
HAL Id: hal-00089406
https://hal.science/hal-00089406

Submitted on 18 Aug 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Reconfigurable Security Support for Embedded Systems
Guy Gogniat, Tilman Wolf, Wayne Burleson

To cite this version:
Guy Gogniat, Tilman Wolf, Wayne Burleson. Reconfigurable Security Support for Embedded Systems.
2006, 8 p. �hal-00089406�

https://hal.science/hal-00089406
https://hal.archives-ouvertes.fr


Reconfigurable Security Support

for Embedded Systems

Guy Gogniat

Laboratory LESTER

University of South Britanny

Lorient, France

Email: guy.gogniat@univ-ubs.fr

Tilman Wolf

Department of Electrical and

Computer Engineering

University of Massachusetts

Amherst, MA 01003-9284 USA

Email: wolf@ecs.umass.edu

Wayne Burleson

Department of Electrical and

Computer Engineering

University of Massachusetts

Amherst, MA 01003-9284 USA

Email: burleson@ecs.umass.edu

Abstract— Embedded systems present significant security chal-
lenges due to their limited resources and power constraints.
We propose a novel security architecture for embedded sys-
tems (SANES) that leverages the capabilities of reconfigurable
hardware to provide efficient and flexible architectural support
to both security standards and a range of attacks. This paper
shows the efficiency of reconfigurable architecture to implement
security primitives within embedded systems. We also propose
the use of hardware monitors to detect and defend against
attacks. The SANES architecture is based on three main ideas:
1) reconfigurable security primitives, 2) reconfigurable hardware
monitors and 3) a hierarchy of security controllers at the
primitive, system and executive level. Results are presented for a
reconfigurable AES security primitive within the IPSec standard
and highlight the interest of such a solution.

I. INTRODUCTION

Security within embedded systems is becoming a major

challenge since this condition is mandatory to enable the vision

of ubiquitous computing. Two issues have to be considered

when dealing with security; the first one is related to security

primitives and protocols that are used to guarantee privacy and

integrity of data, these security methods are mainly defined

through standards. The second issue is related to attacks, as

malicious users or funding organizations aim to defeat the

security methods. Current solutions to address both issues are

facing several gaps as demonstrated by Ravi et al [1] and

summarized below.

First, from a performance point of view, the processing,

the battery and the flexibility gaps have to be considered. The

processing gap highlights that current embedded system archi-

tectures are not capable of keeping up with the computational

demands of security processing. The battery gap emphasizes

that the current energy consumption overheads of supporting

security on battery-constrained embedded systems are very

high. The flexibility gap shows that an embedded system

is often required to execute multiple and diverse security

protocols and standards. Second, from an attack point of view,

the tamper resistance and the assurance gaps have to be

addressed. The tamper resistance gap emphasizes that secure

embedded systems are facing an increasing number of attacks

from physical to software attacks, and the assurance gap is

related to reliability and stresses the fact that secure systems

must continue to operate reliably despite attacks.

Designing an embedded system architecture dealing with all

these requirements is a challenging task. New solutions have

to be defined in order to mitigate the costs of security. Two

complementary approaches are considered in this paper that

leverage the security within embedded systems. The first one

is based on reconfigurable computing since such a technology

provides many interesting features to be selected as an high

performance and flexible solution [2]. The second one is

related to hardware monitoring to build Intrusion Detection

Systems (IDSs). Indeed, software solutions show their limits

when used in embedded systems as they are based on extensive

audit of data, in form of system logging, which may require

too much time and energy [3].

Thus, in this paper we propose a new approach to build

embedded systems that takes benefit of both reconfigurable

architectures and hardware monitors to increase security by

detecting abnormal behaviors and by reacting appropriately.

Such a solution enables the system to face an unsecured

and evolving environment while meeting performance and

constraints issues.

The remainder of this paper is organized as follows. Section

2 reviews previous efforts to build secure embedded systems.

Section 3 presents our solution and shows how the security

is enforced and how attacks can be fended off. In section

4 we deal with the AES security primitive within the IPSec

standard to illustrate our concepts and to demonstrate their

efficiency. Finally, section 5 concludes the paper and draws

some perspectives.

