
HAL Id: hal-00089219
https://hal.science/hal-00089219v2

Preprint submitted on 15 Aug 2006 (v2), last revised 20 Jan 2017 (v4)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Distribution Law for CCS and a New Congruence
Result for the pi-calculus

Daniel Hirschkoff, Damien Pous

To cite this version:
Daniel Hirschkoff, Damien Pous. A Distribution Law for CCS and a New Congruence Result for the
pi-calculus. 2006. �hal-00089219v2�

https://hal.science/hal-00089219v2
https://hal.archives-ouvertes.fr

cc
sd

-0
00

89
21

9,
 v

er
si

on
 2

 -
 1

5
A

ug
 2

00
6

A Distribution Law for CCS and

a New Congruence Result for the π-calculus

Daniel Hirschkoff and Damien Pous

LIP – ENS Lyon, CNRS, INRIA, UCBL, France

Abstract. We give an axiomatisation of strong bisimilarity on a small
fragment of CCS that does not feature the sum operator. This axiomati-
sation is then used to derive congruence of strong bisimilarity in the finite
π-calculus in absence of sum. To our knowledge, this is the only nontriv-
ial subcalculus of the π-calculus that includes the full output prefix and
for which strong bisimilarity is a congruence.

Introduction

In this paper, we study strong bisimilarity on two process calculi. We first focus
on microCCS (µCCS), the very restricted fragment of CCS that only features
prefix and parallel composition. Our main result on µCCS is that adding the
following distribution law

η.(P |η.P | . . . |η.P) = η.P |η.P | . . . |η.P

to the laws of an abelian monoid for parallel composition yields a complete
axiomatisation of strong bisimilarity (in the law above, η is a CCS prefix, of the
form a or a, and P is any CCS process – the same number of copies of P appear
on both sides of the equation).

The distribution law is not new: it is mentioned – among other ‘mixed equa-
tions’ relating prefixed terms and parallel compositions – in a study of bisimilar-
ity on normed PA processes [4]. In our setting, this equality can be oriented from
left to right to rewrite processes into normal forms, which intuitively exhibit as
much concurrency as possible. Strong bisimilarity (∼) between processes is then
equivalent to equality of their normal forms. This rewriting phase allows us to
actually compute unique decompositions of processes into prime processes, in the
sense of [6]: a process P is prime if P ∼ Q|R implies Q ∼ 0 or R ∼ 0.

The distribution law is an equational schema, corresponding to an infinite
family of axioms, of the form η.(P |(η.P)k) = (η.P)k+1, for k ≥ 1 (where Qk

denotes the k-ary parallel composition of process Q). We show that although
our setting is rather simple, there exists no finite axiomatisation of ∼ on µCCS.

We then move to the study of strong bisimilarity on the finite, sum-free
π-calculus (π). We rely on the axiomatisation of strong bisimilarity on µCCS
to prove that ground bisimilarity (∼g) is closed under substitutions in π, i.e.,
that whenever P ∼g Q, then Pσ ∼g Qσ for any substitution σ. Closure under

substitution of ground bisimilarity entails that on π, ground, early, late and open
bisimilarities coincide, and are congruences. The problem of congruence of ∼g

on π is mentioned as an open question in [7, Chapter 5]. To our knowledge, this
is the first congruence result for a subcalculus of the π-calculus that includes the
full output prefix (see Section 5 for a discussion on this).

At the heart of our proof of congruence is a notion that we call mutual
desynchronisation, and that corresponds to the existence of processes T, T12, T21

such that T
η1

−→
η2

−→ T12 and T
η2

−→
η1

−→ T21, for two distinct actions η1 and η2, and
with T12 ∼ T21. We additionally require in the two sequences of transitions from
T to T12 and T21 respectively that the second prefix being fired should occur
under the first prefix in T . Intuitively, in such a situation, the process behaves
as if the two actions were offered concurrently, but triggers consecutive prefixes.

Using our analysis of strong bisimilarity on µCCS, we show that mutual
desynchronisations do not exist in µCCS. When moving to the π-calculus, it
turns out that substitution closure of ∼g amounts to observing the same property
in π. A transfer property, that extracts a bisimilarity proof in µCCS from a
bisimilarity proof in π, allows us to relate the two calculi and to show that
mutual desynchronisations do not exist in π, yielding congruence of ∼g.

Paper outline. We introduce µCCS and the distribution law in Section 1. Sec-
tion 2 is devoted to the characterisation of ∼ on µCCS using normal forms. We
prove that the distribution law yields an infinitary ω-complete axiomatisation,
and that no finite axiomatisation exists in Section 3. Section 4 describes the
proof of our congruence result in the π-calculus, and we give concluding remarks
in Section 5.

1 MicroCCS Processes and Normal Forms

We consider an infinite set N of names, ranged over with a, b We define on
top of N the set of processes of µCCS, the finite, public, sum-free CCS calculus,
ranged over using P, Q, R . . . , as follows:

η ::= a
∣∣ a , P ::= 0

∣∣ η.P
∣∣ P1|P2 .

η ranges over visible actions and coactions, called interactions, and we let η stand
for the coaction associated to η (we have η = η). For k > 0, we write P k for the
parallel composition of k copies of P . It can be noted that our syntax does not
include a construction of the form τ.P — see Remark 2.2 below.

