N

N

Genetic algorithms applied to formal neural networks:
parallel genetic implementation of a Boltzmann machine
and associated robotic experimentations

Pierre Bessiere

» To cite this version:

Pierre Bessiere. Genetic algorithms applied to formal neural networks: parallel genetic implementation
of a Boltzmann machine and associated robotic experimentations. 1991, 5 p. hal-00089193

HAL Id: hal-00089193
https://hal.science/hal-00089193
Submitted on 11 Sep 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-00089193
https://hal.archives-ouvertes.fr

GENETIC ALGORITHMS APPLIED TO FORMAL NEURAL NETWORKS: I

parralle]l genetic implementation of a Boltzmann machine and associated robotic

experimentations

P. Bessiére
IMAG-LGI/LASCO3
Institut IMAG-Laboratoire de Génie Informatique / LAboratoire de SCiences COgnitives!

1 gdress: BP53X, F-38041 Grenoble, FRANCE;
bessiere@imag.imag.fr

I. ABSTRACT

In this paper we describe a possible application of
computing techniques inspired by natural life
mechanisms (genetic algorithms and artificial neural
networks) to an artificial life creature, namely a small
mobile robot, called KitBorg.

We proposed in a previous work (Bessiére 1990)
Probabilistic Inference as a possible underlying
theory or mathematical metaphor for numerous works
in the field of formal neural networks.

Probabilistic Inference suggests that any cognitive
problem may be split in two optimization
problems. The first one called the "dynamic inference
problem" is an abstraction of "learning", the second
one, namely, the "static inference problem", being a
mathematical metaphor of "pattern association".

In this previous paper, for instance, Boltzmann
machines have been shown to be a special case of
probabilistic inference, where the two optimization
problems are dealt with using simulated annealing
(Kirckpatrick 1983) for the pattern association part and
using simple gradient descent for the learning one.

It was, then, suggested that other optimization technics
should be considered in that context and especially
genetic algorithms. The purpose of this
paper is to describe the state of the art of the
investigations we are making about that
question using a parallel genetic algorithm.

We will first recall the principles of probabilistic
inference, then, we will present briefly the parallel
genetic algorithm and the ways it is used to deal with
both optimization problems, to finally conclude about
ongoing robotic experimentations and future planned
extensions.

II. PROBABILISTIC INFERENCE

Probabilistic inference may be seen as the present state
of the art resulting of numerous works aim to use
probability theory as a model of inference and decision
making in an incomplete and uncertain universe.

In probabilistic inference theory, knowledge is
represented using the usual formalism of probability
theory. Knowledge is encoded using a set = = {X{, ...,
Xn} of variables. The value space of Z is called Q. The
basic assumption is that a knowledge state of a

Phone:

(33)76.51.45.72; Fax: (33)76.44.66.75; Email:

cognitive system is a probability
distribution P over Q.

Probabilistic inference has to deal with two different
problems:

1 - given a knowledge state (a probability
distribution P) and some new information (a set of
constraints ® on Z), how to infer a new knowledge
state (a probability distribution Q) taking into account
the new information;

2 - given a knowledge state (a probability
distribution P) and values of some of the variables of
the set &, how to infer the most probable values
(according to P) of the other variables.

The first problem may be called the "dynamic inference
problem" because it concerns how the knowledge state
changes in order to take into account new information,
while the second problem, the "static inference
problem", concemns the consistency conditions of a
knowledge state at a given time (see (Hunter 1986)).

Dynamic inference problem

Given a set of variables & = {X{, ..., Xp}, given Q its
value space, given a prior knowledge state (a probability
distribution P) and given some new information (a set
of constraints @ on Z); the dynamic inference process
has to find a posterior knowledge state (a probability
distribution Q).

In the general case, there is an infinity of probability
distributions which are potential solutions of this
problem. However, all the probability distributions are
not equivalent. Some appear to be more "coherent",
more "probable", more "interesting" than some others.
The function H(Q,P) (called Kulbach entropy, relative
entropy or cross entropy) is a way of measuring the
“interest"Z of a given probability distribution Q relative
to P and @, the smaller H the better Q. H is defined by:

HQP) =+ | Q) logg—((f;—; do

Q

[£1].

