
HAL Id: hal-00089407
https://hal.science/hal-00089407

Submitted on 18 Aug 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

IPSec Implementation Project using FPGA and
Microcontroller

Guy Gogniat, Wayne Burleson, Mike O’Malley, Lilian Bossuet

To cite this version:
Guy Gogniat, Wayne Burleson, Mike O’Malley, Lilian Bossuet. IPSec Implementation Project using
FPGA and Microcontroller. 2006, 5 p. �hal-00089407�

https://hal.science/hal-00089407
https://hal.archives-ouvertes.fr

1

Abstract—This paper describes a project that has been

performed within the University of Massachusetts, Amherst,
USA. The goal of the project was to implement a subset of the
IPSec protocol using a PIC microcontroller and an APEX FPGA.
The motivation was to enable students to deal with a large scope
of skills from network application and cryptography to assembly
and VHDL languages and to develop a prototype of their system.
Furthermore, as seven students were involved in the project an
"industrial" approach was considered through a project
manager and several teams.

In this project many different sub-systems had to
communicate with each other to achieve the final product: the
PC and the PIC through a serial connection, the PIC and the
FPGA through a bidirectional bus, and the PIC and a terminal
using a serial connection. Data was to be encrypted within IPSec
using an RC6 encryption application.

Index Terms—Network application, cryptography, hardware
software codesign, IPSec, RC6

I. INTRODUCTION
HE goal of the project was to implement on a PIC

microcontroller a subset of the IPSec protocol. IPSec is
part of the IPv6 protocol to guarantee the security of data
while traveling through the network (i.e. authentication,
privacy and integrity). In this project two entities were
communicating, a PC and a microcontroller. The PC was
sending the data to the microcontroller using a point-to-point
protocol over a serial link. Then the microcontroller processed
the datagram, checking its validity and extracting the data. In
dealing with IPSec, the data was encrypted so it was necessary
to first decrypt the data to get the original plain text.
Furthermore to speed up the decryption task, a crypto-
coprocessor was considered. To manage the project several
skills were necessary, from networking to micro-programming
and hardware design.

Generally IP is associated with TCP and well known as
TCP/IP. In this project in order to manage the complexity of
the system the TCP layer was not considered and the data was

G. Gogniat is with the LESTER Laboratory, University of South Brittany,

CNRS FRE 2734, Lorient, France (email: guy.gogniat@univ-ubs.fr)
 Wayne Burleson and Mike O'Malley are with the Department of Electrical

and Computer Engineering, University of Massachusetts, Amherst, MA 1003-
9284 USA (email: burleson@ecs.umass.edu, momalley@ecs.umass.edu)

Lilian Bossuet is with the IXL laboratory, CNRS UMR5818, ENSEIRB
Bordeaux, France (email: bossuet@ixl.fr)

provided directly after the IP layer as show in Figure 1. Thus
from the PC side, the data was encrypted using the RC6
algorithm before being encapsulated into a datagram. To
obtain the final datagram two layers were considered which
are successively the IP and the PPP layers. The physical layer
splits the datagram in order to meet serial link requirements.
From the PIC side the same steps were considered but in the
reverse order. Once the data was extracted from the datagram
it was sent to the crypto-coprocessor in order to retrieve the
plain text. The crypto-coprocessor was implemented within an
APEX FPGA and connected to the PIC bus.

The project involved seven junior year students from the
ECE department of University of Massachusetts, Amherst.
They were involved in an honor section project which was an
extension on top of 354 and 353 courses where the students
already had experience with PIC, and Altera FPGA. They had
to move from Verilog to VHDL for this project. Weekly
meetings were held in order to discuss the achievements and
the difficulties of the project (the project proceeded over eight
weeks with final report and demonstration at the end). The
goal of the project was to enable students to gather within a
same study many skills. From the application side there were
security and network considerations, from the architecture
side there was HW/SW codesign as the design was split
between a PC, a microcontroller and an FPGA. From the
programming point of view the students had to deal with C,
ASM and VHDL languages. And finally from the prototyping
side they had to extend a prototyping board to implement the
whole system (refer to Figure 2 for the final demonstrator).