Structural congruence, written ≡, is defined as the smallest congruence sat-
isfying the following laws:

(C1) P |Q ≡ Q|P (C2) P |(Q|R) ≡ (P |Q)|R (C3) P |0 ≡ P

We introduce a labelled transition system (LTS) for µCCS. Actions labelling
transitions, ranged over with µ, are either interactions, or a special silent action,
written τ .

2

Definition 1.1 (Operational semantics and behavioural equivalence).
The LTS for µCCS is given by the following rules:

η.P
η
−→ P

P
η
−→ P ′ Q

η
−→ Q′

P |Q
τ
−→ P ′|Q′

P
µ
−→ P ′

P |Q
µ
−→ P ′|Q

P
µ
−→ P ′

Q|P
µ
−→ Q|P ′

Bisimilarity, written ∼, is the largest symmetrical relation between CCS pro-

cesses such that if P ∼ Q and P
µ
−→ P ′, then Q

µ
−→ Q′ and P ′ ∼ Q′ for some

Q′.

Definition 1.2 (Size). Given P , we let #(P) (called the size of P) stand for
the number of prefixes in P .

Lemma 1.3. P ≡ Q implies P ∼ Q which in turn implies #(P) = #(Q).

Proof. We check that ≡ is a bisimulation, so that ≡⊆∼.
If P ∼ Q and #(P) > #(Q), we play a bisimilarity game where all challenges

are interactions and are offered on P ’s side, yielding a contradiction. ⊓⊔

Definition 1.4 (Distribution law). The distribution law is given by the fol-
lowing equation, where the same number of copies of P appears on both sides:

η.(P |η.P | . . . | η.P) = η.P | η.P | . . . | η.P .

We shall use this equality, oriented from left to right, to rewrite processes. We
write P P ′ when there exist P1, P2 such that P ≡ P1, P2 ≡ P ′ and P2

is obtained from P1 by replacing a sub-term of the form of the left-hand side
process with the right-hand side process.

Remark 1.1 (On the distribution law and PA). Among the studies about prop-
erties of ∼ in process algebras that include parallel composition (see [1] for a
recent survey on axiomatisations), some works focus on calculi where parallel
composition is treated as a primitive operator (as opposed to being expressible
using sum or other constructs like the left merge operator). As mentioned above,
particularly relevant to this work is [4], where Hirshfeld and Jerrum “develop a
structure theory for PA that completely classifies the situations in which a se-
quential composition of two processes can be bisimilar to a parallel composition”.
[4] establishes decidability of ∼ for normed PA processes: in that setting, the
formal analogue of the distribution law (Def. 1.4) holds with η and P being two
processes — the ‘dot’ operator is a general form of sequential composition. This
equality is valid in [4] whenever η is a ‘monomorphic process’, meaning that η
can only reduce to 0 (which corresponds to µCCS), or to η itself. [3] presents a
finite axiomatisation of PA that exploits the operators of sum and left merge.

The distribution law is an equational schema, describing an infinite family of
distribution axioms (Dk) : η.(X | (η.X)k) = (η.X)k+1 for k ≥ 1.

Lemma 1.5. is strongly normalising, (∪ ≡) is confluent.

3

Proof. If P P ′ then the height of P ′ is strictly smaller than that of P , whence
the strong normalisation. Then we check that (∪ ≡) is locally confluent, and
conclude with a variant of Newman’s Lemma. ⊓⊔

Thus, for any process P , defines a normal form unique up to ≡, that will be
denoted by n(P). We let A, B, . . . range over normal forms.

2 Characterisation of Bisimilarity in MicroCCS

Definition 2.1 (Components). We say that η.Q is a component of P when
P ≡ η.Q|R for some process R. Given a process P and a natural number i, P@i
stands for the number of components of size i in P , and P|i denotes the process
consisting of the parallel composition of all components of size i of P .

For example, for P = a|b|c.d.e, P@1 = 2, P@3 = 1, P@2 = P@4 = 0, P|1 = a|b.
Normal forms enjoy the following properties:

Lemma 2.2. If A
η
−→ P ′, then P ′ is a normal form, and there exists i > 0 s.t.:

1. A ≡ η.A1|A2, P ′ ≡ A1|A2 and #(η.A1) = i;
2. P ′@i = (A@i) − 1, ∀n < i. P ′@n ≥ A@n, ∀n > i. P ′@n = A@n.

Proof. Straightforward. ⊓⊔

We now have enough technical devices to prove that equality of normal forms
is equivalent to strong bisimilarity on µCCS processes.

Proposition 2.3. A ∼ B implies A ≡ B.

Proof. We say that a process P makes a transition at i to denote the fact that P
makes this transition by triggering one of its components of size i. In this case,
we can use Lemma 2.2 to reason about the shape of P and of its reduct.

We reason by induction on the size of A. The base case is immediate: 0 ∼ B
implies B ≡ 0. Suppose now A ∼ B, with #(A) > 0.

