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Abstract-- This paper discusses the implementation of
modulation chains for multi-standard communications on
a dynamically and partially reconfigurable heterogeneous
platform. Implementation results highlight the benefit of
considering a DSP/FPGA platform instead of a multi-DSP
platform since the FPGA supports efficiently intensive
computation components, which reduces the DSP load.
Furthermore, partial dynamic reconfiguration increases
the overall performance as compared to total dynamic
reconfiguration since there is 45% of bitstream size
reduction, which leads to a 45% decrease of the whole
reconfiguration time. The implementation of modulation
chains for multi-standard communications proves the
availability of new technology to support efficiently
Software Defined Radio.

Index terms-- HW/SW CoDesign, baseband data
processing, partial dynamic reconfiguration, Software
Defined Radio.

I. INTRODUCTION

In this paper we present a reconfigurable architecture for
a wireless Universal Terminal. The idea of a re-
configurable terminal first appeared in the military area.
In fact, the need for reconfiguration appeared very soon in
the 70’s, with, for example, the first equipment called
“SPEAKeasy” [1]. This concept became popular in the
civil telecommunications area in the 90’s, thanks mainly
to the work of J. Mitola [2]. 
There is now a growing interest in reconfigurable
terminals. This sector, whatever the technique used to
offer reconfigurability, is one of the fastest growing
sectors in the telecommunications industry. But it should
be noted that this topic is also a logical consequence of
the performance increase of DSPs and FPGAs and is in
line with the historical evolution of the replacement of
analog parts by digital parts. DSPs and FPGAs provide
the flexibility and the computational power required to
realize a Digital Front End (DFE). FPGAs enable to take
advantage of parallelism to achieve high performance
with moderate power consumption. Furthermore FPGAs
can be reconfigured in order to provide multi
standard/service terminals.
In particular, one can imagine a given device that should
support several digital mobile telephony services, digital
broadcasting services, and/or digital data transfer services
by just changing its software. Current devices can provide

only one type of service due to limitations (inflexibility)
mainly imposed by their analog technology parts. This
explains the growing interest in multi-mode terminals
based on Software Defined Radio (SDR) techniques.
Software Defined Radio basically refers to a set of
techniques that permit the reconfiguration of a
communication system without the need to change any
hardware system element. The goal of Software Defined
Radio is to produce communication devices capable of
supporting several different services. These terminals
must adapt their hardware in function of the wireless
networks such as GSM, IS95, PDC, DECT, PHS and the
future UMTS. In addition they should take into account
wireless LAN standards like IEEE 802.11a/b/g and
Hiperlan, as well as digital broadcasting standards like
DAB and DVB-T. 
The very important point is the fact that this adaptation
should be dynamic, more or less in real time, in order to
take into account all the variations.
The contribution of this work is to prove the feasibility of
dynamic and partial reconfiguration on a heterogeneous
platform composed of one DSP TI C6201 and a Xilinx
Virtex 1000E FPGA. To realize this implementation we
have focussed on the application, the platform and the
design flow, which is an essential issue when making the
Software Defined Radio approach achievable.
The paper is arranged as follows: Section 2 reviews
previous work related to Software Defined Radio. Section
3 focuses on FPGA technology and particularly on
reconfiguration requirements. Section 4 looks at the
details of the experimentation platform used to perform
this study. This provides the necessary background for an
appreciation of the design flow and the case study that are
described in sections 5 and 6. Section 7 presents future
work and concludes the paper.

