N

N

A parallel genetic algorithm for the graph partitioning
problem
El-Ghazali Talbi, Pierre Bessiere

» To cite this version:

El-Ghazali Talbi, Pierre Bessiere. A parallel genetic algorithm for the graph partitioning problem.
1991, 9 p. hal-00089203

HAL Id: hal-00089203
https://hal.science/hal-00089203

Submitted on 11 Sep 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-00089203
https://hal.archives-ouvertes.fr

A PARALLEL GENETIC ALGORITHM FOR THE GRAPH PARTITIONING PROBLEM ! I

E-G. Talbi & P. Bessiére 2

Laboratoire de Génie Informatique / Institut IMAG
University of Grenoble

Abstract

Genetic algorithms are stochastic search and
optimization techniques which can be used for a wide range
of applications. This paper addresses the application of
genetic algorithms to the graph partitioning problem.
Standard genetic algorithms with large populations suffer
from lack of efficiency (quite high execution time). A
massively parallel genetic algorithm is proposed, an
implementation on a SuperNode® of Transputers® and
results of various benchmarks are given.

The parallel algorithm shows a superlinear speed-up, in
the sense that when multiplying the number of processors
by p, the time spent to reach a solution with a given score,
is divided by kp (k>1).

A comparative analysis of our approach with hill-
climbing algorithms and simulated annealing is also
presented. The experimental measures show that our
algorithm gives better results concerning both the quality
of the solution and the time needed to reach it.

Key Words

Distributed memory parallel architectures, Genetic
algorithms, Graph partitioning, Hill-climbing, Mapping
problem, Simulated annealing, Superlinear speed-up.

1. This work has been supported by ESPRIT project
SuperNode2 (P2528).

2. Adress: BP53X, F-38041 Grenoble, FRANCE; Phone:
(33)76.51.45.72.; Email: ghazali@imag. fr &
bessiere@imag.fr.

1. INTRODUCTION

Given a graph, the "graph partitioning problem"
searches for a partition of its nodes which optimizes a
given cost function.

There are numerous practical applications of this
problem, for instance:

- design of V.L.S.I. (Very Large Scale Integration)
circuits, where, given a set of components and a set of
modules, one wants to place the components in order to
minimize the number of connections between modules, yet
preserving some balance concerning the number of
components on each module [Lawler69][Russo71];

- routing in distributed systems, where the
considered problem is to subdivide the computer network
into smaller clusters so that the control overhead for
routing is minimized [Bouloutas89];

- image segmentation in the field of computer
vision, where segmented images are represented as graphs
in which each vertex represents a segment and each
weighted edge between two vertices represents a topological
relationship between two segments of the image
[Hérault89];

- virtual memory paging systems, where one wants
to distribute the different objects on memory pages in order
to minimize the number of references between objects
stored on different pages [MacGregor78];

- mapping parallel programs on parallel
architectures.

In our laboratory, we are especially interested in this
last application, namely, the placement of communicating
processes on processors of a distributed memory parallel
machine. A survey of the different methods proposed in the
literature to deal with this problem may be found in
[Talbi®0]. The parallel program is modeled as a graph
where the vertices represent the processes, the vertices'
weights represent known or estimated computation costs of
these processes, the edges represent communication links
required between them and the edges' weights estimate the
relative amount of communication necessary along those
links. When the number of processes exceeds the number of
available processing elements, as it is usually the case in
massively parallel programming, the mapping problem

includes the contraction problem [Berman87] which is
equivalent to the graph partitioning problem treated in this
paper.

The graph partitioning problem is NP-complete.
Consequently, heuristic methods should be used to deal
with it. They may find solutions that are only
approximations of the optimum, but they will do it in a
reasonable amount of time. The different approaches that
have been proposed for this problem may be divided in two
main classes. On one hand, the general purpose
optimization algorithms independent of the given
application and, on the other hand, the heuristic approaches
especially designed for a unique problem. As we want to
avoid the intrinsic disadvantage of the algorithms of this
second class (their limited applicability due to the problem
dependance) our concern in this paper, is only the first class
of algorithms.