We know by induction that for any A′ of size strictly smaller than #(A),
A′ ∼ B′ implies A′ ≡ B′, and hence in particular: ∀i, A′@i = B′@i. (⋆)

Based on this observation, we can remark that if A@i < B@i for some i,
we have A@i = 0. Indeed, by contradiction, A@i > 0 would allow us to trigger
a component of size i on As side, leading (by Lemma 2.2) to a process A′ s.t.
A′@i = A@i − 1. Because A ∼ B, B should be able to answer by evolving to a
certain B′, with A′ ∼ B′, and, by (⋆) above, B′@i = A′@i, which is impossible
by Lemma 2.2 since B@i ≥ A′@i + 2.

By symmetry, we get: A@i 6= B@i ⇒ A@i × B@i = 0. (†)

We are now ready to embark in the proof that A ≡ B. Consider for that the
minimum sizes of non-nil components in A and B, called respectively i0 and j0.
We distinguish two cases, according to whether i0 = j0 or not.

First case: i0 = j0. Then by definition, and by (†) above, A@i0 = B@i0 > 0.

We play a challenge at i0 on As side, say A
η
−→ A′, and we can write A′ ≡ A1|A2

4

with A1@i = 0 for i < i0 and #(A2) = i0 − 1 (that is, A ≡ A1|η.A2). B answers

the challenge offered by A with B
η
−→ B′, and by (⋆), we can write B′ ≡ B1|B2,

with A1 ≡ B1 and A2 ≡ B2. Since B
η
−→ B′ and B@i = 0 for i < i0, we can

deduce B ≡ B1|η.B2, which gives A ≡ B.
Second case: i0 6= j0. Wlog., we can suppose i0 < j0. We can write A|i0 ≡

η1.P1| . . . |ηk.Pk, with #(Pi) = i0 − 1 for i = 1, . . . , k (we have A@i0 = k).

Consider the challenge by A at i0 given by A
η1

−→ A′. We remark that by
definition of j0, and since i0 < j0, B@i = 0 for all i ≤ i0. Hence B answers

this challenge at some j > i0, with B
η1

−→ B′. By (⋆), B′@j = A′@j, and since
A@j = A′@j, B@j = A@j + 1, which gives by (†) A@j = 0 and B@j = 1.

We know by (⋆) that A′ ≡ B′: by examining these processes at components
of size ≤ i0, we deduce B|j ≡ η1.(P1|η2.P2| . . . |ηk.Pk).

Now consider the challenge by A at i0 given by A
η2

−→ A′′. Since B@j = 1
and A@j = 0, by (⋆) B has to answer at j, which gives P1|η2.P2| . . . |ηk.Pk ≡
η1.P1|P2|η3.P3| . . . |ηk.Pk, from which we deduce η1 = η2 and P1 ≡ P2 (#(Pi) =
i0 − 1). The same reasoning for η3, . . . , ηk gives B|j ≡ η1.(P1|η1.P1| . . . |η1.P1),
which is contradictory with the fact that B is a normal form.

Hence, i0 6= j0 is impossible, and we have proved that A ≡ B. ⊓⊔

Lemma 2.4. If P P ′, then P ∼ P ′. For any P , P ∼ n(P).

Proof. We check that the relation (∪ ≡) is a bisimulation. ⊓⊔

Theorem 2.5. Let P, Q be two µCCS processes. Then P ∼ Q iff n(P) ≡ n(Q).

Proof. n(P) ≡ n(Q) implies that P ∼ Q using Lemma 2.4. (∼ is an equiva-
lence relation). Conversely, if P ∼ Q, we have that n(P) ∼ n(Q), and hence by
Prop. 2.3 that n(P) ≡ n(Q). ⊓⊔

Corollary 2.6 (Cancellation). For all P, Q, R, P |R ∼ Q|R implies P ∼ Q.

Proof. From n(P |R) ≡ n(Q|R) we deduce n(P) ≡ n(Q), and hence P ∼ Q. ⊓⊔

Note that this is not true in presence of replication: a|!a ∼ 0|!a, but a 6∼ 0.

Remark 2.1 (Unique decomposition of processes). Results like Theorem 2.5 and
Corollary 2.6 are related to a series of works on unique decomposition of pro-
cesses, initiated in [6]. In these works, one seeks to write a term as a parallel
composition of prime processes: P is prime if P 6∼ 0 and P ∼ Q|R entails Q ∼ 0
or R ∼ 0. Unique decomposition has been established for a variety of process
algebras, and used as a way to prove decidability of behavioural equivalence
and to give complexity bounds for the associated decision procedure ([5,2] cite
relevant references).

In the present study, more than in the existence of a unique decomposition, we
are interested in a syntactic characterisation of ∼ (which will in particular allow
us to derive Lemma 4.4 below). We therefore rely explicitly on the distribution
law in order to ‘extract’ prime components of processes.

5

Remark 2.2 (τ transitions and weak bisimilarity). Our syntax does not include a
construction of the form τ.P . The results on CCS could be adapted without much
difficulty to handle τ prefixes (in particular because in the bisimulation game,
a τ transition resulting from a synchronisation cannot be answered by firing a
τ prefix – Lemma 1.3 still holds in presence of the τ prefix). We preferred not
to include τ prefixes to simplify the presentationWe preferred not to include τ
prefixes to simplify the presentation, and to make the correspondence with the
π-calculus (where this construction is often omitted) easier

We do not address weak bisimilarity in the present work. When including τ
prefixes in the syntax, it can be proved that adding the law τ.P = P is enough
to characterise weak bisimilarity. In particular, strong and weak bisimilarity
coincide in µCCS.