II. RELATED WORK

This section presents the concept of reconfiguration in
both domains, application and architecture involved in the
Software Defined Radio paradigm.
The concept of Software Defined Radio is closely related
to the need of further flexibility imperative for future
terminals. As explained by Polydoros et al. [3] the
flexibility of a terminal requires the system to be adaptive
and reconfigurable. The system is adaptive if it can
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respond to application changes by properly altering the
numerical value of a set of parameters [4]. It is
reconfigurable if it can be rearranged, at a procedural,
structural or architectural level.
As many standards will be accessible in a Universal
Terminal, search of common functions or operators [5]
(e.g. parameterisation) are of great interest. It is possible,
for example, to design every modulator (OFDM, QPSK,
GMSK) with one filter bank and to reconfigure just a part
of the physical layer. This search will concern processing
of the whole protocol stack of every standard, and the
major interest of the parameterisation is to decrease the
size of the software to be downloaded (locally or over the
air) to partially reconfigure the standard.
In Table 1, we present the main characteristics of
widespread standards for physical layer functions since
this layer corresponds to the most critical one in term of
computation power and required throughput. Hence,
partial reconfiguration of this layer is particularly
important and corresponds to an interesting candidate for
implementation on FPGAs. 
Obviously, to realize Software Defined Radio
reconfiguration standards must exist in a same
geographical area. For example DVB-T (Europe) and
DAMPS (USA) are not available together.
Standards concern different classes of services, hence
reconfiguration of a terminal during roaming (to change
from one network to another one) has to be done or not in

real time, depending on whether service continuity is
required or not. Furthermore, partial reconfiguration can
be performed even if service continuity is not required. In
that case, the objective is to enhance software
performance (size and download time). Table 2 illustrates
these concepts with different standards and services.
It is important to note that reconfiguration may incur
significant changes in the terminal, which may lead to an
important timing overhead. As real time is an important
issue for Software Defined Radio terminals, a thorough
analysis of timing characteristics is required. Hard real
time constraints are to be met in general, for performance
enhancement, bug-fixing and vertical handhover,
whenever service continuity needs to be guaranteed.
In the case of soft real time constraints, the
reconfiguration time is not a critical issue since the
utilisation of the system is stopped while the
reconfiguration is performed. This is typically the case
when changing from one standard to another standard
(e.g., GSM to Broadcast). In that case there is no
necessity to guarantee service continuity.
To support reconfiguration, different platforms can be
considered. In the following we only address embedded
platforms since this paper focuses on the concept of a
Universal Terminal. Right now most of the studies have
focussed on software platform composed of several
processors (typically, one RISC and several DSPs). For
example in [6] a platform based on four TIC6201 DSP is

Service
continuity

Partial /
Global

Standard 1 Stantard 2 Comments Service

Partial DAB (DVB-T) DVB-T (DAB) OFDM (carriers/SF) Broadcast ⇒ Broadcast
Global FM DAB Analog / OFDM Broadcast ⇒ Broadcast

No

GSM DVB-T GMSK / OFDM voice ⇒ Broadcast
Partial GSM (DECT) DECT (GSM) GMSK / QPSK V outdoor ⇒ V home
Partial GSM EDGE (GPRS) GMSK / 8PSK Voice (Data)
Partial PHS GSM QPSK / GMSK V home ⇒ V outdoor
Partial IS95 UMTS FDD CDMA / TD-CDMA Voice (Data)
Global GSM UMTS FDD Modulation and Acces Voice (Data)

Yes

Global GSM Bluetooth Modulation and Acces V outdoor ⇒ V WLAN

Table 2. Reconfiguration needs for different examples of standard roaming

Mapping Filter Spreading Access Frequency Standard Service
Nyquist 0.5 FDMA 21 kSPS PDC Voice
Nyquist 0.35 FDMA 24.3 kSPS DAMPS Voiceπ/4 QPSK
Nyquist 0.5 TDMA 384 kSPS PHS, PACS Voice, Data
FIR DS-SS CDMA 1.2288 MSPS IS95, GLOBALSTAR Voice
FIR DS-SS 2 MSPS GPS Localization
FIR DS-SS CSMA/CA 3 MSPS WIFI Data

QPSK

Nyquist 0.22 DS-SS TD-CDMA 3.6864 MSPS UMTS FDD Voice Data
Gaussian 0.5 FH-SS TDMA 1.152 MSPS DECT Voice, Data
Gaussian 0.5 FH-SS CSMA/CD 0.7 / 10 MSPS Bluetooth DataFSK

Gaussian 0.5 TDMA 72 kSPS CT2 Voice
MSK Gaussian 0.3 SFH TD-FDMA 270.8 kSPS GSM / GPRS Voice (+Data)
8PSK Gaussian 0.3 SFH FDMA 270.8 kSPS GSM EDGE Voice, Data