According to this, the dynamic inference problem may
be restated as follow: given P and @, find the
probability distribution Q which minimizes H. It can
be shown that if @ is a consistent set of constraints,

2For a discussion of this crucial point see (Bessiére 1990)

there is one and only one solution Q* to this problem.
Finding Q* is not a trivial mathematical problem.

However, for a very important class of problems, where
@ takes the form of a set of real functions (® = {fy, ...,
fm}) such that the mean value aj (A = {ay, a3, ..., ap})
of every function fj is known, then it can be shown that
the solution take the following form:

@=L ¢ 2 M fi@) [£2]

where q* is the density of Q*, Ai are the Lagrange
multipliers and Z* is a normalizing constant.

Let us take an example: given two variables A (the Age
of the captain) and L (the Length of the boat), the
problem we want to solve is find A given L or find L
given A.

We have: E = {A,L}; Q= [7,77] x [4,444].

Starting from scratch (no prior information), Py, the
initial knowledge state, is a uniform distribution over
Q (figure 1). Let us suppose that we first learn the
mean value of A (E(A) = my4) and the variance of A
(E((A - mg)?) = 642). An infinity of probability
distributions over $2 have this mean value and this
variance. However one and only one minimizes H: the
normal distribution P having this mean value and this
variance as parameters (figure 2). If we then learn the
mean value and variance of L, by the same process, we
get the probability distribution P (figure 3). Iterating
this process for all the data we can get about our
problem, and especially for information expressing
correlations between A and L we will finally get a
probability distribution Q* which will sum up all the
previously acquired information (figure 4). The surface
correponding to Q* may be considered as a visualization
of the "memory” of the system.

Static inference problem

Given a set of variables & = {X{, ..., Xpn}, given Q its
value space, given P a probability distribution over Q
and given values of some of the variables of the set Z;
the static inference process has to find the most
probable values of the unspecified variables of Z.

According to the previous paragraph, the interesting
cases to consider are those cases where P takes form
[f.2]. Therefore, finding the most probable values of the
non specified variables (i.e. maximizing P) corresponds
to the minimization of the function:

U@ =3 A fi(w) [£3]

i=1

over the sub-space of Q defined by the given values on

=
[l

Getting back to our example, this means that for a
given value a of the variable A we want to find the
most probable value I of the variable L. This process
may be visualized by looking for the maximum of the
curve defined by the intersection of Q* and the vertical
plane corresponding to A = a (this curve is in bold on

Sfigure 5).

Boltzmann machine

In (Bessiere 1990) we show in some details how
Probabilistic Inference may be used as an underlying
paradigm for numerous Artificial Neural Networks
models. Let us just recalled how it is related to
Boltzmann machines model.

A usual simplification of probabilistic inference consist
in restricting the problem to cases where the X; are
binary variables and where the f; depend on no more
than two variables:

fi(X1, ..., Xn) = o Xk X1 + Bi Xk + vi X1+ 8i

[£4]
In that case we get (from [f.2]):
-y WiXiXi-% Wi X
Q*(w)=2';e% X% [£5]

where Q* is a 1-Gibbs distribution. Such distributions
have well known dynamics with nice simple properties.
This is the choice made, for instance, for Hopfield nets
(Hopfield 1982) and for Boltzmann machines (Ackley
1988).

The dynamic inference problem has new parameters, the
"weights" Wjj, in place of the old ones, the Lagrange
multipliers Aj. The search space, which was the space
of all probability distributions over Q, is approximated

by the space of weights' values. The dynamic inference
process is replaced by a gradient descent dynamic in the
space of the weights' values with H as objective
function. One of the remarkable properties of the
Gibbsian neural nets is that this gradient descent may be
done, without any explicit computation of H, using
simply classical local adaptation rules (for instance,
Widrow-Hoff's rule for Boltzmann machines) on the
system at "thermodynamic" equilibrium (see (Ackley
1988)). Reaching thermodynamic equilibrium itself is
strictly equivalent to treating the static inference
problem and is done using simulated annealing. U is the
objective function but for Gibbsian neural nets, U takes
the exact form of an energy function:

U=—2Winin—ZWini

i<j i

III. PARALLEL GENETIC ALGORITHM

[£.6].

