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Expressing Bayesian Fusion as a Product of
Distributions: Applications in Robotics

Cédric Pradalier and Francis Colas and Pierre Bessière
GRAVIR-INRIA-INP Grenoble, France – firstname.lastname@inrialpes.fr

Abstract— More and more fields of applied computer
science involve fusion of multiple data sources, such as sensor
readings or model decision. However incompleteness of the
models prevent the programmer from having an absolute
precision over their variables. Therefore bayesian framework
can be adequate for such a process as it allows handling of
uncertainty. We will be interested in the ability to express any
fusion process as a product, for it can lead to reduction of
complexity in time and space. We study in this paper various
fusion schemes and propose to add a consistency variable to
justify the use of a product to compute distribution over the
fused variable. We will then show application of this new
fusion process to localization of a mobile robot and obstacle
avoidance.

I. INTRODUCTION

Data fusion is a common issue of mobile robotics,
computer assisted medical diagnosis or behavioral control
of simulated character for instance. This includes estima-
tion of some state variable with respect to some sensory
readings, fusion of experts’ diagnosis or action selection
among various module opinions.

In principle, fusion of multi-model data provides sig-
nificant advantages over single source data. In addition to
the statistical advantage gained by combining same-source
data (obtaining an improved estimate of a physical phe-
nomena via redundant observations), the use of multiple
types of models may increase the accuracy with which a
phenomenon can be observed and characterized. Applica-
tions for multi-model, and specifically multi-sensor, data
fusion are widespread, both in military and civilian areas.
Ref. [3] provides an overview of multi-sensor data fusion
technology and its applications.

Besides, as sensory readings, opinions from experts
or motor commands can not be known with arbitrary
precision, pure logic can not manage efficiently a fu-
sion process. Such issues can therefore be formalized in
the bayesian framework, in order to confront different
knowledge in an uncertain environment. This is illus-
trated for example in previous works by Lebeltel[5] and
Coue[2]. The CyberMove project is precisely involved in
robotics and in particular in probabilistic programming.
This paradigm is applied for car-like robots in the frame-
work of bayesian theory as depicted in [4]. As general
bayesian inference problem has been shown to be NP-
Hard [1], much work is dedicated to applicability and

complexity reduction of the inference.
We are interested in evaluating a variable V knowing

other variables V1 . . . Vn: P (V | V1 . . . Vn). In the case
of multi-sensor fusion, V could stand for the pose of
a robot and V1 . . . Vn, the values of its sensors. In this
case, the programmer may specify each sensor model:
P (Vk | V ). This is called a direct model and Bayes’
rule can be applied to infer directly the fused distribution.
Additionally we will show in section II that P (V |
V1 . . . Vn) is proportional to the product of P (V | Vk)
the opinion from each model. This property is interesting
as it can lead to time and memory effective computation.

However, in the case of command fusion, V could
stand for the command to apply. The simplest to specify
for the programmer is now usually the influence of each
sensor on the actual command: P (V | Vk). This is called
inverse programming and require an inversion of each sub-
model to build the joint distribution. We will address this
fusion scheme in section III and show that the resulting
distribution is no longer the product of each underlying
distribution.

Section IV will thus present a new way of specifying
a model using a consistency variable that will allow the
fusion to be written as a product even in the case of
command fusion. Finally two robotic implementations of
such a scheme will be detailed in section V.

All along this paper, these conventions will be used:

• V : for a variable;
•

~V : for any set of variable {Vk}, ~V = V1 . . . Vn;
• v: for any value of the variable V .

Furthermore, we will use variables with the following
semantic:

• A: Opinion of some expert, or fusion of opinions
about a problem (the pose of a robot for instance, or
some motor command);

• D or Dk: Measured data;
• πf or πk: A priori knowledge.

