
HAL Id: hal-00089400
https://hal.science/hal-00089400

Submitted on 18 Aug 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Mapping SoC architecture Solutions for an Application
based on PACM Model

Yassine Aoudni, Guy Gogniat, Kais Loukil, Jean Luc Philippe, Mohamed Abid

To cite this version:
Yassine Aoudni, Guy Gogniat, Kais Loukil, Jean Luc Philippe, Mohamed Abid. Mapping SoC archi-
tecture Solutions for an Application based on PACM Model. 2006, 6 p. �hal-00089400�

https://hal.science/hal-00089400
https://hal.archives-ouvertes.fr

 1

Abstract
Real time embedded system design needs a
contribution between architectures model, platforms
and application specification in order to prototype a
real time system from high level specification. In
many case, one allocated solution prototype is not so
good to answer the environment changes around an
embedded system. For this reason, an application
implementation needs to have several prototypes
with different performance levels in order to address
the environment evolution. This paper gives an
approach for rapid embedded system prototyping
using a generic high level architectural model and
existing prototyping platforms. A several
architecture prototype are proposed to rapid
converge to a limed architecture space solutions,
thus the exploration process is accelerated and an
efficient solution can be selected.

1. Introduction
A common method for providing performance
improvement for a real time embedded system is to
create customized hardware solutions for particular
tasks. For example, real time embedded system often
have one or more application specific integrated
circuits (ASICs) to perform computationally
demanding tasks. ASICs are very effective at
improving performance, typically yielding several
orders of magnitude speedup along with reduced
energy consumption. Unfortunately, there are also
negative aspects to using ASICs. The primary
problem is that ASICs only provide a dedicated
hardwired architecture solution, meaning that only a
limited number of applications will be able to fully
explore the ASIC architecture. If an application
changes, because of a fixed bug or a change in
standards, the system will usually no longer be able
to take advantage of the ASIC device architecture.
So, the notion of reconfigurable system is introduced
in real time embedded system concept as a need to
solve bugs and to support the evolution of standards.
Another drawback is that even when a system can
utilize an ASIC, it must be specifically rewritten to
do so. Rewriting system applications or few tasks of
applications can be a large engineering burden. For
this reason, the use of reusable components libraries
is encouraged to accelerate the design process and to
conserve the compatibility for the evolution in real
time embedded system. In this case the modularity is
proposed to evaluate the ability of reusable
components libraries to develop a custom real time
embedded system. Many other notions like
scalability and platform adequacy are also introduced

to replay the needs in new real time system design
and to solve limitations of ASIC solution.
Adding custom hardware in processor core is another
method for providing enhanced performance in real
time embedded system. In general, the critical
portions of an application’s dataflow graph (DFG)
can be accelerated by mapping them to specialized
hardware. Usually, there are two granularity levels to
add dedicated hardware to processor core system:
instruction granularity level and function granularity
level. The instruction granularity consists to link
custom hardware with the main registers of processor
core and a custom instruction opcode is added to the
processor instruction set. The number of custom
instruction depends on the processor core capacity
for example ARM core provides 16 custom
instruction extensions. The function granularity
consists to add the custom hardware as a slave or a
master peripheral using bus communication. In this
case one instruction extension can not drive the
functionality between the processor and the
customized peripheral. So in many cases, specific
subroutines should be coded to control the custom
hardware activity and the communication with the
processor core. The number of added hardware
functions depends on the bus band pass and the
device size in the case of FPGA circuits. In the case
of instruction granularity the processor is in hold
mode and it is blocked in custom instruction
execution, but in function granularity the mutual
execution of processor core and custom peripheral is
possible.
In this paper we present a generic architecture model
for real time embedded system design named
PACM: Processor – Accelerator – Coprocessor –
Memory. The PACM model is proposed as a
solution to reply the real time embedded system
design requirements. Firstly, we evoke the real time
embedded system environment design for the PACM
model in order to introduce several specifications
requirements like reconfigurability, modularity and
scalability within design process. Secondly, we
proposed to combine the instruction and function
granularity in the PACM model to enhance the
system performance.
The paper is organised as follow. In section 1 we
discuss the related work in real time embedded
system design. Section 2 talks about PACM model
for SoC prototyping. Section 3 presents a
comparison between platforms based on PACM
constraint model. In section 4, we propose the
mapping process of an application under PACM
model. Then, we detailed the mapping process via

Mapping SoC architecture Solutions for an Application based on PACM Model

Y. Aoudni1, 2 Kais Loukil2 G. Gogniat1 J.L. Philippe1 M. Abid2
1LESTER, Université de Bretagne Sud CNRS FRE 2734, Lorient, France,

2CES, ENIS engineering school, Sfax, Tunisia
Email : aoudni@iuplo.univ-ubs.fr

 2

case study example and experimentation. Finally, we
closed with conclusion.