II. RELATED WORK

Existing efforts to promote security within embedded sys-

tems are mainly dealing with processor-based approaches

[4][5][6]. These solutions are based on cryptography mech-

anisms to guarantee integrity and privacy of data and ap-

plications. Such solutions are very interesting, however as

demonstrated by Ravi et al. [1] it is mandatory to define

new alternatives to processor-based approaches as the costs

of security using such solutions are very high. Other solutions

can be considered using programmable hardware accelerators

in order to mitigate the workload of processors. In [7] and [8]



the authors propose cryptography processor or co-processor

which can perform various execution modes and achieve high

throughput. However, they do not address the attack issue

and the energy efficiency metric is not considered. In [9]

the authors focus on architecture support for energy-efficient

security. In their work they deal with security primitives and

security protocols but they do not consider the attack issue.

Another alternative is to consider reconfigurable architec-

tures to implement security primitives instead of using pro-

grammable hardware accelerators. Several works have been

published using such a solution [10][11][12] that have demon-

strated its very high efficiency but none have focused on

the mechanisms required to manage the flexibility of these

primitives and to detect attacks.

The concept of hardware monitoring has already been used

for processor power reduction [13][14] and recently for power-

attack [15]. In [15], the authors define the energy monitoring

unit (EMU) which performs energy measurements to be com-

pared to a set of reference energy signatures to detect when

the system is under attack.

The work presented in this paper differs from these efforts in

several respects. First, the underlying concept of our approach

is to dynamically adapt the security protections in order to deal

with dynamic constraints (i.e. attacks, performance, power).

We propose an architecture that promotes the design of secure

embedded systems by targeting all of the challenges stated by

Ravi et al. [1] as presented in the introduction. Our approach

allows the definition of a solution that leverages both flexibility

and security within embedded systems. The performance and

energy issues are considered by using reconfigurable security

primitives which enable the system to provide several tradeoffs

depending on the requirements and the security policy. The

reliability issue is managed through the use of different imple-

mentations from low to high reliability (e.g. fault detection or

fault tolerance). Second, we propose a hierarchy of hardware

monitors in order to track the activity of the system. In

our approach monitors provide different levels of flexibility

which enables an evaluation of the right compromise between

accuracy and simplicity which is mandatory to meet embedded

system constraints.

III. SANES: SECURITY ARCHITECTURE FOR EMBEDDED

SYSTEMS

A. The SANES architecture: a new concept

Our approach to protect embedded systems is by providing

an architectural support for the prevention, detection and reme-

diation of attacks. Most embedded systems are implemented

as system-on-a-chip devices, where all important system com-

ponents (processor, memory, I/O) are implemented on a single

chip. We propose to extend the functionality of such systems

to include both reconfigurable hardware and a continuous

monitoring system that guarantees secure operations. Through

monitoring, abnormal behavior of the system can be detected

and hardware defense mechanisms can be employed to fend

off attacks. Such an approach presents several advantages

since application verification and protection is provided in

Battery

Processor Memory

FPGA I/O

Power 
monitor

Bus 
monitor

Primitive 
monitor

Channel 
monitor

Secure Embedded System

S
ec

u
ri

ty
p

ri
m

it
iv

e

Security
Executive
Processor Clock

Clock 
monitor

Fig. 1. The Security Architecture for Embedded Systems. The reconfigurable
architecture contains the security primitives and the monitors protect the
system

dedicated hardware and not directly inside the application. The

security mechanisms can be updated dynamically depending

on the application running on the system which guarantees

the durability of the architecture. Furthermore our approach

focuses on embedded security and exploits the characteristics

of embedded computations.

Figure 1 presents an overview of the architecture. As we

can see several monitors are considered and track specific

data of the system. The number and the complexity of the

monitors are important parameters as they are directly related

to the overhead cost of the security architecture. The role

of these monitors is to detect attacks against the system. To

provide such a solution, the normal activity (i.e. correct or

expected) of the modules are characterized to detect irregular

behaviors. Autonomy and adaptability have been stressed to

build an efficient security-network of monitors. The monitors

are autonomous in order to build fault tolerant systems; if one

monitor is attacked the others can still manage the security of

the system. The monitors are distributed to be able to analyze

the different parts of the system (e.g. battery, buses, security

primitives, communication channel).

Different levels of reaction are considered depending on the

type of attack, reflex or global. Reflex reaction is performed

by a single monitor; the response time is very short since

no communication between the different monitors is required.