Finally, we will consider a probabilistic program as for-
malized in [5] in order to make explicit every assumption
we make. Such a program is composed of:

• the list of relevant variables;
• a decomposition of the joint distribution over these

variables;



• the parametrical form of each factor of this product;
• the identification of the parameters of these paramet-

rical forms;
• a question in the form of probability distribution

inferred from the joint distribution.

II. BAYESIAN FUSION WITH “DIRECT MODELS”

In order to be in good conditions for the following of
this paper, it seems necessary to understand the classical
bayesian fusion mechanism, as presented in [5].

First, we assume that we know how to express P (Dk |
A πk), πk being the set of a priori knowledge used by
the programmer to describe the model k linking Dk and
A. Then we are interested in P (A | D1 . . . Dn πf ). In
the context of mobile robotics, P (Dk | A πk) could be a
sensor model, which, given the robot pose A, will predict a
probability distribution over the possible observation Dk.

Using a modular programming paradigm, we start by
defining sub-models which express a priori knowledge πk.
Practically, for each k, we use Bayes’ rule to give the
following joint distribution:

P (A Dk | πk) = P (A | πk)P (Dk | A πk) (1)

Then, we assume that we have no prior about A, so
P (A | πk) is uniform. In this case, we have, by direct
application of Bayes’ rule:

P ([A = a] | [Dk = dk] πk) (2)

=
P ([A = a] | πk)P ([Dk = dk] | [A = a] πk)

P ([Dk = dk] | πk)

Since we chose P (A | πk) uniform, and as P ([Dk =
dk] | πk) does not depend on a, we get the following
property:

∃ck, ∀a, P ([Dk = dk] | [A = a] πk) (3)

= ckP ([A = a] | [Dk = dk] πk)

In order to shorten the notations, we will write the preced-
ing equation as follows: P (A | Dk πk) ∝ P (Dk | Aπk).

Using Bayes’ rule and assuming the measured data
independent, we can now express the complete joint
distribution of the system:

P (A ~D | πf ) = P (A | πf )

n
∏

k = 1

P (Dk | A πf ) (4)

In order to stay consistent with the sub-models, we
choose to define P (A | πf ) as a uniform distribution,
and we set P (Dk | A πf ) = P (Dk | A πk).

We now come back to the distribution we were inter-
ested in:

P ([A = a] | [ ~D = ~d] πf ) (5)

=
P ([A = a] | πf )

∏n

k=1
P ([Dk = dk] | [A = a] πf )

P ([ ~D = ~d] | πf )

As P ([ ~D = ~d] | πf ) does not depend on a, the
proportionality which was true for the sub-models still
holds for the complete model:

P (A | ~D πf ) ∝

n
∏

k=1

P (Dk | A πk) (6)

Finally, by substituting equation 4, we get

P (A | ~D πf ) ∝

n
∏

k=1

P (A | Dk πk) (7)

The probability distribution on the opinion A, resulting
from the observation of n pieces of data dk, is proportional
to the product of probability distributions resulting from
the individual observation of each data.

This result is intuitively satisfying for at least two
reasons:

• First, if only one expert is available, the result of the
fusion of his unique opinion is indeed his opinion.
So the fusion process does not introduce additional
knowledge.

• Second, if the dimension of A is greater than 1, and if
each expert brings informations about one dimension
of A, the projection of the fusion result on one
dimension will be the opinion of the corresponding
expert. This property is well illustrated in [2].

III. BAYESIAN FUSION WITH “INVERSE MODELS”

For instance, in a context of localization, we can usually
predict sensor output given the position, and we are
interested in the position. The joint distribution can be
written using Bayes’ rule: P (Pose Sensor1 Sensor2) =
P (Pose)P (Sensor1 | Pose)P (Sensor2 | Pose). This is a
direct model since we can build it directly from what we
can express. On the other hand, in a context of command
fusion, we can express a command distribution given the
sensor reading P (Command | Sensor1), and we are
interested in the command distribution P (Command |
Sensor1 Sensor2). Unfortunately, there is no way to build
a joint distribution P (Command Sensor1 Sensor2) using
Bayes’ rule only once. So we will have to build several
sub-models and to inverse them.