3 Nonexistence of a Finite Axiomatisation

We let M, N range over µCCS terms with variables, ranged over with X, Y . . .
(M ::= 0

∣∣ η.M
∣∣ M |M

∣∣ X). A ground term is a term with no occurrence
of variables. Instantiations, ranged over using ρ, are mappings from variables
to terms, and their domain are naturally extended to terms. Applying ρ to M
yields a term written Mρ. ρ is a ground instantiation if for all terms M , Mρ is
a ground term. Any two terms M, N define an equation, written M = N .

Definition 3.1 (Axiomatic equality). Given a set E of equations, we shall
write E ⊢ M = N whenever M = N can be derived in equational logic using
equations from E.

We let D stand for the set of equations consisting of the three axioms of
structural congruence (C1, C2, C3), and all the distribution axioms ((Di)i≥1). Dk

stands for the finite restriction of D where only the first k distribution axioms
are included ((Di)1≤i≤k).

Equations of D are obviously sound for ∼. Ground completeness is given by
the following proposition, which holds by Theorem 2.5.

Proposition 3.2 (Completeness). For any processes P, Q,

P ∼ Q iff D ⊢ P = Q .

We now analyse the distribution law using a rather classical approach. We
show that D is ω-complete, that is, complete w.r.t. the extensional equality
derived from strong bisimilarity. Since, by Lemma 3.8 below, D is intrinsically
infinite, we derive impossibility of a finite axiomatisation of ∼ on µCCS, by using
compactness arguments.

Definition 3.3 (Extensional equality). Two terms M and N are extension-
ally equal, written M ∼ω N , whenever for any ground instantiation ρ, it holds
that Mρ ∼ Nρ. An equation M = N is said to be correct if M ∼ω N .

6

Lemma 3.4. Let M be a term whose variables all belong to {Xi}i∈I , and let
{ai}i∈I be a collection of distinct names that do not occur in M .

n(M{ai.0/Xi}) ≡ n(M){ai.0/Xi}

Proof. We proceed by well founded induction over the termination of .

– If M is in normal form, we just have to check that M{ai.0/Xi} is in normal
form. This is true because the ai are distinct and do not appear in M .

– Otherwise, if M N , we check that M{ai.0/Xi} N{ai.0/Xi} so that:

n(M{ai.0/Xi}) ≡ n(N{ai.0/Xi}) (by confluence)
≡ n(N){ai.0/Xi} (by induction)
≡ n(M){ai.0/Xi} (by confluence)

⊓⊔

Lemma 3.5. Let M, N be two terms whose variables all belong to {Xi}i∈I, and
let {ai}i∈I be a collection of distinct names that do not occur in M nor in N .

– If D ⊢ M = N then D ⊢ Mρ = Nρ for any instantiation ρ;
– if M{ai.0/Xi} ∼ N{ai.0/Xi} then D ⊢ M = N .

Proof. The first point is standard, and proved by induction over the derivation
tree.

For the second property, we know by Theorem 2.5 that n(M{ai.0/Xi}) ≡
n(N{ai.0/Xi}). By Lemma 3.4, we have n(M{ai.0/Xi}) ≡ n(M){ai.0/Xi}, and
n(N{ai.0/Xi}) ≡ n(N){ai.0/Xi}. Hence we have n(M) ≡ n(N), and D ⊢ M =
N holds. ⊓⊔

Theorem 3.6 (ω-completeness). For any terms M, N ,

M ∼ω N iff D ⊢ M = N .

Proof. Using Lemma 3.5, ω-completeness boils down to the completeness of D
for ground terms (Prop. 3.2). ⊓⊔

Notice that the proof of Theorem 3.6 relies on the existence of an infinite
number of names. The following result is standard.

Lemma 3.7 (Compactness). For any terms M, N ,

D ⊢ M = N iff Dk ⊢ M = N for some k .

Proof. Equational proofs are finite objects. ⊓⊔

Lemma 3.8. Let a be a name, for any number k, there exists n such that:

Dk 6⊢ a.an = an+1 .

7

Remember that an stands for the n-ary parallel composition of a.0, so that this
equality is an instance of axiom (Dn).

Proof. Let n be a number strictly greater than k such that n + 1 is prime, and
let θ(P, Q) denote the predicate: “P ∼ Q ∼ an+1, P ≡ a.P ′, and Q ≡ Q1|Q2

with Q1, Q2 6≡ 0”.
Suppose Dk ⊢ a.an = an+1, and consider the shortest proof of Dk ⊢ P =

Q for some processes P, Q such that either θ(P, Q) or θ(Q, P). Since we have
θ(a.an, an+1), such a minimal proof does exist. We reason about the last rule
used in the derivation of this proof in equational logic. For syntactic reasons,
this cannot be reflexivity, a contextual rule, nor one of the structural congruence
axioms. It can be neither symmetry nor transitivity, since otherwise this would
give a shorter proof satisfying θ. The only possibility is thus the use of one of
the distribution axioms, say Di with 1 ≤ i ≤ k and an+1 ∼ Q ≡ (a.Q′)i+1. By
Lemma 1.3, since #(an+1) = n+1, i+1 has to divide n+1. This is contradictory,
because we have 2 ≤ i + 1 ≤ k + 1 < n + 1, and n + 1 is prime. ⊓⊔

We can finally prove the nonexistence finite axiomatisation of ∼ on µCCS.
The proof we give corresponds to a standard application of the Compactness
Theorem.