Global reaction is performed when an attack involves a large

modification of the system, in that case the monitors need to

define a new global configuration of the system which leads

to a longer response time. The monitors are linked by an

on-chip intelligence network. This network is controlled by

the Security Executive Processor (SEP) that acts as a secure



������� ��	
����
�

������	
����
�

�������������������

�������� ��	
����
�

�
��
�
�
�
�
�

��
�

�
��
�
�
�
�
�

��
�

��
�
�
��
�
�
 

!
�
��
�
��
�
�
 

�
��
��

�
�


�
�

�
�
�
�

�	
 ��


�
�
�
��

"���������#��

$�%%���&������
$�������'������

����&(


��
��%�
����

��)

FPGA

S
e

c
u

ri
ty

p
ri

m
it

iv
e

Fig. 2. The security primitive architecture. The Security Primitive Controller manages the flexibility of the primitive and the Security System controller deals
with the detection of abnormal activity using specific sensors

gateway to the outside world. The SEP provides a software

layer to map new monitoring and verification algorithms to

monitors. In response to abnormal behavior, the SEP can

issue commands to control the operation of the system. For

example, it can override the power management or disable I/O

operations.

B. The reconfigurable architecture

The reconfigurable architecture within the system enables

the implementation of security primitives. A security primitive

corresponds to an agile hardware accelerator and performs a

security algorithm (e.g. cryptography, IP filtering, key manage-

ment). A device generally embeds several security primitives

that work independently. Main goals of these modules are [2]:

• To speedup the computation of the security algorithm

compared to software execution;

• To provide flexibility compared to a fixed implementation

to be able to update the primitive or to switch from one

primitive to another;

• To provide various tradeoffs in terms of throughput, area,

latency, reliability, power and energy in order to meet real

time constraints.

Figure 2 presents the security primitive architecture for an

128-bit AES algorithm. Three key components are considered,

1) the security primitive datapath, 2) the Security Primitive

Controller (SPC), and 3) the System Security Controller (SSC)

which is a monitor. An SPC is connected to the datapath

in order to manage its flexibility. The SPC control tasks are

related to reconfiguration of the datapath to change or adapt

its architecture. The SPC is connected to the system processor

in order to define the configuration of the security primitive.

For example, in the case of cryptography it corresponds to

the parameters of the algorithm (i.e. key size, mode and key

value). A System Security Controller (SSC) is also connected

to each security primitive to monitor the primitive and to

check the system state to detect if some faults injection or

abnormal operations are performed. The role of the SSC is

to detect attacks against the primitive. The SSC is connected

to other monitors to analyze the different parts of the system

(e.g. battery, buses, other security primitives, communication

channel).

C. Detailed architecture of the primitive

The reconfigurable security primitive is composed of the

datapath and the two previous controllers (SPC and SSC)

as shown in figure 2. The SPC is connected to the sys-

tem processor through a memory mapped mechanism (i.e.

hardware accelerator). Depending on the primitive, different

configuration registers are used to define its configuration.

These registers provide the algorithm (i.e. execution mode

and key size for cryptography algorithm) and architecture

parameters (i.e. throughput, area and reliability). As stated

before, the SPC manages the flexibility of the primitive. When

the processor needs a security primitive it first configures the

SPC which starts to check what execution modes can be used.

Figure 3 presents the FSM corresponding to the SPC.

During the Initialization state, the SPC polls via the SSC

the state of the system (i.e. battery level and communication

channel quality) in order to define what implementations can

be performed within the primitive. Once the algorithm and

architecture parameters are checked, the SPC provides this

information to the processor. During the Configuration state,

once the processor has selected the algorithm parameters

so that the security primitive can be configured, the SPC

selects the corresponding configuration data (it corresponds

to a bitstream) and starts the configuration of the datapath.

On the Run state the security primitive is ready to run and

to handle the data. While the datapath is running, the SPC

regularly checks the system state through the SSC to define

if the primitive needs to be reconfigured. Once the data has

been computed, the security primitive can be stopped or can be

removed from the reconfigurable hardware (Stop state). If the

security primitive remains within the reconfigurable hardware

this state corresponds to an idle state before running again the

primitive. Finally, the Security state is particular in the sense

it is always active. The Security state is driven by the SSC to

indicate that a reconfiguration must be done in order to fend

off or to anticipate an attack against the primitive. Whatever

the state of the SPC, the Security state enforces the activation

of the Configuration state to reconfigure the security primitive

with the appropriate parameters.