2. Related works
Reconfigurable architectures have been an active
research issue. In [29], an adaptive reconfigurable
DSP computing engine is proposed for numerically
intensive audio/video communications. The
approach may enjoy the flexibility of programmable
processors [1], while achieve similar performance to
ASIC design. More recently, a good survey [6] of
media approaches observed varying processing
requirements in multimedia computing and also
pointed out the need for exploiting reconfigurable
system for media processing.
Reconfigurable computing systems [11] that
combine programmable processors and FPGAs with
a reconfigurable architecture have been extensively
exploited for diverse embedded system applications.
Some architecture connects a reconfigurable
coprocessor to a general purpose microprocessor [3],
[14], [15], [22], [23], [28]. The advantage of these
approaches is that the coprocessor can be
reconfigured to improve the performance of
particular application. Most of previously proposed
reconfigurable architectures use FPGAs for the
reconfigurable hardware. However, the rich
programmable interconnection comes at the price of
reduced operating frequency and logic density. The
Garp [15] processor architecture combines an
industry-standard MIPS processor with a new
reconfigurable computing device that can be used to
accelerate certain computations. REMARC [21]
(reconfigurable multimedia array coprocessor) is a
reconfigurable coprocessor that is tightly coupled to
a main RISC processor.
One stream oriented architecture is the RaPiD [5],
[8], [9], project that studies domain specific
architecture, called reconfigurable pipelined
datapaths. This architecture is optimized for highly
repetitive, computationally-intensive tasks. Very
deep application-specific computation pipelines can
be configured in RaPiD that deliver very high
performance for wide range of applications. Another
stream-oriented architecture is the PipeRench [4],
[12], [13], [19] project, which is focused on the
concept of “virtualizing hardware” to use an
interconnected network of configurable logic and
storage elements to complete large amount of
computations through high speed of reconfiguration
hardware.
The RAW research prototype [25] uses a scalable
ISA to attack the emerging wire-delay problem by
providing a parallel, software interface to the
gate,wire, and pin resources of the chip. Tensilica
[27] enables rapid design of highly efficient
processor cores by extending the processor hardware
and software to fit each system’s application
requirements based on a lean core implementation.
The Eclipse [24] provides an architecture template at

subsystem level. It supports the reuse of design effort
for providing a set of parameterized rules for
subsystem composition.
The last presented works are based on the following
idea: starting from initial processor core architecture,
the goal is to extended architectural capacities in
order to support the application specification and the
environment constraints. But in many cases, the
initial system architecture adds an over cost in term
of development time, modularity, flexibility and
performance. For example, the architecture system
doesn’t provide a possibility to add custom
instruction for a specific coprocessor and only a
function granularity custom hardware is premised. In
other cases, the refinement tools can not accept any
addition in system architecture, so for this reason the
FPGA is used as a custom hardware out of the
system chip.
In our approach, we proposed to start from a generic
high level architecture model named PACM, and
then a prototyping platform will be adapted to
support the system constraints and finally
implementation strategies will be analyzed for
application and system adequacy.

3. PACM architecture model

In this section, for the architecture presented in
Figure 1, we show that several CAD tools and
platforms, similar in first view, do not present the
same adequacy degree with the targeted model of
execution. The Figure 1 presents the PACM model.
Basically our architecture is built around a
processor core (for example Nios, ARM, LEON…)
which offers configuration opportunities for adding
coprocessors reached through the main processor
registers (for example floating point unit, HW
divider, HW mathematic functions ...).The
processor communicates with dedicated HW
accelerators through a standard on chip HW/SW
bus (e.g. Amba, Avalon, IBM CoreConnect…)
using control logic and specific memory blocks.
Coprocessors and HW accelerators usage depends

Processor core
(RTOS option)

Acc_2

Acc_1

(Accelerator)

Min 10

Mio23

Min 11

Mout 10

Acc_3

Main Memory

Min 20

Mout 30

Cop1 Cop2

Coprocessors

O
n

ch
ip

H

W
/S

W

bu
s

Figure 1: PACM architecture

 3

on the application complexity and on the computing
constraint requirements. In order to give more
flexibility and adaptability to the SoC, we have
chosen the reconfigurable technology to implement
our SoC.