Two widely used optimization techniques are the hill-
climbing algorithm [Haden88] and simulated annealing
[Sheild87]. Hill-climbing is sure to find the global
minimum only in convex spaces. Otherwise, most often it
is a local rather than a global minimum which is found.
Simulated annealing offers a way to overcome this major
drawback of hill-climbing but the price to pay to do so is
an important computation time. Worst, simulated
annealing algorithm is rather of a sequential nature, its
parallelization is quite a difficult task
[Baiardi89]{Savage90].

More distributed optimization techniques may also be
considered. Some of them are closely related to neural
networks algorithms (see [Ackley87] & [Peretto90]).
Others, namely, genetic algorithms (GAs) are considered in
this paper. They are stochastic search techniques, introduced
by Holland twenty years ago [Holland75], inspired by
biological evolution of species. Development of massively
parallel architectures made them very popular in the very
last years. They have recently been applied to combinatorial
optimization problems in various fields, such as, for
instance, the traveling salesman problem [Grefenstette87],
the optimization of connections and connectivity of neural
networks [Whitley90], and classifier systems
[Robertson87].

The purpose of this paper is to prove that the graph
partitioning problem may be solved quite efficiently by a
parallel genetic algorithm.

The structure of the paper is as follows:

- in a first section, we give a mathematical
formalization of the graph partitioning problem and discuss
few instances of classical cost functions.

- in the next section, we extensively present the
genetic algorithm approach to the graph partitioning
problem. After a recall of the genetic algorithms principles,
we show how they can be used to deal with the graph
partitioning problem, we discuss the matter of parallel
genetic algorithms and finally we expose the proposed
solution.

- the third and final section, after a detailed
presentation of the Supernode implementation, presents the

results of different benchmarks comparing either speed or
quality of results of this algorithm given different sizes of
population or given different numbers of processors. A
comparative analysis of the genetic algorithm solution with
hill-climbing and simulated annealing ones is also
presented.

Finally, concluding remarks and possible extensions
to this work are proposed.

II. MATHEMATICAL FORMALIZATION OF
THE GRAPH PARTITIONING PROBLEM

Given:

- an undirected graph G = (V,E);

- an application Q; from V into Z*, such that
Q1(v;) = wy; is the weight of vertex vj;

- an application Qj from E into Z™, such that
Qa(ej) = wy;j is the weight of edge e;;

- and a set of numerical constraints ® = {¢1, ¢7,
..., Om} on these weights;

the graph partitioning problem has to find a
partition IT of V (IT = {m, my, ..., Ty }) satisfying the
constraints .

A classical and well studied set ®1 of constraints
expresses that:
- for each sub-set m; of V belonging to the partition
I, the sum of the weights of its vertices must be inferior
to a given value B
VvV miell, 2 O (V) <B
vern
- the sum of the weights of edges going from one
node of m; to one node of some other 7; must be inferior to
some given value C
2 Qi(e)<C
€€ €

withe = { Xy)/ (X,y)eE & xem & yem; & i#j }

The graph partitioning problem under constraints ®1
has been proved NP-complete (see [Garey79]).

Most applications correspond to the following set ®2
of constraints where the weights of all nodes are set to 1
(see [Kernighan70] & [Fe090]):
- for each sub-set 7j of V belonging to the partition
I1, the number of nodes in ; is equal to a given value B;
VvV mell, 2 O(v)=B;
VETG
with V veV, Qi(v)=1
- the total cost of the edges going from one 7; to
another mj should be minimum

MIN(Y, Qafe))

e€EE

The graph partitioning problem under constraints ®2
has also been proved NP-complete (see [Hyafil73]).