Init

Config. run

stop

Security

��������	
�
�
�
�����
����������
�
��

��������
���������
�����

�
�
�����
����������	

�
��������
�	�
�	
����
������	

�
�
�����
����������	
�
��������
�	
�
�	��������

��������
���������
����������

�������
��������	
���������

Fig. 3. The Security Primitive Controller FSM deals with the different states
of the primitive to dynamically adapt the architecture of the primitive

D. Dynamic security within the system: monitoring

Two main scenarios are considered in our work to protect

the system from being pirated and to guarantee the execution

of the security protections. The first one is managed by the

SSC and deals with attacks (it relies on the security policy)

and the second one by the SPC and deals with the flexibility

of the primitive (it relies on the performance policy).

In the first scenario, the SSC can interrupt the SPC if an

irregular activity is detected within the module or the system.

In that case the SSC indicates to the SPC what configuration

has to be implemented. Examples of attacks are: hijacking,

denial-of-service (e.g. draining of battery or causing battery

to overheat) and extraction of secret information (e.g. user’s

phone book). In case of an hijacking attack the security

primitive needs to be reconfigured with a safe configuration.

In case of a denial-of-service attack the primitive needs to

be enhanced by fault tolerance mechanisms to be able to

guarantee its functionality and in case of an extraction of secret

information attack, I/O of the primitive needs to be stalled.

One essential question is how an attack can be identified

during run-time. It is not even theoretically possible to identify

all attacks for any given system and thus we need to use

an heuristic approach to address this problem. Our proposed

monitoring system uses an approach where the current system

behavior is compared to normal behavior. The expected be-

havior (namely normal behavior) of the system components is

derived from off-line profiling runs in a secure environment.

The aim is to detect behavior that deviates from a normal

operation and thus detect an attack before the symptoms of

the attack are evident. This capability allows the detection of

intrusion, denial-of-service (e.g. drained battery as presented

in [15]), hijacking, and even the attempt to extract secret

information. For example, as will be detailed in the result

section, by monitoring the data bus it is possible to detect

that memory locations containing encryption keys are accessed

even though no cryptographic operation is performed.

Profiling system behavior is a generally challenging prob-

lem. Today’s computers run such a diverse and dynamically

changing workload that any approach to characterize baseline

system behavior is inconceivable. In our case we target embed-

ded systems which simplifies the task. The embedded systems

domain differs conceptually in two aspects that enables the

definition of realistic solutions. These are:

• Simplicity of Workload. Many embedded systems are

typically only executing a handful of programs at any

given time. In most cases it is known beforehand which

programs are run on the system and careful analysis can

derive a baseline behavioral profile.

• Repetitiveness of Workload. Unlike workstation com-

puter, where users can install and execute a large number

of different programs, embedded systems are character-

ized by a less diverse, more repetitive workload. Many

embedded systems perform simple control tasks (e.g. cell

phone communicating with tower to determine if call is

arriving), which by nature repeat the same instructions

over and over again. Even though users switch between

different modes of operation (e.g. between voice and

messaging on a cell phone), the operations within each

mode are often highly repetitive.

This simplicity and repetitiveness of embedded applications

ensures that application profiling can indeed capture a large

fraction of the application behavior and use this information

for comparison to attack scenarios. Furthermore, it is important

to define what has to be monitored. For embedded systems

we believe that power, clock, bus, security primitive and

communication channel monitors track most of the data within

the system and enable the detection of main attacks.

E. Performance and security policies

Once an attack has been fended off the SPC defines a new

configuration to provide the best performance tradeoff (per-

formance policy), for example in term of throughput versus

energy when dealing with cryptography. Protected modes like

fault tolerant architecture consume more area and power so it

is essential to run these modes only when required and not by

default to guarantee the power efficiency of the system. The

security is also provided through the SPC since it continuously

checks the state of the system to guaranty the best performance

for the security primitive. Embedded systems are characterized

by two main parameters, the power limitation and the evolving

environment which leads to various level of quality of the

communication channels. Hence, depending on both the SPC

selects which parameters have to be considered. For example,

in case of a best effort performance policy, when the level of

battery is low or the channel quality decreases under some

thresholds then the SPC reconfigures the module with a lower

throughput but a better energy-efficient architecture. In case

of guaranteed throughput, the SPC keeps the same parameters

event if the thresholds are crossed.