FIR FDMA 1 / 4 MSPS UMTS TDD Data
FIR FDMA 40 MHZ Hiperlan II Data
FIR FDM 2.048 MHz DAB Broacast

OFDM

FIR FDM 9.14 MHz DVB-T Broacast

Table 1. Physical layer Functions per standard



used to realise some software upgrades. They have
performed a bug-fixing scenario in the case of an EDGE
receiver using a software component-based approach.
Reconfiguration can also be carried out on hardware
platform composed of reconfigurable architectures. Many
studies have been done to propose coarse grain
reconfigurable architectures. These architectures are
based on a datapath that can be adapted in order to
optimise the execution performance of the application.
Srikanteswara et al., in [7] propose an overview of
configurable computing machines for Software Defined
Radio handsets. Coarse grain reconfigurable architectures
[8] are mainly considered as hardware accelerators and
are generally under the control of a processor (DSP or
RISC).
Another category of architecture is now providing very
interesting mechanisms to perform dynamic
reconfiguration. Cummings and Haruyama first described
benefits of the introduction of SRAM Field
Programmable Gate Array architectures (FPGA) in
Software Defined Radio [9]. Now FPGAs offer very high-
density integration and some devices support dynamic
partial reconfiguration. Dynamic reconfiguration enables
to configure some parts of the architecture during the
application execution in order to enhance performance or
to reduce power consumption. In the following section we
focus on this last solution since this new feature will be
mandatory [3] to enhance the flexibility of the physical
layer processing.

III. RECONFIGURATION AND FPGA

The implementation of one or several applications can be
done in different ways using a single FPGA. The
reconfiguration scenarios depend on the application
characteristics and on the reconfiguration abilities of the
FPGA. 
Before going more in the details of reconfiguration
scenarios, several points must be clearly defined. The
reconfiguration of a FPGA is dependent on what is called
the configuration memory (CM), which corresponds to an
array of configuration points (typically SRAM cell). This
reconfiguration memory can be programmed through
several mechanisms: if the structure of the CM is based
on an array of columns the reconfiguration can only be
done column by column (this is the case for FPGAs like
Xilinx Virtex used in our study). In the following, we call
this type of CM 1D-array reconfiguration. It is important
to note that with this kind of component only a whole
column can be reconfigured and not a part of it. If the
structure of the CM is like a true memory where each
reconfiguration point can be accessed independently, we
call it 2D-array reconfiguration. In that case there is no
limitation on the reconfiguration approach. 
Another important definition is related to partial and full
(also called total or global) reconfiguration. Partial
reconfiguration means that only a part of the FPGA is
reconfigured (several columns in the case of 1D-array
memory and a part of the FPGA for 2D-array memory).
Full reconfiguration means that all the configuration of
the FPGA is changed. Thus dynamic reconfiguration can
be performed in two different ways. Full dynamic
reconfiguration means that the whole architecture mapped

on the FPGA is changed. Partial dynamic reconfiguration
enables to change only a part of the architecture that is
mapped on the FPGA while the rest of the FPGA is still
running. This second approach which is more challenging
allows more flexibility and is less time consuming since
the reconfiguration time is reduced.
Real time partial reconfiguration can be supported
through several solutions. One solution is to work in a
symmetric way as proposed by Danne et al. [10]. The
system is composed of one fixed part, which is associated
to two reconfigurable parts that realise the same function
(one supports the application while the other one is
reconfigured). Another approach is to partition an
application into different tasks and to insert memory
resources (typically FIFO resources) between the inputs
and the reconfigurable part and between the
reconfigurable part and the fixed part. This way it is
possible to reconfigure the application without losing
data.