Formally, let us assume that we know how to express
P (A | Dk πk) instead of P (Dk | Aπk), and that we still
are interested in the evaluation of P (A | ~D πf ).

As before, using a modular probabilistic programming
paradigm, we start by specifying sub-models which ex-
press the πk. First:

P (A Dk | πk) = P (Dk | πk)P (A | Dk πk) (8)

with P (Dk | πk) uniform. From this sub-models, using
Bayes’ rule, we can express P (Dk | A πk).

Then, we can introduce this expression in a global
model:

P (A ~D | πf ) = P (A | πf )
∏

k

P (Dk | A πf ) (9)

where we let P (Dk | A πf ) = P (Dk | A πk).
Then, no matter what P (A | πf ) is, we get



P (A | ~D πf ) (10)

∝ P (A | πf )
∏

k

P (Dk | πk)P (A | Dk πk)

P (A | πk)

In the general case (P (A | πf ) unspecified, uniform...),
this leads to

P (A | ~D πf ) ∝|
∏

k

P (A | Dk πk) (11)

Thus, this result does not correspond to the intuition of
the bayesian fusion process we got in section II.

Nevertheless, it exists a way to come back to the
proportionality: we just have to specify P (A | πf ) such
that

P (A | πf )
∏

k
P (A | πk)

= cste (12)

Practically, this corresponds to

P (A | πf ) ∝
∏

k

∑

Dk

P (A | Dk πk)P (Dk | πk) (13)

Using this probability distribution, we effectively obtain
an intuitive fusion process, but the understanding of the
“physical meaning” of P (A | πf ) becomes rather chal-
lenging.

IV. BAYESIAN FUSION WITH DIAGNOSIS

A. Definitions

In this section, we introduce a new variable:

• II or IIk: boolean variable which Indicates if the
opinion A is consistent with the measure Dk.

We now express the following sub-model:

P (A Dk IIk | πk) = P (A | πk)P (Dk | πk)P (IIk | A Dk πk)
(14)

with A and Dk independent and uniform1. The conditional
distribution over IIk is to be specified by the programmer.
For instance, he may choose:

P ([IIk = 1] | A Dk πk) = exp(−
1

2

(

A − Dk

σ

)2

) (15)

The main interest of this model is due to the fact that
it provides us with a way to express

P (A | ~D~IIπf ) ∝
∏

k

P (A | Dk IIk πk) (16)

This is illustrated in figure 1 that compares the results
of inverse fusion and fusion with diagnosis. It shows that
in some cases, inverse fusion leads to a counterintuitive
response whereas the product sticks to an expected result.

1This is true when II is not considered.
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Fig. 1. Comparison of fusion processes

B. Proof of equation 16

Due to space limitation, we will only sketch this proof
in this paper. Using Bayes’ rule and the fact that A and
~D are independent and uniformly distributes, we obtain
P (A | ~D ~II πf ) ∝ P (~II | A ~D πf ). Then sensor models
independence and another application of Bayes’ rule lead
to equation 16.

C. Properties

Generally, we are interested in the case where we
assume that our experts are competent, and so ~II = ~1.
Hence, when we compute P (A | ~D) ∝

∏

k P (A | Dk),
we are implicitly in the context of equation 16, with
~II = ~1.

Another interesting point with this form of bayesian
fusion appears when we use only one expert, the resulting
opinion is the expert opinion. So the fusion does not
introduce some additional knowledge.

V. APPLICATIONS

A. Obstacle avoidance

1) Situation: The robot we use is a car-like robot. It can
be commanded through a speed V and a steering angle Φ,
and it is equipped with 8 sensors. These sensors measure
the distance to the nearest object in some fixed angular
sector (see figure 2). We will call Dk, k = 1 . . . 8 the
probabilistic variables corresponding to these measures.