4. Prototyping platforms replay for PACM
model

If we analyze the key parameters of the PACM
architecture model, the adequate platform must
integrate the following features:

• The platform must integrate a FPGA device
characterized by a heterogeneous architecture
(logic elements, DSP blocks, RAM blocks, I/O
pin…) and by a size able to integrate the HW
and SW parts of the SoC.

• The platform must provide a processor core
that gives opportunities to integrate some
coprocessors within its ALU and reached
through the processor main registers to get an
ASIP model.

• The HW accelerators integration must be
supported using an on chip HW/SW bus or
other on chip HW/SW communication module.

• RTOS option with the corresponding port to
the targeted processor core must be present.

• The HW and SW refinement tools must be
robust and efficient to limit the time-to-market
constraint.

 All these key parameters correspond to the
criteria to select a suitable SoC platform. We made
a qualitative study for different representative
platforms, and evaluate their adequacy with the
PACM architecture model.
Platforms

Key
parameters

LEON Nios kits Excalibur
kit

PowerPC
Microblaze

kits

FPGAs
architecture

Xilinx
family >=

Virtex

Altera
family

>=APEX

APEX
family only

Xilinx
family>Virtex

Coprocessors
integration + +++ +++ ----

Accelerator
integration + +++ +++ +++

RTOS ++ +++ +++ +++
SW and HW
refinement

tools
+++ +++ +++ +++

 Table 1 : platforms comparaison

We performed an experimental study based on
the main features of SoC platforms. The results are
presented in table 1. We notice that all presented
SoC platforms provide a robust and efficient HW
and SW refinement tools like ISE Xilinx tool and
Quartus, on chip HW/SW bus as AMBA (LEON
and Excalibur kits) and IBM CoreConnect
(PowerPC and Microblaze kit) and also a port for
many RTOS like RTEMS ported on LEON and

ARM, WindRiver port on PowerPC and
Microblaze, etc. However, only Nios, ARM and
LEON cores can support coprocessor feature. In
addition, coprocessor integration in Nios and ARM
cores is more rapid and flexible using the
virtualization and custom instruction generation
given by SOPC Builder tool. Also, Nios SoC can be
implemented in large STRATIX family which
contains DSP blocks and different sizes of RAM
blocks, unlike ARM development kit which is
restricted to APEX device and its core is a hard IP
and not a soft one like the Nios core. Thus, we
notice that the SoC platform based on Nios
processor core kit provided with Quartus and SOPC
Builder environments by Altera is the most suitable
to design a reconfigurable SoC using the PACM
architecture model. Indeed, SOPC Builder tool
gives the designer a virtual image of the Nios
processor soft core and the accelerators can be
linked to the Nios processor core through the
Avalon on chip bus. Custom instructions are also
provided with this platform in order to facilitate the
coprocessors integration within the Nios ALU.
Namely, our choice is based on this last feature in
order to implement a reconfigurable ASIP core.

As a conclusion of this analysis we can see that
the available CAD tools and SoC platforms can not
address all the architecture models and that a study
must be done in order to select the suitable platform
for the appropriate architecture model. In our case
the Nios processor core kit is suitable to the PACM
architecture model.

5. Steps of mapping application on PACM
model

In real time system design reality, we start from two
main entry models: one for application and the
second for architecture. The needed result is a
mapping structure of application under architecture
model. In our work we proposed to use the following
steps:

a. Modelling application using DFG graph;
b. Identify pattern branches locations in
application DFG.
c. Verify the possibility to implement the
pattern as a function or/and instruction
granularity using PACM model.
d. Proposed a combination between the
pattern group in application DFG and the
granularity level in PACM model
e. Determinates the features of each proposed
solution in term of execution time, power
supply and memory code size

The proposed strategy offers the opportunity for an
example of application to define concrete
architectural solutions of space exploration for a
real time embedded system using the PACM model

 4

that combine general processor and custom
hardware in two granularity levels.
In the next section we present an application case
study in order to explain the mapping process of
application on PACM model using the last five
steps.