A thorough analysis of these reconfiguration approaches
is presented hereafter and enables to propose different
reconfiguration schemes (Figure 1) for a FPGA viewed as
a hardware accelerator.
Full reconfiguration: The scenario illustrated in Figure
1.1 represents a full reconfiguration of the FPGA in order
to reconfigure the application totally. In that case the
FPGA that was executing application A is reconfigured in
order to support application B.
Partial reconfiguration: The second example (Figure
1.2) corresponds to a partial reconfiguration of the FPGA
for a partial reconfiguration of the application. This
second type of implementation implies a precise analysis
of the different applications to be mapped on the same
FPGA in order to find the common components Xi which
stay fixed and the components Ai and Bi that are
reconfigured.
A drawback of both previous approaches is that the FPGA
stops its execution while the reconfiguration is performed
(it results on a timing overhead). Another solution is to
implement both applications on the FPGA before
switching from one to another as explained below.
Two step reconfiguration: These two scenarios (Figures
1.3 and 1.4) describe a reconfiguration mechanism that is
performed in a two step approach. The first step is
switching between two already implemented applications
on the FPGA. For example, in Figure 1.3 there is first a

Figure 1. Reconfiguration scenarios on FPGAs
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switching between application A and B. As the switching
between both applications is very fast it enables to
perform dynamic reconfiguration without considering the
reconfiguration time overhead. The second step then
manages the reconfiguration of the unused application.
For example in Figure 1.3 the scenario is the following.
First, there is a switching between applications A and B,
then while the FPGA executes application B, application
C is configured (partial reconfiguration of the FPGA)
instead of application A that is now unused. When
application B will be done we can imagine switching to
application C and then partial reconfiguration of FPGA to
replace application B by a new one. Note that the scenario
shown in Figure 1.3 is a partial device reconfiguration for
a full application reconfiguration, and the scenario in
Figure 1.4 is a partial application reconfiguration by a
partial device reconfiguration.
Reconfiguration time: The main difference between
these reconfiguration approaches is related to the
reconfiguration time, which depends on the size of the
logic to be reconfigured. In the two step reconfiguration
approach, as it is just switching from one application to
another, the reconfiguration time can be considered to
take only one clock cycle, but the drawback of that
approach is that the FPGA must be larger which can be
prohibitive for embedded systems.
Configuration memory: Concerning the configuration
memory, the last reconfiguration scheme (Figure 1.4)
requires that the FPGA supports matrix reconfiguration
i.e., the FPGA must have 2D-array configuration memory
(for example as available with an Atmel component [11]).
Other scenarios require 1D-array configuration memory
(for example by column as available with Xilinx
component [12]). 2D-array reconfigurable FPGAs are
more efficient since the logic to be reconfigured is
optimised. However components proposed by vendors
using this technology does not offer a very high level of
integration which limits their utilisation today.
Communication links: Scenarios in Figure 1.2 and 1.4
require an interconnection (communication link) between
the reconfigured parts and the fixed one. This point is
particularly sensible since the interconnection must ensure
the data transmission continuity at the logic level when
different designs are re-mapped, re-placed and re-routed
on the FPGA. Several solutions exist to overcome this
problem and they will be described in more detail in
section 5. Figure 2 shows an implementation example that
results from a combination between the two different
scenarios 1.2 and 1.3 on the Virtex [13]. This example
illustrates communication links (Bus Macro). It presents
also the problem of interfacing since I/O ports
immediately above the top edge and below the bottom
edge of a reconfigurable module are dedicated to this
module which limits the availability of I/O ports to a
single module.
Reconfiguration controller: Finally, two cases must be
considered to perform reconfiguration on an FPGA. The
reconfiguration controller can be external or internal
(auto-configuration). In general the controller is
implemented in a processor (DSP or RISC) that is on the
same board than the FPGA. However Virtex-II FPGA that
embeds a processor can perform auto-configuration
through the internal ICAP interface [14]. In that case just

partial reconfiguration is possible. Whatever the solution
considered, external or auto-configuration, it does not
affect the reconfiguration time. The first solution will be
discussed in details in the following section.