II. OUTLINE OF THE PROJECT
In this project as mentioned previously several aspects were

considered, the first one was related to the datagram definition
which requires a general understanding of the IP (and IPSec)
and PPP layers. The original data was encrypted and gathered
with the AH header and the IP header. Each of these headers
contains specific information in order to provide a valid
datagram. During the project the students have defined the
right parameters corresponding to the case study. The
resulting datagram was then encapsulated within the PPP layer
to provide the final datagram. As for IP, PPP contains specific
parameters that were defined. In order to reduce the
complexity of the global system a simplified version of the IP
and PPP layers was considered (the corresponding protocols

IPSec Implementation Project using FPGA and
Microcontroller

Guy Gogniat, Wayne Burleson, Mike O'Malley, and Lilian Bossuet

T

2

can be very complex). For example the SA step was not
considered and predefined key and algorithm for the
cryptography solution were selected. Furthermore in a first
step the authentication algorithm was not handled. Only the
cryptography part was targeted. Obviously, the complexity of
the system could have evolved depending on the results
obtained during the project.

As an initial step, the plan was to manually write in a text
file the datagram corresponding to the data to be sent. Then it
was necessary to write a program (using the C language) that
took this file and transferred it through the serial interface to
the PIC microcontroller (Microchip PIC 16F877/874). The
microcontroller received the datagram, checked its validity
and stored the data in its memory. To provide this
functionality it was necessary to configure the serial interface
of the PIC in order to be able to receive the datagram. Then
the various parameters from the headers were checked to
verify the validity of the communication (for example, are the
IP source and destination addresses correct). Once that step
performed it was necessary to send the data to the crypto-
coprocessor to determine the original data (implemented onto
an Altera APEX 20KEP20K200 within a Nios Development
Kit). All the tasks performed on the microcontroller required

quite a large hand-written ASM program, so a rigorous test
plan was required for debugging in order to manage the
complexity of the code. Finally it was necessary to understand
the RC6 cryptographic algorithm to be able to build the
corresponding hardware design. For that purpose a VHDL
code was defined. In order to help the implementation of the
RC6 decryptor an existing design was considered and adapted
to the considered case study. Once the data was decrypted it
was necessary to send it back to the microcontroller so that it
was displayed on a terminal. Figure 3 illustrates the system
that has been built and Figure 2 provides the final
implementation.

III. STEPS OF THE PROJECT
When dealing with such a project it was important to

clearly define the different steps to be reached in order to
manage the complexity of the global system and to regularly
report progress concerning the state of the project. The
following decomposition was considered by the students to
build the system (but other solutions were possible).

A. Task 1: PC – PIC communication (it was performed by
one student)

SCI

PPP

IP

PC PIC

Data

SCI

PPP

IP

Data

Network layer

Data-link layer

Physical layer

Physical link

Fig. 1. Layers involved during a communication within the PC and the PIC

Fig. 2. Implementation of the whole system; the first laptop enables sending the datagram to the PIC; the prototype board contains the
PIC and its link with the FPGA; the second laptop is used as a terminal to display the initial datagram and the final plain text

3

In this part of the project, the task was to write C code
which would enable the serial transmission of a file (the
datagram), to the PIC and then to write assembly code which
would take in the serial transmission and store it into PIC
memory. The C code was the first to be tackled for many
reasons; the primary reason was the thinking that without any
data being sent, there would be no way of testing the PIC code
for storing the data into memory. Other reasons for C code
being done first was that it was simpler, not requiring any
hardware other than a PC and therefore could be done outside
of the lab and that it could be done with the least interference
with any other parts of the lab.

Serial transmission of the data was accomplished by using
the windows.h library, which allowed for com ports to be
selected and used to send or receive data at specified baud
rates. Once the com port was selected and setup, the rest of the
code was simply a matter of opening and preparing the
datagram file to be sent through it serially to the PIC.