6. Experimentation on 3D graphic
application

6.1. DFG description
We choose as case study the 3D graphic

pipeline. The main function of the pipeline is to
render, a two-dimensional image given a virtual
camera, 3D objects, light sources, lighting models,
and textures [30]. The typical 3D graphics system
can be divided in three stages in pipelined format as
in Fig.2. In our case, we are interested to study the
Geometric engine.

Figure 2 : 3D graphic pipeline

Figure 3 : 3D Data Flow graph

We proposed to implement the 3D application
using a C language description. The C tasks are
described by the fig3. So 11 tasks are identified in

the global application code but there are 4
important tasks: translation, transformation, normal
calculate and object draw. These four principal task
are identified as patterns and we choose to
implement them as a custom hardware. The
decision of instruction or function granularity
implementation of the pattern depends essentially
on the size of the input and data.

6.2. Pattern identification
In our case study application, we analyze the C code
of the following functions on 3D application in order
to identify the arithmetic patterns. In our analyze
process we look for the C function that contain loop
structure. We focus on the loop core to determine the
arithmetic sequences in line code. Figure 4 gives an
example of pattern identification. Indeed, 6 patterns
are identified. Table 2 presents the name and the
execution frequency of each pattern for different
objects. Values presented by the execution frequency
show that a custom hardware implementation for the
identified patterns is benefit for application speed up.
This deduction is true in condition that software
implementation is slower than hardware one. On the
other hand the impact of power consumption and
surface occupation should be verified.

 Figure 4 : pattern identification in loop structure

Execution frequency

Pattern name Object1 Object2 Object3

Scalaire 1120 2260 3120
Vectoriel 2380 5280 7280
Mult_matrice 50 50 50
Projection 1210 2260 3660
Transformation 1210 2260 3660
Znormal 2380 5280 7280

Table 2 : Patterns execution frequency

6.3. Pattern hardware implementation
The hardware implementation needs a refinement
environment to accelerate the realization process
from high level description. In our work we adopt
Quartus environment as platform for hardware
implementation on Altera technology. The adopted
platform design gives the opportunity to specify a
custom hardware using a generic IP library. We are
interest in arithmetic components present in the IP
library in order to implement patterns. The SOPC

{
for(short i=0;i<4;i++)
for(short j=0;j<4;j++)
{
 dest[i][j] = m1[i][0]*m2[0][j]+
 m1[i][1]*m2[1][j]+
 m1[i][2]*m2[2][j]+

m1[i][3]*m2[3][j];

Pattern : 4 MUL, 3 ADD

Load
ASCII

Precal

Ident_mat
scale

Rotation

Translation

Normal
Calculate

Transform

Object

Normalize

Calcpal

VERTEX
table

Faces
Table

Sin and
Cos table

VERTEX table
Light
vector

Colors
matrice of
the object

Normalized
vectors

RGB
colors

Matrice1
4x4

Matrice1
4x4

Matrice1
4x4

Matrice1
4x4

 5

Builder provides a NiosII processor core and
Avalon on chip for system on chip implementation.
The use of SOPC Builder offers the possibility to
implement patterns on:

• instruction granularity level using custom
instruction generation and two main register in
NiosII processor core
• function granularity level using Avalon on
bus interface
• the Nios processor core is used to
implement the software code of the application

Figure 5 :sub-space architecture solutions
prototyping step

Thus, as presented in Figure 5 starting from the
equation description of each pattern, we proposed
to specify the pattern using DFG description based
on arithmetic operation and data size.

In Figure 6 we proposed an example of
PROJECTION pattern with DFG description. Then,
we implement the pattern DFG using the generic
arithmetic components in Quartus environment. In
this step we can compare the hardware and software
execution time. Power comsuption and resssource
usuage can be deducted from the synthesis step in
Quartus environment. The next step consist to
decide the possibility to add the pattern to the
NiosII based system as a custom instruction using
the processor main register (instruction granularity)
or as a custom hardware function using Avalon bus
communication (function granularity). Finaly, we
obtained a several architecture prototypes for one
application specification. The architectures
solutions represent a sub-group solution for a space
exploration based on a initial architecture model
(PACM model). Each solution proposes real values
of execution time, power consumption, and
resource usage. Thus, a real time adaptation method
can be injected to guide the solution choice via
extern environment constrains.