Besides, we will assume that this robot is commanded
by some high-level system (trajectory following for in-
stance) which provides him with a pair of desired com-
mands (Vd,Φd).

Our goal is to find commands to apply to the robot,
guarantying the vehicle security while following the de-
sired command as much as possible.

2) Sub-models definition: Before to define our sub-
models, it seems necessary to identify, in the preceding
paragraph, the variables which correspond to A and Dk.

• The opinion on which each sub-model will have
to express itself is the vehicle command. So A ≡
U = (V,Φ).

• The data which will be used by the sub-models
are the eight distances D1, . . . , D8 and the desired
command Ud = (Vd,Φd).



o=o1d

o=od2

d3

d5d4 d6
d7

o=od8

V

Φ

Fig. 2. Obstacle avoidance: situation

In each sub-model, the variable IIk will describe the
compatibility between a model and a given measure. In
this case, we define compatibility in term of agreement
with the desired commands or in term of security guaran-
tee.

Two types of sub-model will be used: one performing
Desired Command Following (fig. 3), and the other per-
forming Elementary Obstacle Avoidance (fig. 4).
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Relevant Variables:
U ≡ (V, Φ) : Robot commands
Ud ≡ (Vd, Φd) : Desired commands
IIcf : Compatibility between U and Ud

Decomposition:
P (U Ud IIcf | πcf ) =

P (U | πcf )P (Ud | πcf )P (IIcf | U Ud πcf )
Parametric Forms:
P (U | πcf ) uniform P (Ud | πcf ) uniform

P (IIcf | U Ud πcf ) = e−
1

2
(U−Ud)T P−1(U−Ud)

Identification:
P fixed a priori .

Question:
P (U | [Ud = ud] [IIcf = 1] πcf )

Fig. 3: Desired Command Following

Once these sub-models defined, a bayesian program
such as the one presented in figure 5 provides us with
a way to answer the question

P (V Φ | D1 . . . D8 Vc Φc [~II = ~1] πf )

3) Results: Using the following data, we want to com-
pute P (U | Ud D1 . . . D8 [~II = ~1] πf ).

Vd 1.5 m/s Φd 0.2 rad D1 4.5 m D2 4.5 m
D3 2.5 m D4 4.8 m D5 3.7 m D6 3.0 m
D7 5.0 m D8 5.0 m

Figure 6 shows how the sub-models gradually
act on the resulting distribution P (V Φ |
Vd Φd D1 . . . D8 [~II = ~1] πf ). In this table, each
cell shows one expert’s opinion (left) and its accumulated
influence on the global model (right). In our current
implementation, evaluating the fusion distribution given
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Relevant Variables:
U ≡ (V, Φ) : Robot commands
Dk : Distance measured by sensor k
IIk : compatibility between U and Dk

Decomposition:
P (U Dk IIk | πk) =

P (U | πk)P (Dk | πk)P (IIk | U Dk πk)
Parametric Forms:
P (U | πk) uniform P (Dk | πk) uniform
P (IIk | U Dk πk) = 1

1+exp(−4β(V−Vmax(Φ,Dk)))

Identification:
β fixed a priori
Vmax() pre-calculated in simulation

Question:
P (U | [Dk = dk] [IIk = 1] πk)

Fig. 4: Elementary Obstacle Avoidance k
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Relevant Variables:
U ≡ (V, Φ) : Robot commands
~D = UdD1 . . . D8 : Obstacle avoidance data
~II : Indicators from sec. IV

Decomposition:
P (U ~D ~II | πf ) =

P (U | πf )P ( ~D | πf )
∏

k
P (IIk | U Dk πf )

Parametric Forms:
P (U | πf ) uniform P (Dk | πf ) uniform
P (IIk | U Dk πf ) = P (IIk | U Dk πk)

Identification:
None

Question:
P (U | [ ~D = ~d] [~II = ~1]πf )

Fig. 5: Obstacle Avoidance

desired commands and measured distances took about
40µs (1GHz PC).