The performance and security policies are essential issues

to take benefit of the reconfigurability of the system and to



AES Slices Period Frequency Power Energy Throughput Energy efficiency
version (% of the (% compared (ns) (MHz) (mW) (% compared (nJ) (Mbits/s) (% compared (Gbits/J)

total amount) to FB) to FB) to FB)

FB 2192 - 26.4 37.8 996 - 316 403.7 - 0.4
(16%)

FB FD 2240 +2.1 25.3 39.4 970 -2.7 295 420.9 +4 0.4
(16%)

FB FT 6302 +65.2 25.2 39.6 1673 +40.5 507 422.2 +4.4 0.25
(46%)

TABLE I

PERFORMANCE COMPARISON OF THE FOUR AES CONFIGURATION (I.E. DATAPATH). EACH CONFIGURATION CORRESPONDS TO A SPECIFIC TRADEOFF

BETWEEN THE SECURITY LEVEL AND THE PERFORMANCE

provide efficient solutions. These policies are very dependent

of the primitives and have to cope with their intrinsic speci-

ficities. The definition of these policies is beyond the scope of

this paper, however designers must pay a particular attention

to that point.

IV. SECURITY PRIMITIVE AND MONITORS: THE AES

CASE STUDY

To demonstrate the concepts presented in this paper we have

defined an agile security primitive and two hardware monitors.

Our case study deals with the AES algorithm [16] since this

FIPS standard has been selected by the National Institute of

Standards and Technology to replace the DES one. Further-

more AES is expected to be one of the major cryptography

algorithm within IPSec which is a framework of different

standards for ensuring secure private communications over the

Internet. The major advantage of IPSec is its flexibility since it

allows for negotiation of algorithm choices and configurations

between the communicating parties. The algorithm parameters

of AES are defined while the main mode and the quick mode

security association steps of IPSec. The parameters negotiated

in these previous phases and the current session keys are used

to transmit data during the secure data transfer step.

All the experimentation has been conducted using a Xilinx

Virtex-II Pro FPGA device [17]. Figure 1 presents the FPGA

and the links between the processor and the memory that

contains the different bitstreams (each bitstream corresponds

to a configuration). The two registers within the SPC contain

respectively the algorithm and architecture parameters. In our

case the algorithm parameters are related to the type of

algorithm (i.e. AES), to the execution mode of the primitive

(i.e. feedback, non-feedback) and to the key and data sizes

(i.e. 128 bits). The architecture parameters are focusing on

the reliability (i.e. no, fault detection, fault tolerance), on the

throughput, the area (use rate of the device) and the energy

consumption.

In the following sections different points are analyzed.

Section IV-A provides a comparison between several imple-

mentations of the AES datapath to define the performance

and the costs of security. Then, section IV-B describes a

bus monitor that tracks the accesses to the keys stored in the

memory in order to detect hijacking. Finally, section IV-C

discusses the efficiency of the whole AES security primitive.

A. AES datapath implementations comparison

Three different datapaths have been implemented to show

the flexibility provided within the primitive, feedback mode

(FB), feedback mode with fault detection (FB FD), and feed-

back mode with fault tolerance (FB FT). An 128-bit key

has been considered. Fault detection mechanisms enable the

system to detect if a fault occurs during the computation of

the AES algorithm but without correcting the result. A parity-

based technique has been used to detect the fault [18]. Fault

tolerance mechanisms provide a tamper resistant architecture.

We have considered a TMR technique as it corresponds to a

common solution [19]. Figure 4 illustrates the architectures

of these primitives.

The implementations have been performed using the Xilinx

ISE Foundation 6.3i tool and the power estimations have been

done using the Xilinx XPower 6.3i tool. As shown in table I,

each solution corresponds to different levels of performance in

terms of area, throughput and power. Fault tolerance solution is

the most secure one but the area and energy overheads are very

high (respectively 6302 slices and 1673 mW). Fault detection

using parity code does not lead to a significant difference

in area and power consumption, respectively +2.1% of slices

and -2.7% of power consumption compared to a non secured

implementation in feedback mode. For these implementations

the throughput is almost equivalent and around 400Mbits/s.