Theorem 3.9 (No finite axiomatisation of ∼). For any finite set of correct
equations E, there exist processes P and Q such that P ∼ Q but E 6⊢ P = Q.

Proof. By correctness, for any equation M = N in E , M ∼ω N . Hence, by ω-
completeness we can prove any equation of E using D. By Lemma 3.7, and since
E is finite, there exists k such that Dk ⊢ E . By Lemma 3.8, there exists n such
that a.an ∼ an+1 and Dk 6⊢ a.an = an+1; and thus, E 6⊢ a.an = an+1. ⊓⊔

4 A New Congruence Result for the π-calculus

4.1 The Finite, Sum-free π-calculus

π-calculus processes are built from an infinite set Nπ of names, ranged over using
a, b . . . , m, n . . . , p, q . . . , x, y . . . , according to the following grammar:

φ ::= m(x)
∣∣ mn , P ::= 0

∣∣ φ.P
∣∣ P1|P2

∣∣ (νp)P .

The input prefix m(x) binds name x in the continuation process, and so does
name restriction (νn) in the restricted process. A name that is not bound is
said to be free, and we let fn(P) stand for the free names of P . We assume that
any process that we manipulate satisfies a Barendregt convention: every bound
name is distinct from the other bound and free names of the process. We shall use
a, b, c to range over free names of processes, p, q, r (resp. x, y) to range over names
bound by restriction (resp. by input), and m, n to range over any name, free or
bound (note that these naming conventions are used in the above grammar).

8

Structural congruence on π, written ≡, is the smallest congruence that is an
equivalence relation, contains α-equivalence, and satisfies the following laws:

P |0 ≡ P P |(Q|R) ≡ (P |Q)|R P |Q ≡ Q|P (νp)0 ≡ 0

(νp)(νq)P ≡ (νq)(νp)P P | (νp)Q ≡ (νp) (P |Q) if p /∈ fn(P)

We let P [n/x] stand for the capture avoiding substitution of name x with name
n in P . We use σ to range over substitutions in π (that simultaneously replace
several names).

Definition 4.1 (Late operational semantics and ground bisimilarity).
The late operational semantics of π is given by a transition relation whose set
of labels is defined by:

µ ::= a(x) | ab | a(p) | τ .

Names x and p are said to be bound in actions a(x) and a(p) respectively, and
we use bn(µ) to denote the set of bound names of action µ.

The late transition relation, written −→π, is given by the following rules (sym-
metrical versions of the rules involving parallel composition are omitted):

φ.P
φ
−→π P

P
a(x)
−−−→π P ′ Q

ab
−→π Q′

P |Q
τ
−→π P ′[b/x] |Q′

P
ab
−→π P ′

(νb)P
a(b)
−−→π P ′

a 6= b P
a(x)
−−−→π P ′ Q

a(p)
−−→π Q′

P |Q
τ
−→π (νp) (P ′[p/x] |Q′)

P
µ
−→π P ′

P |Q
µ
−→π P ′ |Q

bn(µ) ∩ fn(Q)=∅
P

µ
−→π P ′

(νp)P
µ
−→π (νp)P ′

p /∈ fn(µ)

Note that we do not respect the convention on names in the rule to infer a bound
output, precisely because we are transforming a free name (b) into a bound name.

Ground bisimilarity, written ∼g, is the largest symmetrical relation such that

whenever P ∼g Q and P
µ
−→π P ′, there exists Q′ s.t. Q

µ
−→π Q′ and P ′ ∼g Q′.

Lemma 4.2. 1. If Pσ
µ
−→π P ′ where µ is ab, a(p) or a(x), then P

µ′

−→π P ′′

with µ′σ = µ and P ′′σ = P ′.
2. If Pσ

τ
−→π P ′ then

(a) P
τ
−→π P ′′ and P ′′σ = P ′ or

(b) P
bc
−→π

a(x)
−−−→π P ′′ where σ(a) = σ(b) and P ′′[c/x]σ ∼ P ′ or

(c) P
b(p)
−−→π

a(x)
−−−→π P ′′ where σ(a) = σ(b) and ((νp)P ′′[p/x])σ ∼ P ′.

In the last two cases, the input and output actions are offered concurrently
by P .

Proof. Similar to the proof of Lemma 1.4.12 in [7], where the early transition
semantics is treated.

9

4.2 Mutual Desynchronisations

Definition 4.3 (mutual desynchronisation in µCCS). A mutual desyn-
chronisation in µCCS is given by the existence of two prefixes η1, η2, and µCCS

processes P, P ′, Q, Q′, R such that η1 6= η2, P
η1

−→ P ′, Q
η2

−→ Q′ and η2.P |Q′|R ∼
P ′|η1.Q|R.