Genetic algorithms compose a very interesting family
of optimization algorithms. Neither their principles, nor
their application can be presented here but a very
complete description may be found in (Goldberg 1989).

However, let us recall that the standard genetic
algorithm has the following form:

Generate a population of random individuals.
While number_of generations <
max_number of generations Do

Evaluation - assign a fitness value to
each individual.
Selection - make a list of pairs of

individuals likely to mate, with fittest
individuals listed more frequently.
Reproduction - apply genetic operators
to the selected pairs. New individuals
produced constitute the new population.

Genetic algorithms are quite easy to implement on
parallel machines. Two main approaches, to do so, have
been considered so far:

- standard parallel approach: In this
approach, the evaluation and the reproduction are done
in parallel. However, the selection is still done
sequentially, because parallel selection would require a
fully connected graph of individuals as any two
individuals in the population may be mated (Macfarlane
1990).

- decomposition approach: This approach
consists in dividing the population into equal size sub-
populations. Each processor runs the genetic algorithm
on its own sub-population, periodically selecting good
individuals to send to its neighbors and periodically
receiving copies of its neighbors' good individuals to
replace bad ones in its own sub-population (Pettey
1987)(Tanese 1987). The processor neighborhood, the
frequency of exchange and the number of individuals
exchanged are adjustable parameters.

Considering massively parallel architectures with
numerous processors, namely, a SuperNode of
Transputers, we chose a fine-grained model, where the

population is mapped on a connected processor graph
like a grid, one individual per processor. This may be
considered as an extreme version of the decomposition
approach, where the sub-populations are reduced to a
single individual. We have a bijection between the
individual set and the processor set. The selection is
done locally in a neighborhood of each individual. The
choice of the neighborhood is the adjustable parameter.
To avoid overhead and complexity of routing algorithms
in parallel distributed machines, we chose to restrict
neighborhood to the only four directly connected
individuals. The parallel genetic algorithm proposed is:

Generate in parallel a population of random
individuals.
While number_of generations <
max_number_of generations Do

Evaluation - Evaluate in parallel
each individual.
Reproduction - Each individual

reproduces in parallel with the best of its'
four neighbors.

Selection - Do inparallel a
selection of best local offsprings.

Another version to this approach has been already
proposed in (Miihlenbein 1989), where, furthermore, at
each generation a hill-climbing algorithm is executed
for each individual in the population.

Detailed description of this work and various
benchmarks may be found in (Talbi 1991a), (Talbi
1991b) and (Talbi 1991c). This parallel genetic
algorithm implemented on a SuperNode of Transputers
shows a remarkable "superlinear" speed-up, in the
sense that when multiplying both the number of
processors and the size of the population by p, the
execution time to reach a given quality of solution, is
divided by kp (with k>1).

TolT
10 1 3 1 L L i
9 4 =
8 & linear speed-up »
7 © our results B
6 — =
5 =
4 - P: number of processors],
T: CPU time
3 - Po=9 L.
To=304
2 = -
1 T T T T T T PIP
1 2 3 4 5 6 7 8 °
Figure 6

IV. A PARALLEL GENETIC BOLTZMANN
MACHINE

Let us now describe how we use the parallel genetic
algorithm presented in preceeding section to deal with

the two optimization problems a Boltzmann machine
has to face:

Static inference problem

To deal with the static inference problem we replace the
usual simulated annealing of Boltzmann machines by
our parallel genetic algorithm. We work with a
population of 64 individuals, each one being a vector of
bits X; representing the activities of the cells of the
network. The search space is 2N, where N is the number
of cells in the network. The fitness function is the
global energy function of the network

E=-3 WiXX; [£7]

i<j

When the Boltzmann machine algorithm searches in
parallel on the state of each cell, our algorithm searches
in parallel on 64 global states of the network.

The very first comparisons between the two algorithms,
made with single processor versions, show same run
times' order of magnitude. It should however be noticed
that the used version of the parallel genetic algorithm is
a very simple and preliminary one, that may certainly
be greatly improved. The same super-linear speed-up
than for other applications was measured when running
the algorithm on more processors. This means than
using an implementation on a 128 Transputers
MegaNode will leads to an acceleration of the algorithm
by a factor of the order of one hundred.