For our application, the mapping of parallel programs
on parallel architectures, we have to consider the following
set @3 of constraints:

- minimize the sum of the total communication
costs between processors (total cost of the edges going
from one ; to another 7j) and of the variance of the loads
of the different processors (variance of cost of vertices
belonging to a given m;):

)y 29.(v))2 vzzvn.(v))%))

MIN 2 Qie)_!_(K*(n;el’l e T
cee [T} [T

With K=0 the set of constraints ®3 reduces to 2. This
proves that the partitioning problem under constraints 3
is NP-complete.

For the mapping problem, K is the weight of the
contribution of the communication cost relative to the
computational load balance across the system. Choosing a
suitable value for K depends on knowledge about
characteristics of the parallel architecture. Very small values
of K would suggest a uniprocessor solution, and very large
values would reduce the problem to one of multiprocessor
scheduling without communication costs. The parallel
architecture used was a network of transputers and K=2 has
been chosen.

III. GENETIC ALGORITHM SOLUTION TO
THE GRAPH PARTITIONING PROBLEM

HL.1. Genetic algorithms principles and their application to
the graph partitioning problem

Genetic algorithms compose a very interesting family
of optimization algorithms. Their basic principle is quite
simple.

Given a search space X of size MN, given M symbols,
any point of this space may be represented by a vector of N
of these M symbols.

Given a fitness function F from X into R associating a
real value to any point of Z.

Given an initial set of vectors, called the initial
population.

Some genetic operators are used to generate new points
of X given some old ones in a phase of the process called
"reproduction”. During this phase, some points of I are
replaced keeping the size of the population fixed. The
fundamental principle of GA is: "the fitter a vector, the
most probable its reproduction”. In mathematical terms it
means that the probability P of reproduction is increasing
as F increased:

¥ 61,62€ Z, F(c1)>F(02) = P(01)>P(02)

The standard genetic algorithm is:

Generate a population of random individuals.
While nber_of_generations < max_nber_of generations
Do

Evaluation - assign a fitness value to each
individual.

Selection - make a list of pairs of individuals
likely to mate, with fitter individuals listed more
frequently.

Reproduction - apply genetic operators to the
selected pairs.

Replacement - form a new population by

replacing worst indivuduals by best ones.

The most common genetic operators used during
reproduction are crossover and mutation. Crossover, given
two vectors, cut them both at the same random point and
exchange the two portions thus cut out (fig.1a). Mutation
is simply flitting a bit (fig.1b). Two parameters need to be
defined: Pc and Pm. They represent respectively the
probability of application of the crossover and mutations
operators. Other genetic operators may be find in the
literature, for instance, the inversion operator [Cohoon87]
and many variants of the crossover operator designed for
specific problem domains [Shahookar90].

Parents I Offspring

EEEe [

I —=»

Random crossover point
(2) Crossover

Individual

'

Random mutation of bits
(b) Mutation

Figure 1: Genetic operators.

To use genetic algorithm for the graph partitioning
problem, the following formalism is used:

Let us suppose that we have a graph of N nodes to
divide into M sub-sets. Each of these sub-sets is labelled by
a symbol (for instance an integer between 0 and M-1). A
given partition is represented by a N vector of those
symbols; where symbol p in position q means that node q
of the graph is in sub-set p.

The fitness function F is the last cost function described
in section II. We use the usual version of crossover, but

mutation is a random trial of one of the M possible
symbols.

II1.2. A parallel genetic algorithm

Two M to parallel genetic algorithms have
been considered so far:

standard parallel approach: In this
approach, the evaluation and the reproduction are done in
parallel. However, the selection is still done sequentially,
because Htion would require a fully connected
graph of individuals as any two individuals in the

population may be mated [Macfarlane90].

decomposition approach: This approach
consists in dividing the population into equal size sub-
populations. Each processor runs the genetic algorithm on
its own sub-population, periodically selecting good
individuals to send to its neighbors and periodically
receiving copies of its neighbors' good individuals to
replace bad ones in its own sub-population
[Pettey87][Tanese87]. The processor neighborhood, the
frequency of exchange and the number of individuals
exchanged are adjustable parameters.