IV. SDR EXPERIMENTATION PLATFORM

The development system that has been used to implement
the modulation chain for multi-standard communications
is based on a PCI carrier board [15] composed of a TI
C6201 DSP and a Xilinx Virtex 1000E FPGA (Figure 3).
The DSP is running at 200 MHz and communicates to
external components through six Com-Ports working at
20 Mbytes/s. A 16 Mbytes SDRAM is linked to the DSP
in order to store application code and data (it will also
contain the bitstreams as explained in section 5). 
The Virtex 1000E (Figure 4) has an island type
architecture [16], which is composed of the Input Output
Blocks (IOBs), the Configurable Logic Blocks (CLBs)
and the embedded RAM memories (BlockSelectRAM).
The CLBs contain four logic slices. Each slice is
composed of two four-input LUTs, two registers and two
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fast carry chains. Four-input LUTs can perform any logic
function of four inputs. 

The DSP and the FPGA are connected through two Com-
Ports, one dedicated to data transfers and the other
dedicated to bitstream transfers (i.e., for total and partial
reconfiguration of the FPGA). In order to manage partial
reconfiguration a CPLD is used to implement a
configuration controller between the DSP and the FPGA.
The configuration controller supports the SelectMap
mode required to perform the configuration of the FPGA.
Since DSP Com-Port bandwidth is higher than the
SelectMap configuration speed, the FPGA configuration
speed is set to its maximum rate (i.e., 50 MHz). 
The DSP controls the FPGA reconfiguration through the
CPLD with a master/slave-like communication protocol.
This protocol is based on four commands, which permit
the DSP to set or get the FPGA status, and to read or
write the configuration data to/from the FPGA. These
functions are included in the communication library in
addition to the low-level Com-Port functions and the two
higher level functions, which are called to configure the
FPGA with a given full or partial bitstream. Part of the
developed code for the communication library is
presented hereafter.

Headers of the CPLD command functions that use the Com-
Port dedicated to bitstream transfer
u32 CPLDGetStatus(Cp cp, u32 log) 
void CPLDSetStatus (Cp cp, u32 data, u32 log)
void CPLDWrite (Cp cp,u32 *bitstream_data, u32
bytecount)
//write one 32 bit word of bitstream data at
index bytecode.
void FPGAReset(Cp cp)

High level function headers
void FPGAFullConfiguration(Cp cp, u32
*FullBitstream_array,u32 FullBitstream_Size)
//call first FPGAReset() and after CPLDWrite()
function
void FPGAPartialConfiguration(Cp cp, u32 *
partialBitstream_array, u32
PartialBitstream_Size) 
//just call CPLDWrite() in a loop of
PartialBitstream_Size time.

It is important to know the bitstream structure to
understand how to develop partially reconfigurable
design. The Virtex configuration memory is organised as
an array of bit. The elementary unit of configuration is the

frame. It is a one-bit wide array and full height of the
device. Frames are grouped together to form different
types of columns (e.g., CLB, clock resources,
BlockSelectRAM columns). For example, to configure
one CLB, it is required to configure the 48 frames that
compose the CLB configuration. These frames represent
the entire CLB’s column plus 2 IOBs bordering on the top
and the bottom of the CLB's column (Figure 5). Partial
reconfiguration is only a column-based reconfiguration on
the Virtex. In this study we have performed 1D
reconfiguration and we have not tried to optimise the
bitstream structure however some tools are now being
developed to directly handle the bitstream. They allow
refining the reconfiguration bitstream just to the needed
resources to be changed, which enhances further the
reconfiguration performances. Many of these tools are
based on the Java class technology Jbits. A good
overview of tools like JbitsDiff or PARBIT is done in
[17].

V. DESIGN FLOW

The design flow used to perform partial and dynamic
reconfiguration on the DSP/FPGA platform is the
following. First, a component-based approach has been
considered since, as discussed, for example, by
Kountouris and Moy in [6], it is generally admitted to be
the right approach to realise Software Defined Radio
terminal from the higher application layer to the baseband
layer. In the case of digital baseband processing,
components take the shape of processing blocks with
some specific attributes described in detail in the case
study section. Furthermore, a component-based approach
implies specific design rules. Independence and
communication interfaces of processing blocks are
essential points to consider during the design. 
In our case the application is described with components
written in MATLAB. Generic components can be
designed for a common processing presents in the
different algorithms (i.e., parameterisation). One reason
among others to use MATLAB is its capability to choose
all data widths of the application according to both the
system level datapath specification and the accuracy
expected from output data. After a validation step of the
MATLAB specification, a manual hardware/software
partitioning of the application is carried out. During that
step a thorough analysis of the application is performed in
order to identify the components that are candidates for
dynamic reconfiguration.