B. Localization

1) Situation: We consider now the case of a mobile
robot whose configuration is C = [x, y, θ]. This robot
moves in an environment where some landmarks can be
found. The position of one such landmark will be noted
Lj = [xj , yj ], and will be assumed known. Furthermore,
a sensor is installed on this robot in such a way that
its pose in the global frame is identical to the robot’s
pose. When a landmark is observed by our sensor, a
pair of measure (distance, bearing) is returned. We will
call such a measure an observation Ok = [dk, αk] of
the landmark. From the measure only, we cannot identify
which landmark has been observed.

In these condition our goal is to compute a probability
distribution over the robot configurations, knowing a set
of observations ~O. We will show that this goal can be
efficiently achieved using fusion with diagnosis.

2) Models: We first define a sensor model which
evaluate the compatibility IIk of a given observation
with a given configuration, knowing the landmarks
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Fig. 6: Progressive computation of P (V Φ | Vd Φd
~Dπf ).

positions. This model uses an observation predictor:
Õk = h(C,Lj).

P (Mk | C Ok Lj πk) (17)

= exp(
1

2
(Ok − h(C, Lj))

T P−1(Ok − h(C, Lj)))

Yet, this model assumes that we know which landmark is
observed. This assumption is false in our case. We could
use some complex data association scheme, as available
in the literature, but we would rather use a probabilistic
approach to this problem. So we introduce another variable
Wk (Which), whose value indicates which landmark is
observed for a given Ok. So we can express the following
model:

P (IIk | C Ok Wk
~L πk) (18)

= exp(
1

2
(Ok − h(C, LWk

))T P−1(Ok − h(C, LWk
)))

From this model, we will build a set of bayesian pro-
grams: as many sub-models (see figure 7) as observations,
and a global model, which makes a bayesian fusion of
these models (see figure 8).

3) Outliers management: As seen at the beginning of
this article, the final expression of P (C | . . .) will be
proportional to a product of P (IIk | C Ok Wk

~L πk). If
observation Ok is an outlier2, P (IIk | C . . .) will be, in
general, very small if C stands for the true position of

2Observation which is not the result of the observation of some known
landmark
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Relevant Variables:
C = (X, Y, Θ) : Robot configuration
Ok = (Dk, Ak) : Observation k
~L : Observable landmarks
Wk ∈ [1..n] : Landmark observed in Ok

IIk ∈ {0, 1} : Compatibility between Ok et C
Decomposition:
P (Mk C Ok Wk L | πk) =

P (C | πk)P (~L | πk)P (Ok | πk)

P (Wk | πk)P (IIk | C ~L Ok Wk πk)
Parametric Forms:
P (C | πk) uniform P (Ok | πk) uniform
P (Wk | πk) uniform P (~L | πk) uniform
P (IIk | C ~L Ok Wk πk) see equation 19

Identification:
P Fixed a priori

Question:
P (IIk | [Ok = (dk, αk)] [C = (x, y, θ)][~L = ~l]πk)

Fig. 7: Sensor model for observation k
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Relevant Variables:
C = (X, Y, Θ) : Robot configuration
~O : Observation set
~L : Landmark set
~II : Compatibilities between ~O and C

Decomposition:
P (C ~O ~L ~II | πf ) =

P (C | πf )P (~L | πf )P ( ~O | πf )
∏

k
P (IIk | C L Ok πf )

Parametric Forms:
P (C | πf ) uniform P ( ~O | πf ) uniform
P (~L | πf ) uniform
P (IIk | C ~L Ok πf ) = P (IIk | C ~L Ok πk)

Question to sub-model j (see figure 7)
Identification:

None
Question:
P (C | [~I = ~1] [ ~O = ~o][~L = ~l]πf )

Fig. 8: Localization program

the robot. So, when numerous outliers are present, correct
position compatibility will be set to zero, due to the only
presence of these measure.

