Matching Pursuit (table V) and a low use rate for MPEG-2
decoder (table V). However, the number of communications
estimated in the lowest levels is higher for MPEG-2 decoder
than for Matching Pursuit. Moreover, the number of
communications estimated in the highest level is lower for
MPEG-2 decoder than for Matching Pursuit. So, the
communication hierarchical distribution is better for the
MPEG-2 decoder than for the Matching Pursuit, but this is not
the case for the use rate. Hence, there is generally a tradeoff
between use rate and communication distribution, the solution
depends on the underlying technological process. The AES
application uses another type of architecture compared to the
previous ones since it has only one type of lowest level clusters
containing fine grain and coarse processing functional element
(heterogeneous cluster). Exploration result for the
communication distribution is very good since 69% of the
communications are inside the architectural lowest levels and
only 21 % inside the highest level. The last row in table V
considers the architecture defined for image processing
applications to perform AES core; as we can notice it results in
a degradation of the performances. Therefore as expected the
exploration flow leads to the definition of power-efficient
architecture depending on the application; it promotes the
synergy between application and architecture and decreases the
gap between both to reduce the design cycle.

5. Conclusion
We propose an original exploration flow based on a high level

representation for both application and architecture which deals
with fine grain, coarse grain and heterogeneous architectures.
Two metrics have been defined to promote the definition of
power-efficient architecture; the architectural processing use
rate and the communication hierarchical distribution. First
results highlight that power-efficiency requires application
domain specific reconfigurable architectures.

References
[1] N. Tredennick, B. Shimamoto. The Rise of Reconfigurable
Systems. In proceeding of Engineering of Reconfigurable
Systems and Application, ERSA’2003. June 23-26, 2003, Las
Vegas, Nevada, USA.
[2] P. Benoit, G. Sassatelli, L. Torres, D. Demigny, M. Robert,
G. Cambon. Metrics for Reconfiguration Architectures
Characterization: Remanence and Scalability. RAW03, Nice,
France, April 2003.
[3] R. Enzler, T. Jeger, D. Cottet, G. Tröster. High-Level Area
and Performance Estimation of Hardware Building Blocks on
FPGAs. In Field-Programmable Logic and Applications Forum
on Design Language, Villach, Austria, August 28 - 30, 2000.
[4] S. Bilavarn, G. Gogniat, J.L. Philippe, L. Bossuet. Fast
Prototyping of Reconfigurable Architectures From a C
Program. In IEEE International Symposium on Circuits and
Systems, ISCAS’03, Bangkok, Thailand, 25-28 May, 2003.
[5] V. Betz, J. Rose. VPR: A New Packing, Placement and
Routing Tool for FPGA Research. In International Workshop
on Field Programmable Logic and Application, FPL 97, 1997.
[6] C. A. Moritz, D. Yeung, A. Agarwal. Exploring Optimal
Cost-Performance Designs for Raw Microprocessors.
Proceedings of the International IEEE Symposium on Field
Programmable Custom Computing Machines, FCCM 98, April
1998.
[7] A. Garcia, W. Burleson, J-L. Danger. Power Modelling in
Field Programmable Gate Arrays (FPGA). In Proceeding of the
9th International Workshop on Field Programmable Logic and
Applications, FPL 1999, Glasgow, Scotland, 1999.
[8] V. George, H. Zhang, J. Rabaey. The Design of a Low
Energy FPGA. In Proc. Int. Symp. On Low Power Electronics
and Design, ISLPED 1999, pages 188-193, 1999.
[9] L. Bossuet. Exploration de l’espace de conception des
architectures reconfigurables. PhD Thesis, Université de
Bretagne Sud, September 2004.
[10] Y. Le Moullec, P. Koch, J.P. Diguet, J.L. Philippe. Design
Trotter : Building and Selecting Architectures for Embedded
Multimedia Applications. In IEEE International Symposium on
Consumer Electronics, ISCE 03, Sydney, Australia, December
3-5, 2003.