Another metric is interesting to compare these implemen-

tations, the energy efficiency which represents the throughput

per energy (Gbits/J). Feedback with and without fault detection

provide the same efficiency. Fault tolerance guarantees the

security of the primitive but has a high overhead in energy

efficiency. Thus, fault detection is a good compromise to

guarantee the performance and to increase the security of the

primitive and could be considered as an implementation by

default.

B. Bus monitoring

Tracking the activity on the bus corresponds to an inter-

esting way to analyze the operation of the system. In our

case we have defined a monitor that spies the address bus.

As we can see on Figure 5 once the AES primitive starts

the encryption, the accesses to the keys memory addresses are

very regular. The first sequence corresponds to the generation

of the sub keys from the cipher key. Then, each sequence



���������	
��
�	
���
	��

���������	���


�������
������	���

��������	


��
������

�
���������

���������	
��

���������	
��

�	����

�	
���
	��

���������	���

�	
���
	��

���������	���

�	����

���������	
��
�	
���
	��

���������	��� 
�������
������	���

��������	


��
������

�
���������

������ �����������
�	

������������
�	
�����

�����������	���

������������
�	

��	����
�	

�� �� ���

� � ��	������

��
������

�
������ �

!�����	�
�� �� ���

���������	
��
�	
���
	��

���������	��� 
�������
������	���

��������	


��
������

�
���������

�������
�����	�������������	�����
�������
�����������
�����

�������
�����	����������
�������
��������������
��


������
���� ������������
����

Fig. 4. AES core architecture for the three primitives: a)AES core using parity-based technique (fault detection), b) AES core using TMR technique (fault
tolerance), and c) AES core without protection

all non-key
memory

addresses

key memory
address

(lower bound)

key memory
address

(upper bound)

0 500 1000 1500 2000 2500 3000 3500

m
em

or
y 

op
er

at
io

ns

instruction number

AES initialization encryption of
first AES block

encryption of
second AES block

read access
write access

Fig. 5. Monitoring of the bus: accesses to the keys are highlighted which enables the monitor to detect some abnormal activities

���������	
���
��
�
�
�������
�

���������	
���
��
������
���
��
�
�

���������	
���
��
������
�

�������

��
���
�

���

���

Fig. 6. Layout of the three configurations of the AES reconfigurable security primitive. Three modules are defined which are the datapath, the SPC and the
SSC



represents the encryption of one block of data. As we can

see 10 keys memory addresses accesses are performed for

each block which correspond to the 10 rounds of the AES

algorithm.

Two complementary scenarios have been considered to

detect abnormal activity. the first one is based on a counter

which compares the off-line profile with the run time memory

accesses. For that purpose we have stored the off-line profile

in a table (using a Huffmann-based coding to code the data)

and we have implemented a counter that counts sequences of

non-keys memory accesses and keys memory accesses. When

the sequence matches what it is stored in the table, no alarm is

raised. When there is a mismatch then there is a problem and

the monitor indicates that there is potentially an attack. The

monitor is flexible in the sense that the number of blocks to be

encrypted is not known statically, so we have stored only one

sequence that we compare as long as some blocks need to be

encrypted. The second scenario is based on the combination of

different data. Indeed, if the keys memory addresses are found

on the bus and no encryption is running then it corresponds

to an hijacking of the secret keys.

The complexity of the bus monitor depends on the mon-

itoring technique as all source and destination addresses of

reads and writes to/from keys memory can be analyzed. In

our case we have considered a simpler solution as we only

count the number of accesses and we do not consider the

exact keys memory addresses. This solution leads to a small

area overhead for the monitor but provides a less accurate

approach. Dynamic reconfiguration of the monitor could be

considered to adapt the accuracy of the monitor depending on

the state of the system.

C. AES reconfigurable security primitive efficiency

The three previous feedback implementations (FB, FB FD,

FB FT) have been considered for the definition of the whole

AES security primitive. We have defined three reconfigurable

modules which are the datapath, the SPC and the SSC. An

area constraint has been associated to each module as shown

in figure 6. In this experiment we have considered a single

primitive but there is no limitation concerning that point.