A simple solution to this problem is to add a special
value to variable Wk: when it is zero, observation Ok is as-
sumed to be an outlier, and P (IIk | COk [Wk = 0]~Lπk)
is set uniform. Another solution would consists in adding a
new variable Fk (False) which indicates whether Ok is an
outlier or not. Identification of parametric forms becomes
then more complicates, but semantic is more satisfying.

a) Is there a reason to choose this model?: In the
case of localization, it would be completely possible to
use a classical bayesian fusion instead of fusion with
diagnosis. The main interest of this method is the com-
putational cost. Actually, we may note that, for each
x, y, θ, dk, αk, x0, y0, we have:

P (IIk | [C = (x, y, θ)] [Ok = (dk, αk)] (19)



[L0 = (x0, y0)] [Wk = 0]πk)

= P (IIk | [C = (x − x0, y − y0, θ − αk)]

[Ok = (dk, 0)][L0 = (0, 0)][Wk = 0]πk)

So, by tabulating P ([IIk = 1] | [C = (x, y, θ)] [Ok =
(dk, 0)] [L0 = (0, 0)] [Wk = 0] πk), we can compute
P (IIk | . . .) without computing neither a transcendental
function nor the observation model h.

It is possible to make a step further in the research for
computational efficiency by precalculating directly P (C |
[IIk = 1] [Ok = (d, 0)] [L0 = (0, 0)] [Wk = 0] πk). In this
case, due to equation 16, we have:

f(C) =
∏

k

∑

Wk

P (C | Ok
~L [IIk = 1] Wk πk)P (Wk | πk)

∝ P (C | ~O ~L [~II = ~1] πf ), (20)

Thus it is possible to compute P (C | . . .) locally without
taking care of normalization. For instance, if an estimation
of the robot current pose is available, we can only compute
f(C) in some neighborhood of this pose. Then, we might
search a peak of f(C) in this neighborhood. Due to the
proportionality this peak of f(C) will also be a peak of
P (C | . . .).

4) Results: Graphs in figure 9 give a discretized
estimation of some probability distribution P (C |
[II = ~1] ~L . . .). The arrows orientation correspond
to the variable θ, and their length is proportional to the
probability of the configuration which corresponds to their
base position. To add some readability to this complex
graphs, lines of maximum likelihood were superimposed
to the plot. A peak of the likelihood clearly appears around
the correct configuration (rounded in plain lines). Two
lesser maxima (rounded in dashed lines) are also present,
expressing the possible positions, should one observation
be an outlier.

Note that in this example, the building of the probability
distribution corresponding to the potential matching of one
observation with one landmark took about 0.5ms (1GHz
PC). So the complete probability distribution evaluation
took about 4.5ms.

VI. CONCLUSION

In this paper we presented our work about probabilistic
bayesian fusion. This work took place in the context of a
new programming technique based on Bayesian inference,
called Bayesian Programming.

We put the stress on the fact that bayesian fusion
cannot be always expressed as a product of probability
distributions. Specifically, we found that, in such case as
command fusion where the fusion should semantically
result in a product, we have to use specific descriptions.
The models we use should express rather a consistency
between variables (P (II | A B π)) than an expectation
(P (A | B π)).
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Fig. 9: Localization result

We have also shown that, using fusion with diagnosis
instead of classical fusion could lead to computationally
more efficient solutions.

The main advantages of our approach is that it pro-
vides us with a new way to perform data fusion in
the context of Bayesian Programming. So we keep the
advantages of Bayesian Programming, namely: a) a clear
and well-defined mathematical background, b) a generic
and uniform way to formulate problems. And we add
the following specific advantages: a) a model expression
which is symmetric in input and output variables, b) a
fusion scheme which can always be expressed in term of
a product of probability distributions, c) a mathematical
soundness for “currently running experiments” expressed
as products of probability distributions.
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