Figure 4. Virtex 1000E Architecture

Figure 5. Virtex configuration memory



The partitioning step leads to three inputs on the design
methodology as shown in Figure 6. The DSP side input
corresponds to the software components that are manually
developed in C/C++ from the MATLAB specification and
compile with Code Composer Studio for the TI C6201
DSP. The FPGA side inputs correspond to the hardware
components that are described in VHDL (top-level design
and each module as explained in the following). The
FPGA design flow is based on the ISE 5.2 Xilinx tools
with the XST synthesis tool to generate a binary file
called bitstream. Note that to configure the FPGA by the
DSP each bitstream needs to be converted to an 8-bit data
array that will be stored in the SRAM memory of the
DSP.
A specific hardware design flow based on the Modular
Design flow methodology [18] proposed by Xilinx is
required to perform dynamic and partial reconfiguration.
The top-level design entry corresponds to the structural
view of the design. It instantiates the IOBs and the
components required for the design. Each component is
declared as a black box module with just its
communication interfaces. The modules (or components)
correspond to the other input of the Modular Design flow.
Each Module is independent and has a unique body even
if two types of module can be defined. The first type
represents a single context that corresponds to one fixed
part of the design. The other type represents multiple
contexts. In this last case the context will change by
partial reconfiguration. In other words, for a given top-
level design, processing inside a multi-context module
can be reconfigured dynamically without changing its
connections inside the top-level design.
Modular Design implementation comprises the following
phases [18], Initial Budgeting, Active Module
Implementation and Final Assembly. The first step, Initial
Budgeting, consists in designing the floorplan of the

target chip. Global logic is constrained in space and in
time and each module is sized and positioned. Next, in the
Active Module Implementation phase, each context of
each reconfigurable module and each fixed module are
implemented according to the constraints defined on the
top-level design. After this step, modules are placed and
routed. In the Final Assembly phase, these placed and
routed modules are merged in the top-level design where
the global logic and IOBs are also placed and routed. A
minimum of one full design implementation is required
for the initial load on the FPGA before any partial
reconfiguration. 
The Virtex configuration memory described in section 3
imposes the following specific constraints on each
reconfigurable module [18]:

- The reconfigurable module height is always the
full height of the device.

- IOBs immediately above the top edge and below
the bottom edge of a reconfigurable module are
part of the specific reconfigurable module's
resources.

- Clocking logic (BUFGMUX, CLKIOBs) is always
separate from the reconfigurable module. Clocks
have separate bitstream frames.

- A reconfigurable module’s boundary cannot be
changed. The position and region occupied by any
single reconfigurable module is always fixed.

The communication interface between a fixed module and
a reconfigurable module is a complex issue.
Reconfigurable modules communicate with other
modules, both fixed and reconfigurable, by using a special
bus called Bus Macro. A Bus Macro provides an inline
four-bit inter-core communication interface. Bus Macro is
a pre-placed and pre-routed design, instantiable as a black
box in a design entry. The communication is done through
tri-state buffers.

Figure 6. DSP/FPGA Design Flow
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Once the bitstreams are generated they are converted to
an assembly code in order to be merged with the software
assembly code. The link step enables to gather the
communication library routines, the program code and the
bitstreams. Then the whole code is downloaded on the
DSP memory and the application can be run. Each time a
reconfiguration of the FPGA must be performed, the
corresponding bitstream is downloaded from the DSP
memory code into the reconfiguration memory of the
FPGA.

VI. CASE STUDY

The initial objective of this study was to perform GSM to
EDGE reconfiguration, which requires service continuity.
In that case a reconfiguration from a Gaussian filter with
MSK mapping (GSM) to Gaussian filter with 8PSK
(EDGE) should have been performed. Right now, as
presented in the following, we have demonstrated the
concept of partial dynamic reconfiguration only from a
Nyquist filter with QPSK mapping to Nyquist filter with
8PSK. That is the reason why 270 kHz has been
considered for the symbol frequency. The use of 1.08
MHz as a digital IF carrier frequency, corresponds to a
classical Software Defined Radio Digital Front End.