The execution schedule between the processor, the SPC and

the SSC is described in figure 7. It highlights when the

reconfigurations occur. When the processor needs a security

primitive, it configures the FPGA with the SPC and the SSC.

The SPC indicates to the SSC that it has been configured and

what function it has to realize. The SSC provides the SPC with

data related to the battery state and the quality of transmission

from the sensors. At the same time the SSC indicates to the

SEP what type of primitive it is going to monitor, so that

the SEP specialized it. Then, the SPC sends to the processor

what type of configuration it can performs (mode, key size)

based on the sensors information. Once the configuration is

complete, the SPC is no longer involved in the datapath of

the security primitive. However the SPC continues to poll via

the SSC the state of the system to check if the mode of the

security primitive needs to be changed (the aim is to change

the mode if for example the battery is running low and the

functionality is still to be available). At the same time, the

SSCs are monitoring the system and if something abnormal

occurs, then some modifications can be done (for example, to

provide fault detection within the security primitive or fault

tolerance)

The communications between the modules have been per-

formed through 3 bus macro which are pre-defined Xilinx hard

IPs [20]. One bus macro is used to provide the fault signal

between the datapath and the SSC (figure 2). The two others

are used between the datapath and the SPC and correspond to

control signals (e.g. start, reset, done). The reconfiguration is

performed by the SPC through the ICAP interface which al-

lows the dynamic and partial self-reconfiguration of the FPGA

[21]. Figure 6 shows the three possible configurations. As we

can see, the area overhead for the fault tolerant implementation

is high compared to the two other solutions. The SPC and

SSC modules are very small and remain constant for the

three configurations. Their complexity is small compared to

the datapath so that they represent a negligible area overhead.

For this study we have considered very simple performance

and security policies which are basically based on a threshold

crossing or on an attack or a fault detection. For real embedded

systems, these policies might use more advanced techniques.

However, the overhead costs should remain small compared

to the datapath.

Concerning the performance of such a solution, the recon-

figuration time is directly related to the size of the bitstream.

The full bitstream which is used at power up represents 1415

kB and the three partial bitstreams for the FB, FB FD, FB FT

configurations are respectively equal to 356 kB, 356 kB and

463 kB. In our case the clock of the ICAP interface is 50

MHz which leads to an average reconfiguration time around

8 ms. Each time a reconfiguration is performed there is also

an overhead cost in term of power. However, this overhead is

negligible for the FPGA power core and represents an increase

of around 6% for the FPGA power supply [22].

V. CONCLUSION AND FUTURE WORK

We have presented the SANES architecture to improve se-

curity within embedded systems. The main concepts that drive

the definition of this architecture is continuously monitoring

the operation of the system to detect abnormal behavior and

use of reconfigurable hardware to provide various levels of

protection and performances. The combination of both ap-

proaches is to our knowledge an original work that enables the

system to target both security standards and attacks. Results

on the AES algorithm within IPSec show that the flexibility

of our solution enables the definition of an energy-efficient

solution while guaranteeing the security. Future work includes

the definition of other monitors to detect attacks. This point is

important as low complexity solutions have to be defined not to

increase prohibitively the global cost of the system. Solutions

based on signatures (using off-line profiling techniques) seem

promising and will be further investigated.



���������

���

���

	
�

������
����
�����
�
���

����������
��
���
�

���������

���������

���
���

�
�
�

������
����
�����
���

�����

�����
�
���

���
���

�
�
�

���������

���
���
�
�
�

������

������������
��
���
�

����
������
���

Fig. 7. Processor/security primitive schedule

VI. ACKNOWLEDGMENT

This work was supported by the French DGA DSP/SREA

under contract no. ERE 04 60 00 010

REFERENCES

[1] S. Ravi, A. Raghunathan, P. Kocher, and S. Hattangady, ”Security in

Embedded Systems: Design Challenges”, ACM Transactions on Embedded
Computing Systems, Vol. 3, No. 3, August 2004, Pages 461-491

[2] G. Gogniat, W. Burleson, and L. Bossuet, ”Configurable Computing

for High-Security/High-Performance Ambient Systems”, Lecture Notes in
Computer Science, Volume 3553, Jul 2005, Pages 72 - 81

[3] D. Nash, T. Martin, D. Ha, and M. Hsiao, ”Towards an Intrusion

Detection System for Battery Exhaustion Attacks on Mobile Computing

Devices”, Proceedings of the 2nd International Workshop on Pervasive
Computing and Communications Security, March 2005