The assembly was then written for storage of the data sent
by the C code. RCIF of the PIR1 register was polled to check
for data being received. Once the first byte was detected, it
would be stored into PIC memory using indirect addressing
and the RCIF would be polled again to check for the next byte
to repeat the process. This assembly was later integrated with
the other code for the PIC.

B. Task 2: Datagram definition (it was performed by one
student)
In a general network stack, data is encapsulated inside of a

frame by appending fields to the beginning and end of the
data. The datagram represents the final result of data that has
been encapsulated by the following process:

1. The original data is wrapped in an IPv6 packet
2. This IPv6 packet is encrypted, which encrypts only the

data portion of the packet, and the corresponding

Authentication headers are inserted in the packet.
3. This encrypted IPv6 packet is then encapsulated in a PPP

frame, which includes data appended to both the beginning
and end of the frame.

This complete structure is the final datagram. This structure
requires several fields for each step from the above list.

The first step in creating this datagram was to define each
of the values for the protocol headers. After determining each
constant value and computing the dynamic values, a C
program was defined to construct the datagram.

The initial C program was intended to construct a single
static datagram in memory, then save that datagram as a file.
Starting in this manner provided an easy upgrade path for the
planned modification to the code to produce a dynamic
datagram based on user input or an input file.

After writing the initial C code to hold the required data, the
required functions for the dynamic fields were researched.
Specifically, an RC6 encryption algorithm and a CRC
checksum function were located and inserted into the code.

C. Task 3: Datagram validation and data extraction (it was
performed by two students)
Following the process of storing the datagram in PIC

memory, it is required that the PIC checks the validity of
certain parameters within the datagram, most importantly the
Payload, Destination Address, and Data portions. These
parameters are checked to verify the validity of the
communication. Following the extraction and checking of
each parameter, the next step is to send the encrypted data
portion of the datagram to the crypto-processor. The crypto-
processor performs decryption and sends the original data (the
data before encryption) back to the microcontroller to be
stored back in PIC memory. The encrypted data will be
written over the decrypted data in the same memory range.
Once the data is received from the crypto-processor it is

Fig. 3. System partitioning of the IPSec Implementation

File containing the
whole datagram

PC 1

C program
sending the

datagram to the
PIC through the
serial interface

datagram.txt

Prototyping board

ASM program handling
the datagram to extract
the data and check the

connection

PIC microcontroller

APEX FPGA

VHDL design
decrypting the data to

provide the original
clear text

PC 2

M
A

X2
32

Terminal
displaying the

result

4

displayed on a terminal as shown in Figure 4.

D. Task 4: Crypto-coprocessor (it was performed by two
students)
The first step in the design of the FPGA coprocessor was to

define a bus protocol between the PIC and the FPGA. The
protocol was to take into account the asynchronous properties
of the two devices. In order to implement such a protocol, a
hand shake method was used. With the bus protocol decision
finalized a high level FSM (Finite State Machine) was
designed. The FSM was then split into separate modules: the
data input; the decryptor; and the data output.

The beginning of the FPGA consisted of the input (Figure
5). This module was designed to take in series of 16 parallel
bits at a time and to output 4 x 32 bits to the decryptor. Each
set of 32 bits output to the decryptor consisted of 2 x each 16
originally input, so the input sequence required four buffers,
each capable of holding 32 bits.

The middle of the FPGA code was a decryptor which
decrypted 128-bit ciphertext blocks into 128-bit plaintext
blocks using the RC6 algorithm. The protocol between the
input/output modules and the decryptor had to be established.

The end of the FPGA consisted of the output. The goal of
the output was to perform the reverse of the input module. The
output took in and stored 4 x 32 bits at once. Each 32-bit word

was stored into a 32-bitwide register. Sixteen parallel bits
were then sent to the PIC each time the PIC requested data,
serially.