The hardware/software partitioning of the modulation
chains (Figure 7) that have been considered for this study
(QPSK to 8PSK) leads to the following decomposition.
Software components, which correspond to source coding
simulation, DSP/FPGA data transfers and FPGA
configuration transfers, are mapped to the DSP. The
hardware components, which are bits-to-symbol coding
(mapping), oversampling, filtering and IF transposition,
are implemented in the FPGA. The bits-to-symbol coding
component has been selected for partial dynamic
reconfiguration since other components are common to
both modulation chains.
The bits-to-symbol coding component carries out the
serial to parallel bit transformation and the I/Q complex
symbol mapping. The bit rate for 8PSK fb and that for
QPSK is 2/3fb to provide the same symbol frequency.
To design a unique interface for the bits-to-symbol coding
component, an eight bit wide fixed communication
interface is declared per channel. So the communication
interface of this component instantiates 4 Bus Macros
(two for each channel). During partial reconfiguration,
switching from QPSK to 8PSK leads to a reconfiguration
of the logic resources (bits-to-symbol coding component)
and the clock resources (using DLL) while
communication interface remains fixed. The fixed

Figure 7. Partial dynamic reconfiguration scenario on a DSP/FPGA platform
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components on the FPGAs are the oversampling, the
filtering and the IF transposition. Note that each of these
components is implemented for both I and Q parts.

Table 3. QPSK/8PSK implementation scenarios
DSP/FPGA

modulation chains
implementation

DSP memory
overhead with

bitstreams

FPGA
utilisation

Reconfiguration
time overhead comments

Without
reconfiguration No 3180 slices No

Both chains are
implemented in

the FPGA

With full
reconfiguration 1600 Kbytes 1590 slices 130 ms

Full
reconfiguration
for each switch
between both

chains

With partial
reconfiguration 960 Kbytes 1590 slices 11 ms 

Partial
reconfiguration
for each switch
between both

chains

Several scenarios can be considered in order to compare
partial reconfiguration with other solutions. Table 3
presents the main characteristics of three scenarios. The
first one does not implement reconfiguration, both chains
are implemented in the FPGA. The second one uses
dynamic reconfiguration but does not take benefit of
partial reconfiguration (i.e., only full reconfiguration is
performed). Finally, the last one uses dynamic and partial
reconfiguration. For each solution, the DSP memory
overhead due to the bitstreams and the reconfiguration
instructions, the FPGA utilisation and the reconfiguration
time overhead are highlighted. Between these solutions
there is 50% reduction of the slice utilisation. This is
normal in our case since with reconfiguration a single
chain is implemented at any time on the FPGA. 
The DSP memory overhead due to bitstreams is an
important issue for embedded systems. The use of partial
reconfiguration leads to almost 50% reduction of the
memory overhead. In the case of partial reconfiguration
the DSP memory overhead is composed of one full
bitstream and both partial bitstreams (bits-to-symbol
coding for the QPSK and the 8PSK modulations
respectively) to be compared with two full bitstreams in
the case of full reconfiguration.
Considering reconfiguration time overhead, partial
reconfiguration leads to 90% reduction of the
configuration time, which is very important in order to
guarantee services continuity. In the full reconfiguration
scenario a full bitstream must be loaded to the FPGA for
each reconfiguration. In the case of partial
reconfiguration, the first bitstream must be a full
bitstream and then only partial bitstreams are loaded.
Hence for an execution schedule doing QPSK and then
8PSK modulations the benefit is almost 50% for the
reconfiguration time. This benefit increases each time
there is a new switching between both modulation chains.
Whenever possible, partial dynamic reconfiguration
presents an interesting solution since it enables an
important reduction in FPGA utilisation while leading to
limited DSP memory and reconfiguration time overheads.
However, several design constraints are related to partial
reconfiguration, like internal communication (Bus Macro)
and external communication (IOBs). I/O port availability
for fixed design components depends on the place of the
reconfigurable module since IOBs adjacent to partially
reconfigurable modules are dedicated to it (Figure 2).