[4] D. Lie, C. A. Thekkath, and M. Horowitz, ”Implementing an Untrusted

Operating System on Trusted Hardware”, 19th ACM Symposium on
Operating Systems Principles, October 19-22, 2003, The Sagamore, New
York, USA

[5] E. Suh, J. Lee, S. Devadas, and D. Zhang, ”Secure Program Execution

Via Dynamic Information Flow Tracking”, MIT, Memo-467, November
2003

[6] X. Zhuang, T. Zhang, and S. Pande ”HIDE: An Infrastructure for Effi-

ciently Protecting Information Leakage on the Address Bus”, in Eleventh
International Conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS XI) Boston, MA, USA, October
2004

[7] A. Hodjat and I. Verbauwhede, ”High-Throughput Programmable Cryp-

tocoprocessor”, IEEE Micro, May-june 2004, pp. 34-45
[8] D. Oliva, R. Buchty, and N. Heintze, ”AES and the Cryptonite Crypt

Processor”, In proceedings of CASES 2003, Oct-Nov 2003, San Jos,
California USA

[9] P. Schaumont and I. Verbauwhede, ”Domain-Specific Codesign for Em-

bedded Security”, IEEE Computer, April 2003
[10] T. Wollinger and C. Paar, ”Security aspects of FPGAs in cryptographic

applications”, Chapter in ”New Algorithms, Architectures, and Applica-
tions for Reconfigurable Computing”, editors Wolfgang Rosenstiel and
Patrick Lysaght, Kluwer, 2004

[11] A. Elbirt, W. Yip, B. Chetwynd, and C. Paar, ”An FPGA-based perfor-

mance evaluation of the AES block cipher candidate algorithm finalists”

IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
volume 9, issue 4 (August 2001), pp. 545-557

[12] A. Dandalis and V.K. Prasanna, ”An Adaptive Cryptography Engine for

Internet Protocol Security Architectures” ACM Transactions on Design
Automation of Electronic Systems (TODAES), Vol. 9, N 3, July 2004,
Pages 333-353

[13] E. Chi, A. M. Salem, R. I. Bahar, and R. Weiss, ”Combining Software

and Hardware Monitoring for improved Power and Performance Tuning”,
The 7th Annual Workshop on Interaction between Compilers and Computer
Architectures (INTERACT-7), Anaheim, California February 8, 2003

[14] J.S Seng, E.S. Tune, and D.M. Tullsen, ”Reducing Power with Dynamic

Critical Path Information” In proceedings of the 34th International Sym-
posium on Microarchitecture, December 2001, Austin, Texas, USA

[15] T. Martin, M. Hsiao, D. Ha, and J. Krishnaswami, ”Denial-of-Service

Attacks on Battery-powered Mobile Computers”, Proceedings of the 2nd
IEEE Pervasive Computing Conference, Orlando, Florida, March 2004, pp.
309-318.

[16] J. Daemen and V. Rijmen, ”The Design of Rijndael AES-The Advanced

Encryption Standard” Springer-Verlag 2002
[17] www.xilinx.com
[18] K. Wu, R. Karri, G. Kuznetsov, and M. Goessel, ”Parity Based Concur-

rent Error Detection for the Advanced Encryption Standard”, International
Test Conference 2004 (ITC), 2004, Charlotte

[19] C. Carmichael, ”Triple Module Redundancy Design Techniques for

Virtex FPGAs” Xilinx Application Note 197 (XAPP197) November 1,
2001

[20] Two Flows for Partial Reconfiguration: Module Based or Difference

Based, Xilinx Application Note XAPP290, Xilinx, September 2004
[21] M. Ullmann, B. Grimm, M. Huebner, and Juergen Becker, ”An FPGA

Run-Time System for Dynamical On-Demand Reconfiguration”, The 11th
Reconfigurable Architectures Workshop (RAW 2004), Santa F, New Mex-
ico, USA, April 26 and 27, 2004

[22] J. Becker, M. Huebner, and M. Ullmann, ”Power Estimation and Power

Mesurement of Xilinx Virtex FPGAs: Trade-offs and Limitations, IEEE
Symposium on Intregated Circuits and System Design, September 2003