The standard parallel model is not flexible in the sense
that the communication overhead grows as the square of
population's size. Therefore, this approach is not adapted to
distributed memory architectures, where the cost of
communication has a great impact on the performance of
parallel programs. In the decomposition model, the inherent
parallelism is not fully exploited as treatment of sub-
populations may be further decomposed. This approach
should be considered only when the number of available
processors is less than the required size of the population.

Considering massively parallel architectures with
numerous processors, we chose a fine-grained model, where
the population is mapped on a connected processor graph
like a grid, one individual per processor. We have a
bijection between the individual set and the processor set.
The selection is done locally in a neighborhood of each
individual. Another version to this approach has been
already proposed in [Miihlenbein89], where at each
generation a hill-climbing algorithm is executed for each
individual in the population.

The choice of the neighborhood is the adjustable
parameter. To avoid overhead and complexity of routing
algorithms in parallel distributed machines, a good choice
may be to restrict neighborhood to only directly connected
individuals.

The parallel genetic algorithm proposed is:

Generate in parallel a population of random individuals.
While nber of generations < max_nber of penerations
Do

Evaluation -
individual.

Evaluate in parallel each

Selection - Receive in parallel the
indivuduals comming from its neighbors.
Reproduction - Each individual reproduces in
parallel with the individuals previously received.
Replacement - Do in parallel a selection of best
local offsprings.

It is important to notice that these modifications of the
standard model do not cause a degradation in the search
efficiency of the standard genetic algorithm as shown in
[Anderson90] and [Miihlenbein88].

IV. SUPERNODE IMPLEMENTATION AND
BENCHMARKING

IV.1. Supermnode Implementation

The Supernode is a loosely coupled, highly parallel
machine based on transputers (fig.2). One of its most
important characteristics is its ability to dynamically
reconfigure the network topology by using a programmable
VLSI switch device. This architecture offers a range of 16
to 1024 processors, delivering from 24 to 1500 Mflops
performance. To achieve these performance, a hierarchical
structure has been adopted [Jesshope86]. The basic
component is a T800 transputer. It is a 32-bit
microprocessor, with on-chip memory and F.P.U.
(Floating Point Unit), delivering 10Mips and 1.5Mflops
peak performance. Communication between transputers is
supported by 4 bidirectional, serial, asynchronous, point-to-
point connection links. A Sun host station is used to
provide the connection between the root processor and the
external world.

FVITCH
A 2x(72x72)

CONTROL
s

L e pepp——" }

|

WY : Working Transpwter
BR A Bupernode Basic Moduly

CT : Comrol Transputer N
SH SERVERS :Disk , Memory tramspwer servers SERVERS

Supernode Parallel Architecture.

Figure 2

The programming environment used in our experiments
is Parallel C 3L. A configurator of the physical network,
developed in our laboratory has been used to obtain the
desired topology of the architecture.

We assume that each individual in the population
resides on a processor and communication is carried out by
message passing. The following is a pseudo-Occam
description of the process executed in parallel by each
processor:

SEQ
Generate (local_individual)
Evaluate (local_individual)
While nber_of generations < max_nber of generations
SEQ
-- communication phase
PAR i=0 FOR nber of neighbors
PAR
neighbor_in[i] ? neighbor_individual[i]
neighbor_out[i] ! local_individual
-- computation phase
PAR i=0 FOR nber_of neighbors
Reproduction(local_individual,
neighbor_individual[i])
Replacement

Each reproduction produces two offsprings. Our strategy
is to choose randomly one of the offsprings. The
replacement phase consists in replacing the current local
individual with the best local offspring produced in the
reproduction phase.

The population is placed on a torus. Given the four
links of the transputer, each individual has four neighbors.
No routing is needed in the processor network because only
directly connected processors have to exchange information.

We do not consider the best solution found globally
since the communication involved in determining this
solution would be considerable. We only pick up the best
solution routing through a "spy process" placed on the
"root processor" (see fig. 3).

root
processor

« H
o1 tg

host
processor

Figure 3 A torus of 16 processors.