6.4. Results with architecture solutions

prototype
The pattern identification on 3D application gives 6
patterns. The PACM model offers the possibility to
implement each pattern in one of 3 cases: software,
hardware custom instruction or hardware custom
function. So the number of architecture solution can
be deduced: 36=729 solution. Thus, in this case the
design has a large space solution to implement the
application. Indeed, in table 3 we are limited to give
a sub-group of space solution.

Table 3 : performance results for sub-group of
space solution

From the four examples presented in table 3, we
can note that each combination of patterns
implementation gives a triple of resource usage,
power consumption and execution time. So, the
system can have several functional modes for one
application and each mode represents an answer for
environment constraints.

 Solution 1 Solution2 Solution3 Solution4
Pattern1 Software Custom

instruction
Custom

instruction
Custom
function

Pattern2 Software Custom
instruction

Software Custom
function

Pattern3 Software Custom
instruction

Custom
function

Custom
function

Pattern4 Software Custom
instruction

Software Custom
function

Pattern5 Software Custom
instruction

Custom
function

Custom
function

Pattern6 Software Custom
instruction

Custom
function

Custom
function

Resource
usage

2885 LUT 4165 LUT 3420 LUT 4254 LUT

Power
consumpti

on

628,58mw 750,34mW 701,34mW 924,36mW

Execution
time

78059245
cycle

143316176
cycle

323316176
Cycle

153316176
cycle

Pattern identification in C code

DFG Pattern
description

Hardware
implementation

Custom instruction
granularity

implemtation

Custom function
granularity

implemtation

Sub-space architecture solutions
(Architecture, Performance)

Arithmetic
IP library

NIOS II
main
registers
interface

Avalon bus

X MX Z Distance Y MY

DIV_8x8

MUL_8x8

ADD_16x16

Screen.X Screen.Y

MUL_8x8

ADD_16x16

16

8 16

8 8 8

16 16

0.. ..63

0.. ..31

Figure 6 : Data Flow Graph of Projection pattern.

 6

7. Conclusion
In this work, we start from the idea: to consider an
initial generic architecture model as an entry for a
SoC design; we select an adequate platform for
rapid prototyping. Then we analyse the application
specification in order to locate the most cost
patterns in functions execution. Then, we propose
to map the application using customs hardware
pattern implementation as an instruction granularity
level and function granularity level. A combination
of patterns implementation can defines a SoC
solution prototype for the application based on
PACM model. Finally, we proposed a sub-group of
solution prototypes that offers the possibility to
explore the SoC architecture space solution based
on a proposed architecture model.

Reference

[1] Tien-Fu Chen, Chia-Ming Hsu, and Sun-Rise Wu,
“Flexible Heterogeneous Multicore Architectures for
Versatile Media Processing Via Customized Long
Instruction Words”, IEEE Transactions on Circuits and
Systems For Video vol 15 May 2005.

[2] Victor P. Nelson, Mitchell D. Theys, and Alan Clements,
“Computer Architecture and Organization in the model
computer Engineering Curriculum”, 33rd ASEE/IEEE
Frontiers in Education Conference November 5 -8,
Boulder 2003,

[3] P. M. Athanas and H. F. Silverman, “Processor
reconfiguration through instruction-set metamorphosis,”
IEEE Computer, vol. 26, no. 3, pp.11–18, Mar. 1994.
[4] S. Cadambi, J. Weener, S. C. Goldstein, H. Schmit, and
D. E. Thomas,“Managing pipeline-reconfigurable FPGAs,”
in Proc. ACM/SIGDA Int. Symp. Field Programmable Gate
Arrays, Feb. 1998, pp. 55–64.

[5] D. C. Cronquist, P. Franklin, S. G. Berg, and C. Ebeling,
“Specifying and compiling applications for RaPiD,” in
Proc. IEEE Symp. FPGAs for Custom Computing
Machines, Apr. 1998, pp. 116–125.