Furthermore, the number of I/O ports is proportional to
the perimeter of the device while logic resources are
proportional to the area of device in relation to the size
and the package technology of the device. The more the
logic array increases in size, the more I/O resources
represent a critical resource in this type of device as
highlighted by the following equation:

IONA ⋅=αLR
LRA  Logic Resource (Area) vs.

ION Number of I/O (Perimeter)
(1)

A solution consists of using another type of package like a
BGA, which allows connecting I/Os anywhere on the die.
The design of the QPSK/8PSK application has been
confronted with the I/O port difficulty since two Com-
Ports of 32 bits width are required (one for data transfer
between the DSP and the FPGA, and the other one for the
two 16 bit wide channel outputs).
Another important issue is the reconfiguration time,
which is directly proportional to the size of the bitstream
to be downloaded on the FPGA. In our case, during the
floorplanning ten CLB columns have been reserved for
the reconfigurable mapping module (bits-to-symbol
coding) since it is not a complex module. On the Virtex
1000E the height of a column is 48 CLBs. So 48×10
CLBs will be reconfigured.
In order to evaluate the reconfiguration time overhead,
estimation based on the CLBs reconfiguration can be
carried out. One frame (on a Virtex 1000E) is composed
of 1024 bits. One CLB column contains 48 frames, hence
48×1024 bits (around 60Kbits). After the floorplanning
step the designer knows how many columns have been
allocated to its partial reconfigurable module. For a 10
column design, estimated size of the partial bitstream is
equal to 10×60Kbits (600Kbits) thus 600/8=74Kbytes (to
be stored in the DSP SRAM). The reconfiguration time
can be computed as follows: time for reconfiguration =
74Kbytes/50Mhz = ~12 ms. 50Mhz corresponds to the
configuration speed constraint of the FPGA.
Nevertheless the reconfiguration time given here is an
upper limit and not the minimal time since all the CLBs
contained in a column are reconfigured even if only one
changes. To optimise the reconfiguration time designers
need to use bitstream manipulation tools, to build a
smaller bitstream and “emulate a 2D-array of
reconfiguration”. A good overview of such tools is given
in [17].
The last important limitation is related to the definition of
a flexible and easy-to-use communication interface
between reconfigurable modules. In our case we have
used the classical Bus Macro, which is quite restrictive.
To overcome this limitation several solutions are now
proposed. For example, the Core Unifier [17] provides a
controller in addition to a communication interface. The
flexible Module Wrapper of Patterson [19] uses a column
of CLBs at the left and the right of a module as a
configurable interface. The Gasket Interface [20] of the
FPX system represents another possibility. These
communication interfaces have a higher flexibility than
Bus Macro and can leverage the dynamic partial
reconfiguration.



VII. CONCLUSION

We have presented the implementation of modulation
chains for multi-standard communications in a context of
Software Defined Radio. The contribution of this work is
to prove the feasibility of dynamic and partial
reconfiguration on a heterogeneous platform composed of
one DSP and one FPGA. To realize this implementation
we have focussed on the application, the platform and the
design flow, which are essential issues mastering such an
approach. The benefits are important since dynamic
partial reconfiguration increases the flexibility of a
hardware platform, which is mandatory for a Software
Defined Radio approach. The use of FPGAs permits to
introduce this flexibility into typical functions of the
Digital Front End of Software Defined Radio terminals. 
There are still some limitations, which we have tried to
highlight as internal communication through Bus Macro
and bitstream manipulation. Xilinx Virtex II FPGAs and
emerging tools for bitstream manipulation offer new
possibilities to further increase the efficiency of dynamic
and partial reconfiguration. The Software Defined Radio
paradigm regarding the execution platform is still an open
topic. However, the implementation of modulation chains
for multi-standard communications proves the availability
of new technology to support such paradigm. The
combination of a component approach with
parameterisation studies for the application side and the
possibilities of new designs like the run-time adaptive
core for the reconfigurable architecture side will provide a
way to propose new architectural paradigms for an
optimised Software Defined Radio execution platform.
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