IV.2. Varying the number of processors

The purpose of this benchmark is to measure the speed-
up when running the genetic parallel algorithm (for a given
population size) on different sizes of torus of processors.

We use the speed-up ratio as a metric for the
performance of the parallel genetic algorithm. The speed-up
ratio S is defined as S=Ts/Tp where Ts is the execution
time on a single processor and Tp corresponds to execution
time for a p processors implementation. Figure 4 shows
the obtained results.

The algorithm has a near-linear speed-up. This is due to
the fact that the communication cost between processes is
relatively small compared with the computation cost, and is
independant of the size of the architecture.

speed-up
64] 1 1
a linear speed-up

48 O our results B
32 A -
16 - -
0 T T T

0 16 32 48 64

number of processors

Figure 4: Speed-up of the parallel algorithm

IV.3. Varying the population size

The purpose of this benchmark is to measure the
evolution of solution's quality when running the parallel
genetic algorithm with different sizes of population.

Figure 5 shows the obtained results.

Solution quality
35 [1 L 1

4 pop. size=9 O pop. size=16

28 il -
0O pop. size=32

X pop.size=64

14 3
.
KT
7 ¥ L 1 :
0 25 50 75 100

Number of generations
Figure 5: Solution quality function of population size.

Notice that given the specific graph partitioning
problem used (a pipeline of 32 vertices to be partitioned in
8 sub-sets) for this benchmark, the best possible solution
scores 7.

As expected, for a given number of generations, the
quality improves with an increase of population's size.

It may even happen that for a too small population a
premature convergence occurs and that the optimal solution
will not be ever reached.

The figure 5 shows also that the greatest reduction in
the cost of the partitioning occurs at the beginning. Thus a
moderate quality partitioning can be obtained very quickly.

IV.4. Time to reach a given solution

The purpose of this benchmark is to study the speed-up
for a given solution's quality when running the genetic
parallel algorithm on different sizes of torus of processors
and with different sizes of populations (both being equal
given that there is one individual per processor).

Figure 6 shows the influence of the number of
processors (and population size) on the time needed to reach
a solution scoring 8.

number of CPU
processors | time

9 304
16 164
32 71
64 33
To/T
10 [1 L 1 1 1
9 =
8 a linear speed-up -
7 © our results =
6 — -
5 -
4 - P: number of processors]_
T: CPU time
3 Po=9 N
To=304
2 -
1 v T T T r T P/Po
1 2 3 4 5 6 7 8
Figure 6: Execution times on different sizes of parallel
architectures.

We have a "superlinear" speed-up of the parallel genetic
algorithm, in the sense that when multiplying the number
of processors by p the execution time is divided by kp
(k>1).

V.5, mpariso ith hill-climbing a tmulat

annealing algorithms

In this section, the performance of the proposed
algorithm is compared with hill-climbing and simulated
annealing algorithms.

a/ Hill-climbing algorithm

The hill-climbing algorithm starts with a random
configuration, and tries to improve it [Johnson85]. The
improvement is carried out in small steps consisting of
moving a vertice from one sub-set to another. A move is
selected randomly, the cost change of the move is
evaluated, and if the change is for the better the move is
accepted and a new configuration is generated. Otherwise,
the old configuration is kept. This process is repeated until
there are no changes to the configuration that will reduce
the cost function further. When this occurs a local
minimum has usually been found, rather than the required
global minimum. Figure 7 shows a version of the hill-
climbing algorithm.

Generate a random initial state SO (S:=S0).
Repeat
compute at random a neighboring state S'.
if cost(S") < cost(S) then S:=S'
Until there is no better neighbor.

Figure 7: The hill-climbing algorithm.

b/ Simulated annealing algorithm

The principle of the simulated annealing algorithm is
the following [Kirkpatrick83] (fig.8): the system is putin a
high temperature environment. At this temperature is
applied a sufficiently long sequence of random elementary
transformations (markov chain) to reach the equilibrium at
this temperature. Then, the temperature is slightly decreased
and a new sequence of random move is applied. At each
temperature the permitted energy states are governed by the
metropolis criterion, which allows the configuration to
accept a state with a probability P(AE,T). The search
terminates when the system stabilizes.