The notion of mutual desynchronisation is not specific to µCCS. As explained
in the introduction, it corresponds to a situation where three processes T, T12, T21

satisfy:

(i) η1 6= η2;

(ii) T
η1

−→
η2

−→ T12 and T
η2

−→
η1

−→ T21, where the first prefix being triggered domi-
nates the second in both sequences of transitions (we say that a prefix occur-
rence η1 dominates a prefix occurrence η2 if η2 occurs in the term prefixed
by η1);

(iii) T12 ∼ T21.

The proof of Lemmas 4.7 and 4.8 will expose analogous situations in π.

Lemma 4.4 (No mutual desynchronisation). There is no mutual desyn-
chronisation in µCCS.

Proof. We define, for any µCCS process P and prefix η, the contribution of P
at η, written sη(P), by sη(0) = 0, sη(P1|P2) = sη(P1) + sη(P2) and:

sη(η.P) = #(η.P) sη(η′.P) = 0 if η 6= η′

Intuitively, sη(P) is the total size of the components of P that start with η.
Since the distribution law preserves this quantity, we have that P ∼ Q implies
sη(P) = sη(Q) for all η.

Suppose now by contradiction that there are processes s.t. P
η1

−→ P ′, Q
η2

−→ Q′

and η2.P |Q′|R ∼ P ′|η1.Q|R. By the cancellation property (Corollary 2.6), we
have η2.P |Q′ ∼ P ′|η1.Q, hence for all η, sη(η2.P |Q′) = sη(P ′|η1.Q).

Since sη1
(η2.P |Q′) = sη1

(Q′) ≤ #(Q′) and sη1
(P ′|η1.Q)) ≥ sη1

(η1.Q) =
#(Q′) + 2, by taking η = η1 we finally get #(Q′) ≥ #(Q′) + 2. ⊓⊔

We shall rely on the previous result to show that a situation corresponding
to a mutual desynchronisation cannot arise in π either.

In what follows, we fix two distinct names a and b, that will occur free in the
processes we shall consider. The definitions and results below will depend on a
and b, but we avoid making this dependency explicit, in order to ease readability.

Definition 4.5 (Erasing a π process). Given a π process P , we define the
erasing of P , written E(P), as follows:

E(a(x).P)
def
= a.E(P) E(m(x).P)

def
= 0 if m 6= a

E(bn.P)
def
= b.E(P) E(mn.P)

def
= 0 if m 6= b

E(P1|P2)
def
= E(P1) | E(P2) E((νp)P)

def
= E(P) E(0)

def
= 0

10

Note that a and b play different roles in the definition of E().
It is immediate from the definition that E(P) is a µCCS process whose only

prefixes are a and b. Intuitively, E(P) only exhibits the interactions of P at a (in
input) and b (in output) that are not guarded by interactions on other names.
Names a and b will be fixed in the proof of Lemma 4.9.

Lemma 4.6 (Transitions of E(P)). Consider a π process P . We have:

– P
a(x)
−−−→π P ′ implies E(P)

a
−→ E(P ′). If P

bc
−→π P ′ or P

b(p)
−−→π P ′, then

E(P)
b
−→ E(P ′).

– Conversely, if E(P)
a
−→ P0, then there exist x and P ′ s.t. P0 = E(P ′) and

P
a(x)
−−−→π P ′. Similarly, if E(P)

b
−→ P0, there exist c, p, P ′ s.t. P0 = E(P ′) and

either P
bc
−→π P ′ or P

b(p)
−−→π P ′.

Proof. Simple reasoning on the LTSs of µCCS and π.

Proposition 4.1 (Transfer). If P ∼g Q in π, then E(P) ∼ E(Q) in µCCS.

Proof. We reason by induction on the size of P (defined as the number of prefixes
in P). Consider a transition of E(P); as observed above, it can only be a transition
along a or a transition along b.

Suppose E(P)
a
−→ P0. By Lemma 4.6, P

a(x)
−−−→π P ′ and P0 = E(P ′). Since

P ∼g Q, Q
a(x)
−−−→π Q′ for some Q′ s.t. P ′ ∼g Q′. By induction, the latter relation

gives E(P ′) ∼ E(Q′), and Q
a(x)
−−−→π Q′ gives by Lemma 4.6 E(Q)

a
−→ E(Q′).

The case E(P)
b
−→ P0 is treated similarly: by Lemma 4.6, there are two cases,

according to whether P does a free output or a bound output. Reasoning like
above allows us to conclude in both cases.

We can now present our central technical result about π, which comes in two
lemmas.

Lemma 4.7. Q ∼g (νp̃)(a(x).P1|bc.P2|P3) implies that for some Q1, Q2, Q3,
Q ≡ (ν q̃)(a(x).Q1|bc.Q2|Q3) and (νp̃)(P1|P2|P3) ∼g (ν q̃)(Q1|Q2|Q3).