E. Task 5: Complete system (it was performed by the
project manager + the six previous students)
After each of the four main tasks were tested individually

and were successful, the group took on the task of integrating
the parts of the system into a whole. This involved a
debugging stage. Many bugs were encountered and dealt with.
First, the students had to integrate separate pieces of assembly
code because three different people wrote portions of it. It was
necessary that all of the portions fit and work together as
though they were one homogonous piece of code. This
involved aligning the variable names, adding code to join two
parts, removing parts what were unnecessary or duplicated,
and making sure the bus communications matched on both
sides. Another design choice used when combining the
different parts of the project was being consistent for what
banks of memory were used for what purposes.

The integration of the individual tasks into one working
project required students setting meeting times so that the
whole group could meet or just certain people who were
knowledgeable in the current problem area, dividing the labor
amongst the group members, prioritizing problems, managing
resources, and solving problems as a team. As a result of
efficiently meeting and performing the tasks described above,
the students were able to produce a working project that met
all the goals of the project (Figure 6 provides a detail of the
final implementation).

IV. FEEDBACK OF THE PROJECT
The project described was very successful. Students praised

the project highly for its technical knowledge, organization
and management. They enjoyed the large scope of the
required skills. Some of the comments are: "it was a good time
working in a large group", "the project gave me organization
skills and communication skills", "I was very impressed with
the outcome of the project", "the project was very well-
rounded, it contained C code, VHDL code and PIC assembly
code".

Fig. 6. Prototyping board containing the PIC microcontroller
and the links to the emitter, the FPGA and the terminal

Fig. 4. The terminal displays the cipher text sent to the crypto-
processor, the plain text retrieved and the corresponding ASCII
text

Fig. 5. RTL architecture of the Crypto-processor

Bus in
Controller Decryptor

Bus out
Controller

Tristate
Buffer

Bus I/O

5

V. CONCLUSION
This paper presents a project that has been carried out

within the University of Massachusetts, Amherst, USA
dealing with an IPSec design through an interdisciplinary
approach. Students had the opportunity to use skills from
several courses within a single project and to work in a large
group. They had to handle networking, processor based design
and reconfigurable architecture which provide a good
overview of a system level design.

Seven students have worked on the project (which was
good for a first experience) but it could have been possible to
increase the number of students as several parts like
authentication or key management were not considered.
Another nice extension of the project could be to dynamically
adapt the cryptography algorithms in order to take benefit of
dynamic reconfiguration.

This year the experience is carried out and extended within
the ENSEIRB engineering school in France.

ACKNOWLEDGMENT
The authors would like to thanks Professor Tilman Wolf

and Hieng Shea, Jared Eldridge, Ben Lapointe, Matt Brennan,
Brian Roberts, Dan Verdolino who have been involved in the
honor section project of the ECE 354 course within the ECE
department of University of Massachusetts, Amherst.

REFERENCES
[1] Internetworking Technology Handbook. [Online]. Available: http:

//www.cisco.com/univercd/cc/td/doc/cisintwk/ito_doc/
[2] IP Authentication Header. [Online]. Available: http://www.cse.ohio-

state.edu/cgi-bin/rfc/rfc2402.html#sec-2
[3] Point-to-Point Protocol. [Online]. Available: http://www.cisco.com/

univercd/cc/td/doc/cisintwk/ito_doc/ppp.htm
[4] RC6 implementation. [Online]. Available: http://perso.ens-lyon.fr/jean-

luc.beuchat/RC6/#ref_rc6
[5] R.L. Rivest, M. J. B. Robshaw, R. Sidney, and Y. L. Yin. The RC6

Block Cipher. In First Advanced Encryption Standard (AES)
Conference, 1998.

[6] Jean-Luc Beuchat. FPGA Implementations of the RC6 Block Cipher. In
P. Y. K. Cheung, G. A. Constantinides, and J. T. de Sousa, editors,
Field-Programmable Logic and Applications, number 2778 in Lecture
Notes in Computer Science, pages 101-110. Springer, 2003.