There 1s a large amount of literature on this topic
[Laarhoven87], and the basic algorithm allows for
considerable variation and tuning of parameters. The
version we considered is a straightforward version, which
can probably be greatly improved. However, as the parallel
genetic algorithm is also a "naive", "out-of-the-shell"
version, we think that the following benchmarks give, at
least, interesting order of magnitudes.

The number of available changes to the configuration,
denoted by L, when moving one vertex to a different sub-
set, 1s given by L=N*(M-1), where N is the number of
vertices of the graph to be partitioned and M the number of
sub-sets of the partition. This value gives a measure of the
size of the problem and is used as a parameter in the
annealing schedule.

1. (Initialization step)
- start with a random initial configuration S0 (S:=S0);
- T := Tmax;

2. (Stochastic hill-climb)
- generate and compute a random neighboring state S';
AE:=cost(S")-cost(S)
- select the new configuration (S:=S") with probability
P(AE,T)=min(l,exp(-AE/T));
- repeat this step X*N*(M-1) times; /* length of the
markov chain spent at each T */

3. (Anneal/Convergence test)
- set T:=aT;
- if T2Tmin goto step2.

Figure 8 The simulated annealing algorithm.

¢/ Experimental protocol and results

Each algorithm was run 10 times to obtain an average
performance estimate. Experiments were performed on two
different problems:

- a pipeline of 32 vertices to be partitioned in 8 sub-
sets;

- and a grid of 64 vertices to be partitioned in 4 sub-
sets.

For the genetic algorithm, we use a population of 64
configurations running on a 8 by 8 torus of processors. The
annealing schedule and the genetic algorithm parameter's
that have been used during our experiments are given by
table 1 and 2.

Symbol | Value Description
Tmax 10 Starting temperature
Tmin 0.1 Minimum temperature
a 0.9 Temperature decay rate
X 2 Lenght of the markov chain

Table 1: The annealing schedule.

Symbol | Value Description

POPS 64 Population size
Pc 1 Crossover probability
Pm 0.5 | Mutation probability

Table 2: Genetic algorithm parameter's.

The tables below show the minimum, maximum,
average value and the variance of the obtained solutions.
The results for the hill-climbing and the simulated
annealing algorithms are based on an implementation on a
single T800 transputer.

It can be observed from tables 3 and 4 that the genetic
algorithm outperforms hill-climbing and simulated
annealing algorithms both in the quality of the solution and
the time used in the search.

Algorithm Solution CPU time
min max mean deviation (sec)
Hill-climbing 75 125 9.9 1.94 353
Simulated annealing | 7.5 9 8.05 0.37 2296
Genetic algorithm 7 8 7.5 0.15 64

Table 3: Benchmarking with a pipeline of 32 vertices and a
partition of 8 sub-sets.

Algorithm Solution CPU time
min max mean deviation (sec)
Hilt-climbing 24 47 329 42.49 643
Simulated anneaiing | 21 27 24 4.00 3358
Genetic aigorithm 17 25 21 6.25 93

Table 4: Benchmarking with a grid of 64 vertices and a
partition of 4 sub-sets.

For simulated annealing, best results may be obtained
using bigger values of X, however, raising X will increase
the computation time.

V. CONCLUSIONS AND FUTURE

DIRECTIONS

A parallel genetic algorithm to solve the graph
partitioning problem has been proposed and evaluated.

The main results are the following:

- the algorithm shows a superlinear speed-up;

- it is easy to program;

- it is simple to implement on massively parallel
distributed memory architectures;

- it outperforms hill-climbing and simulated
annealing algorithms both in the quality of the solution and
the time used to reach it.

An important caracteristic of genetic algorithms is that
they may be used to solve a great variety of combinatorial
optimization problems. We are using them to solve such
optimization problems in the field of robot control and
neural networks [Bessiére90].