Proof. Let P = (νp̃)(a(x).P1|bc.P2|P3) and P ′ = (νp̃)(P1|P2|P3).
Since Q ∼g P and P can perform two transitions along a(x) and bc respec-

tively, Q can also perform these transitions, which gives
Q ≡ (ν q̃)(a(x).Q1|bc.Q2|Q3) for some q̃, Q1, Q2, Q3,

the first (resp. second) component exhibiting the prefix that is triggered to an-
swer the challenge on a(x) (resp. bc).

Consider now the challenge P
bc
−→π

a(x)
−−−→π P ′, to which Q answers by per-

forming Q
bc
−→π

a(x)
−−−→π Qba, with P ′ ∼g Qba. If Qba = (ν q̃)(Q1|Q2|Q3), that is,

if Q triggers the prefixes on top of its first and second components, then we are
done. Similarly, if Q triggers a prefix in Q3 to answer the second challenge, say

11

Q3 = a(x).Q4|Q5, we can set Q′
1 = a(x).Q4 and Q′

3 = Q1|Q5, and the lemma is
proved.

The case that remains to be analysed is when Q2
a(x)
−−−→π Q′

2 and Qba =
(ν q̃)(a(x).Q1|Q′

2|Q3) ∼g (νp̃)(P1|P2|P3).

We consider the challenge where P fires its two topmost prefixes a(x) and

bc in the other sequence, namely P
a(x)
−−−→π

bc
−→π P ′. By hypothesis, Q triggers

the prefix of its first component for the first transition. To perform the second
transition, Q can fire the prefix bc either in its second or third component, in
which case, as above, we are done, or, and this is the last possibility, the prefix
bc occurs in Q1. This means Qab = (ν q̃)(Q′

1|bc.Q2|Q3) ∼g (νp̃)(P1|P2|P3), with

Q1
bc
−→π Q′

1.

To sum up, we have Qab = (ν q̃)(Q′
1|bc.Q2|Q3) ∼g (ν q̃)(a(x).Q1|Q′

2|Q3) =

Qba, with Q1
bc
−→π Q′

1 and Q2
a(x)
−−−→π Q′

2: this resembles the mutual desynchro-
nisation of Definition 4.3, translated into the π-calculus.

Indeed, we can construct a mutual desynchronisation in µCCS: Qab ∼g Qba

implies E(Qab) ∼ E(Qba) by Prop. 4.1, and Q1
bc
−→π Q′

1 (resp. Q2
a(x)
−−−→π Q′

2)

implies by Lemma 4.6 E(Q1)
b
−→ E(Q′

1) (resp. E(Q2)
a
−→ E(Q′

2)). Finally, using
Lemma 4.4, we obtain a contradiction, which concludes our proof. ⊓⊔

Lemma 4.8. Q ∼g (νp, p̃)(a(x).P1|bp.P2|P3) implies that for some Q1, Q2, Q3,
Q ≡ (νp, q̃)(a(x).Q1|bp.Q2|Q3) and (νp̃)(P1|P2|P3) ∼g (ν q̃)(Q1|Q2|Q3).

Proof (Hint). The proof follows the same lines as for the previous lemma. The
only difference is when analysing the transitions that lead to Qab: to perform
the second transition, Q can either extrude the name called p in the equality
Q ≡ (νp, q̃)(a(x).Q1|bp.Q2|Q3), or otherwise Q can be α-converted in order to
extrude another name. In the case where Q chooses to extrude a different name,
we can suppose without loss of generality that the necessary α-conversion is a
swapping between name p and a name q1 ∈ q̃. This introduces some notational
complexities when expressing Qab, but basically it does not affect the proof
w.r.t. the proof of Lemma 4.7, because the function E() is not sensitive to name
permutations that do not involve a or b. ⊓⊔

4.3 Congruence

Theorem 4.9 (Closure of ∼g under substitution). If P ∼g Q then for any
substitution σ, Pσ ∼g Qσ.

Proof. We reason by induction on the size of P . We consider P , Q such that

P ∼g Q and suppose Pσ
µ
−→π P0. We examine the transitions of P that make it

possible for Pσ to do a µ-transition to P0.

According to Lemma 4.2, there are two possibilities. The first possibility
corresponds to the situation where µ comes from an action that P can perform,

12

i.e., P
µ′

−→π P ′ for some µ′, with P ′σ = P0 (cases 1 and 2a in Lemma 4.2). Since

P ∼g Q, Q
µ′

−→π Q′ and P ′ ∼g Q′ for some Q′. We check that Qσ
µ
−→ Q′σ, and

by induction P ′ ∼g Q′ implies P ′σ ∼g Q′σ.

The second possibility (which corresponds to the difficult case) is given by
µ = τ , where the synchronisation in P ′ has been made possible by the applica-
tion of σ. There are in turn two cases, corresponding to whether the synchro-

nisation involves a free or a bound name. In the former case, P
a(x)
−−−→π P ′ and

P
bc
−→π P ′′ for some a, x, b, c, P ′, P ′′. This entails P ≡ (νp̃) (a(x).P1|bc.P2|P3)

for some p̃, P1, P2, P3, and, since P ∼g Q, we conclude by Lemma 4.7 that
Q ≡ (ν q̃)(a(x).Q1|bc.Q2|Q3) and

(νp̃)(P1|P2|P3) ∼g (ν q̃)(Q1|Q2|Q3) .