[6] A. Dasu and S. Panchanathan, “A survey of media
processing ap- proaches,” IEEE Trans. Circuits Syst.
Video Technol., vol. 12, no. 8, pp.633–645, Aug. 2002.

[8] C. Ebeling, D. C. Cronquist, and P. Franklin, “RaPiD—
Reconfigurable pipelined datapath,” in Proc. 6th Int.
Workshop Field-Programmable Logic and Applications,
Aug. 1996, pp. 126–135.

[9] C. Ebeling, D. C. Cronquist, P. Franklin, J. Secosky, and
S. G. Berg, “Mapping applications to the RaPiD
configurable architecture,” in Proc. IEEE Symp. FPGAs
for Custom Computing Machines, Apr. 1997, pp.106–
115.

[11] K.M. GajjalaPurna and D. Bhatia, “Temporal partitioning
and sched- uling for reconfigurable computing,” in Proc.
6th IEEE Symp. FPGAs for Custom Computing
Machines, Apr. 1998, pp. 329–330.

[12] S. C. Goldstein et al., “PipeRench: A coprocessor for
streaming multi- media acceleration,” in Proc. 26th Annu.
Int. Symp. Computer Architec- ture, May 1999, pp. 28–
39.

[13] S. C. Goldstein, H. Schmit, M. Budiu, S. Cadambi, M.
Moe, and R. Taylor, “PipeRench: A reconfigurable
architecture and compiler,” IEEE Computer, vol. 33, no.
4, pp. 70–77, Apr. 2000.

[14] S. Hauck, T. W. Fry, M. M. Hosler, and J. P. Kao, “The
chimaera reconfigurable functional unit,” in IEEE Sympt.
FPGAs for Custom Computing Machines, 1997, pp. 87–
96.

[15] J.R. Hauser and J. Wawrzynek, “Garp: A MIPS processor
with a reconfigurable coprocessor,” in IEEE Symp.
FPGAs for Custom Computing Machines, 1997, pp. 12–
21.

[19] R. Laufer, R. R. Taylor, and H. Schmit, “PCI-PipeRench

and the Sword- API: A system for stream-based
reconfigurable computing,” in Proc. 7th Annu. IEEE
Symp. Field-Programmable Custom Computing
Machines, Apr. 1999, pp. 200–208.

[21] T. Miyamori and K. Olukotun, “REMARC:
Reconfigurable multi- media array coprocessor,” in
Proc. ACM/SIGDA Int. Symp. Field Programmable
Gate Arrays, Feb. 1998, pp. 12–21.

[22] K. A. Olukotun, R. Helaihel, J. Levitt, and R.
Ramirez, “A soft- ware-hardware cosynthesis approach
to digital system simulation,” IEEE Micro, vol. 14, pp.
48–58, Nov. 1994.

[23] R. Razdan, K. Brace, and M. D. Smith, “PRISC software
acceleration techniques,” in IEEE Int. Conf Computer
Design, 1994, pp. 145–149.

[24] M. Rutten et al., “Eclipse: Heterogeneous multiprocessor
architecture for flexible media processing,” IEEE Des.
Test Comput., vol. 19, no. 4, pp. 39–50, Jul.–Aug. 2002.

[25] M. B. Taylor et al., “The raw microprocessor: A
computational fabric for software circuits and general
purpose programs,” IEEE Micro, vol.22, no. 2, pp. 25–35,
Mar.–Apr. 2002.

[27] A. Wang, E. Killian, D. Maydan, and C. Rowen,
“Hardware/software instruction set configurability for
system-on-chip processors,” in Proc. Design Automation
Conf. (DAC2001), 2001, pp. 184–188.

[28] R. D. Witting and P. Chow, “OneChip: An FPGA
processor with re- configurable logic,” in IEEE Symp.
FPGAs for Custom Computing Ma- chines, 1996, pp.
126–135.

[29] A.-Y. Wu, K. Liu, and A. Raghupathy, “System
architecture of an adap- tive reconfigurable DSP
computing engine,” IEEE Trans. Circuits Sysy. Video
Technol., vol. 8, no. 1, pp. 54–73, Feb. 1988.

[30] T. A. MOLLER, E. HAINES, “the real time rendering”,
second edition 2002