We are also studying an important improvement of the
algorithm, namely, the dynamic variation of its parameters
and particularly mutation probability. The crossover
operator becomes less effective over time as the strings in
the population become more similar. One way to avoid the
premature convergence and to sustain genetic diversity is by
using adaptive mutation. During the first generations when
there is ample diversity in the population, mutation must
occur at very low rates. However, as diversity decreases in
the population, the mutation rate must increase.

More theoretical work is planned: a cellular automata
based model will be used to study the influence of the
algorithm's parameters on its convergence

BIBLIOGRAPHY

[Ackley87] D.H.Ackley, "A connectionist machine for
genetic hillclimbing", Kluwer Academic Pub., Boston, 1987.

[Anderson90] E.J.Anderson, M.C.Ferris, "4 genetic
algorithm for the assembly line balancing problem”, Tech.
Rep. No.926, Univ. of Wisconsin-Madison, Mar 1990,

[Batardi89] F.Baiardi, S.Orlando, "Strategies for a
massively parallel implementation of simulated annealing",
PARLE'89, LNCS, Vol.366, Eindhoven, Netherlands, pp.273-
287, June 1989.

[Berman87] F.Berman, L.Synder, "On mapping parallel
algorithms into parallel architectures", J. of Parallel and
Distributed Computing 4, pp.439-458, 1987.

[Bessiere90] P. Bessiére, "Toward a synthetic cognitive
paradigm: probabilistic inference", Proc. of COGNITIVA90,
Madrid, Spatn, 1990

[Bouloutas89] A.Bouloutas, P.M.Gopal, "Some graph
partitioning problems and algorithms related to routing in
large computer networks", 9th Int. Conf. on Distributed
Computing Systems, pp.362-370, 1989.

[Cohoon87] J.P.Cohoon, S.U.Hedge, W.N.Martin,
D.Richards, "Punctuated Equilibra: A parallel genetic
algorithm", Proc. of the Second Int. Conf. on Genetic
Algorithms, MIT, Cambridge, pp.148-154, Jul 1987.

[Feo90] T.A.Feo, M.Khellaf, "A class of bounded
approximation algorithms for graph partitioning", Nerworks,
Vol .20, No.2, pp.181-195, Mar 1990.

[Garey79] M.R.Garey, D.S.Johnson, "Computers and
intractability: A guide to the theory of NP_completeness",
Freeman, San Francisco, 1979.

[Grefenstette87] J.J.Grefenstette, "Incorporating problem
specific knowledge into genetic algorithms", in Genetic
algorithms and Simulated annealing, L.Davis ed., Morgan
Kaufmann Publishers, pp.42-60, 1987.

[Haden88] P.Haden, F.Berman, "A comparative study on
mapping algorithms for an automated parallel programming
environment", Tech. Rep., CS-088, Univ. of California, San
Diego, 1988.

[Hérault®9] L.Hérault, J-J.Niez, "How neural networks can
solve hard graph problems: A performance study on the graph
K-partitioning", Neuro-Nimes'89 Int. Workshop on Neural
Networks & their applications, Nimes, France, pp.237-255,
Nov 1989.

[Holland75] J.H.Holland, "Adaptation in natural and
artificial systems", Ann Arbor: Univ. of Michigan Press,
1975.

[Hyafil73] L.Hyafil, R.L.Rivest, "Graph partitioning and
constructing optimal deciston trees are polynomial complete
problems", RR No.33, IRIA Laboria, Rocquencourt, France,
Oct 1973.

[Jesshope86] C.R.Jesshope, T.Muntean, C.Whitby-
strevens, J.G.Harp, "Supernode Project P1085: Development
and application of a low cost high performance multiprocessor
machine", ESPRIT’'86, Brussels, 1986.

[Johnson85] D.S.Johnson, C.H.Papadimitriou,
M.Yannakakis, "How easy is local search ?", Proc. Annual
Symp. of Foundation of Computer Science, pp.39-42, 1985.