Since these processes are of size smaller than P , we can apply any substitution
to the latter relation, and in particular [c/x]σ, yielding:

((νp̃)(P1|P2|P3))[c/x]σ ∼g ((ν q̃)(Q1|Q2|Q3))[c/x]σ ,

which, using the Barendregt convention hypothesis, amounts to

P0 ≡ ((νp̃)(P1[c/x]|P2|P3))σ ∼g ((ν q̃)(Q1[c/x]|Q2|Q3))σ
def
= Q0 .

We conclude by checking that Qσ
τ
−→π Q0.

We reason similarly for the case where the synchronisation involves the trans-
mission of a bound name, using Lemma 4.8 instead of Lemma 4.7. We may re-
mark that Lemma 4.8 gives (νp̃)(P1|P2|P3) ∼g (ν q̃)(Q1|Q2|Q3), and in this case

Pσ
τ
−→π P0 ≡ (νp, p̃)(P1[p/x]|P2|P3) (resp. Qσ

τ
−→π (νp, q̃)(Q1[p/x]|Q2|Q3)): to

conclude, not only do we need closure of ∼g (given by induction), as above, but
we must also use the fact that ∼g is preserved by restriction: P ∼g Q implies
(νp)P ∼g (νp)Q for any P, Q, p. ⊓⊔

Corollary 4.10 (Congruence of bisimilarity in π). In π, ground, early and
late bisimilarity coincide and are congruences.

Proof. By a standard argument (see [7]): since ∼g is closed under substitution,
∼g is an open bisimulation. ⊓⊔

It is known (see [7]) that adding either replication or sum to π yields a
calculus where strong bisimilarity fails to be a congruence.

5 Conclusion

We have presented an axiomatisation of strong bisimilarity on a small subcalcu-
lus of CCS, and a new congruence result for the π-calculus.

Technically, the notion of mutual desynchronisation is related to substitution
closure of strong bisimilarity, as soon as substitutions can create new interactions

13

by identifying two names. We have seen in Section 4 that there exists no mutual
desynchronisation in π, and that ∼g is a congruence.

In (full) CCS, mutual desynchronisations exist, a simple example being given
by a.b + b.a. The latter process is bisimilar to a|b, but the equality fails to hold
when b is replaced with a. The same reasoning holds for the π-calculus with
choice.

It appears that in finite calculi, mutual desynchronisations give rise to coun-
terexamples to substitution closure of strong bisimilarity. The situation is less
clear when infinite behaviours can be expressed. For instance, in the extension of

µCCS with replication, the process !a | !b is bisimilar to P
def
= !a.b | !b.a. Process

P leads to a mutual desynchronisation: we have P
a
−→

b
−→≡ P

b
−→

a
−→≡ P . We do

not know at present whether ∼ is substitution-closed in this extension of µCCS
(we may remark that the two aforementioned processes remain bisimilar when b
is replaced with a).

Some subcalculi of the π-calculus where strong bisimilarity is a congruence
are obtained by restricting the output prefix [7]. In the asynchronous π-calculus
(Aπ), mutual desynchronisations do not appear, basically because the output
action is not a prefix. Strong bisimilarity is a congruence on Aπ. In the private π-
calculus (Pπ), since only private names are emitted, no substitution generated by
a synchronisation can identify two previously distinct names. Strong bisimilarity
is substitution closed (for the particular substitutions at work in Pπ), and is a
congruence.

Regarding future extensions of this work, we would like to study whether
our approach can be adapted to analyse weak bisimilarity in π (as mentioned in
Remark 2.2, strong and weak bisimilarity coincide in µCCS). Another interesting
direction, as hinted above, would be to study strong bisimilarity on infinite,
restriction-free calculi (in CCS and the π-calculus).

Acknowledgements. We are grateful to Arnaud Carayol for interesting discus-
sions at early stages of this work. We benefited from support by the french
initiative ‘ACI GEOCAL’.

References

1. L. Aceto, W.J. Fokkink, A. Ingolfsdottir, and B. Luttik. Finite Equational Bases
in Process Algebra: Results and Open Questions. In Processes, Terms and Cycles:

Steps on the Road to Infinity, volume 3838 of LNCS. Springer Verlag, 2005.

2. O. Burkart, D. Caucal, F. Moller, and B. Steffen. Verification over Infinite States.
In Handbook of Process Algebra, pages 545–623. Elsevier, 2001.

3. W. Fokkink and B. Luttik. An ω-complete Equational Specification of Interleaving.
In Proc. of ICALP’00, volume 1853 of LNCS, pages 729–743. Springer Verlag, 2000.

4. Y. Hirshfeld and M. Jerrum. Bisimulation Equivalence is Decidable for Normed
Process Algebra. In Proc. of ICALP’99, volume 1644 of LNCS, pages 412–421.
Springer Verlag, 1999.

14

5. B. Luttik. What is Algebraic in Process Theory? Concurrency Column, Bulletin of

the EATCS, 88, 2006.
6. R. Milner and F. Moller. Unique Decomposition of Processes. TCS, 107(2):357–363,

1993.
7. D. Sangiorgi and D. Walker. The π-calculus: a Theory of Mobile Processes. Cam-

bridge University Press, 2001.

15