[Kernighan70] B.W.Kernighan, S.Lin, "An effictent
heuristic procedure for partitioning graphs", The Bell System
Tech. Jou., Vol 49, pp.291-307, Feb 1970.

[Kirkpatrick83] S Kirkpatrick, C.D.Gelatt, M.P.Vecchi,
"Optimization by simulated annealing", Science, Vol.220,
No.4598, pp.671-680, May 1983.

[Laarhoven87] P.J.M.Laarhoven, E.H.L.Aarts, "Simulated
annealing: Theory and applications", D. Reidel Pub. Comp.,
1987.

[Lawler69] E.L.Lawler, K.N.Levitt, J.Turner, "Module
clustering to minimize delay in digital networks", JEEE Trans.
on Comp., Vol.C-18, No.l, pp.47-57, Jan 1969.

[Macfarlane90] D.Macfarlane, 1.East, "An investigation of
several parallel genetic algorithms", Proc. of the 12th Occam
User Group, Exeter, UK, pp.60-67, Apr 1990.

[MacGregor78] R.M.MacGregor, "On partitioning a
graph: A heuristical and empirical study", Memorandum
No.UCB/ERL M78/14, Electronics Research Laboratory, Univ.
of California, Berkeley, 1978.

[Miihlenbein88] H.Miihlenbein, M.Gorges-schleuter,
O.Kramer, "Evolution algorithms in combinatorial
optimization”, Parallel Computing, Vol.7, No.2, pp.65-85,
Apr 1988.

[Miihlenbein89] H.Miihlenbein, J.Kindermann, "The
dynamics of evolution and learning: Towards genetic neural
networks", Connectionism in Perspective, R.Pfeifer et al. eds.,
North-Holland, pp.173-197, 1989.

[Pettey87] C.B.Pettey, M.R.Leuze, J.J.Grefenstette, "A
parallel genetic algorithm", Proc. of the Second Int. Conf. on
Genetic Algorithms, MIT, Cambridge, pp.155-161, Jul 1987.

[Peretto90] P. Peretto, "Neural networks and combinatorial
optimization", Proc. of the international conference on Neural
Networks, E.N.S. of Lyon, Lyon, FRANCE, 1990.

[Robertson87] G.Robertson, "Parallel implementation of
genetic algorithms in a classifier system", in Genetic
algorithms and Simulated annealing, L.Davis ed., Morgan
Kaufinann Publishers, pp.129-140, 1987.

[Russo71] R.L.Russo, P.H.Oden, P.K.Wolff, "A heuristic
procedure for the partitioning and mapping of computer logic
graphs", IEEE Trans. on Comp., Vol.C-20, No.12, pp.1455-
1462, Dec 1971.

[Savage90] J.E.Savage, M.G.Wloka, "On parallelizing
graph-partitioning heuristics", Automata, Languages and
Programming, Warwick Univ., UK, LNCS No.443, pp.476-
489, Jul 1990.

[Shahookar90] K.Shahookar, P.Mazumder, "A genetic
approach to standard cell placement using meta-genetic
parameter optimization", JEEE Trans. on Computer-Aided
Design, Vol.9, No.5, pp.500-511, May 1990.

[Sheild87] J.Sheild, "Partitioning concurrent VLSI
simulation programs onto a multiprocessor by simulated
annealing”, IEE Proceedings, Vol.134, Pt.E, No.l, pp.24-30,
Jan 1987.

[Talbi90] E-G.Talbi, T.Muntean, "Static allocation of
communicating processes on a parallel architecture”, Research
Rep. RR-833-1-, LGI/IMAG, INPG, Nov 1990.

[Tanese87] R.Tanese, "Parallel genetic algorithms for a
hypercube", Proc. of the Second Int. Conf on Genetic
Algorithms, MIT, Cambridge, pp.177-183, Jul 1987.

[Whitley90] D.Whitley, T.Starkweather, C.Bogart,
"Genetic algorithms and neural networks: optimizing
connections and connectivity", Parallel Computing, Vol.l4,
No.3, pp.347-361, Aug 1990.