A very remarkable result is that both
algorithms (usual simulated annealing and
parallel genetic algorithm) found the same
attractors or, at least, different attractors
but with the same fitness values. This may
be considered as an indirect "clue" that both
algorithms converge on gleobal optima and do
not get stuck in local optima because, in that last case,
there would be no reasons for both of them to find two
optima with the same fitness values.

Dynamic inference problem

To deal with the dynamic inference problem we replace
the usual gradient descent of Boltzmann machines by
our parallel genetic algorithm. We work with a
population of 64 individuals, each one being a vector of
bits representing the set of weights of the network. The
search space's size is Log(p)M, where M is the number
of connections in the network and p the range of the
weights. A huge search space, indeed! The fitness
function depends on the specific application treated. It
evaluates how good is a certain vector of weights, by
averaging results obtain when treating the static
inference problem on a set of different cases. When the
Boltzmann machine algorithm searches sequentially the
space of weights, our algorithm searches in parallel on
64 sets of possible weights.

The work is not advanced enough to draw any
conclusions from our preliminary benchmarks on the
dynamic inference problem. However, we may say that

the genetic parallel Boltzmann machine did
learn simple encoder problems (Ackley 1988).

V. ONGOING ROBOTIC

EXPERIMENTATION

Let us finally describe the principle of some ongoing
robotic experimentations planned to validate the parallel
genetic Boltzmann machine approach. These
experimentations are closely related to work describe in
a paper of this conference by Dedieu and Mazer.

The prupose of these experimentations is to test a new
robot programming paradigm on a small mobile robot
named KitBorg developped by the company Aleph
Technologies. This new paradigm is describe in details
in (Dedieu 1991).

In usual robot programming, the programmer has a
model of its' own for the environment and tries to both
express the plan of robot's actions and the tasks of the
robot's sensors and actuators relatively to his model. A
main difficulty with this approach is that the
programmer's model of the environment is usually very
difficult to match with the sensors informations. For
instance, a human programmer would describe the
notion of "obstacle" in some geometrical terms, when,
in contrast, the robot's sensors will get information
about the presence of an "obstacle" through some
variation in the intensity of lightenning or optical flow.

The principle of this new robot programming paradigm
is based on the assumption that the robot is able to
"learn" (using the adequate neural network algorithms)
some classification of its' sensori-motor data that will
be characteristic of some significant situations. The
burden of interpreting these situations is let to the
human programmer. The robot imposes its' "view" of
the world to the programmer, in contrast with the usual
robot programming approach where the human
programmer imposes his conception of the
environment.

In (Dedieu 1991), some results about the application of
Kohonen's map to this task of learning sensori-motor
categories are extensively described. We are trying to
used the parallel genetic Boltzmann machine to the
exact same task. After a learning phase where we
classify sensori-motor data, our hope is that we will be
able to "recall”, in a second phase, adequate actuators
command, given some sensors inputs, in order to
reached a given objective sensors situation.

This work is not advanced enough to present some
results, but we hope to be able to do so soon given that
this task will be our main concern in the very next
furture.

VI. CONCLUSION AND PERSPECTIVES

One aim of this work was to prove that formal neural
networks could work using genetic algorithms to deal
with the two optimization problems they have to face.
This aim has been reached. It suggests a totally
new way to implement neural networks on

parallel machines. This seems to be a very
promising research track and will certainly be an
important concern for us in the near future. We
especially intend to improve our parallel genetic
algorithm.

More work has to be done to really answer the question:
"What optimization technics should be used for the
different optimization problems of the various formal
neural networks models?". We plan to do more
benchmarking to compare the different parts of the two
versions of the Boltzmann machine.

More work has also to be done to validate the parallel
genetic Boltzmann machine approach on the described
robotic experimentations. This task is one of our,
present, main concern.

Finally, we hope that we will be able to propose a

cognitive algorithmic model inspired by
probabilistic inference and using genetic
optimization technics.

BIBLIOGRAPHY

D. H. Ackley, G. E. Hinton & T. J. Sejnowsky. 1988.
A learning algorithm for Boltzmann Machines in
Connectionist models and their implications edited by
D. Waltz and J.A. Feldman, Ablex Publishing
Corporation.

P. Bessi¢re. 1990. Toward a synthetic cognitive
paradigm: probabilistic inference. Proc. of
COGNITIVA90, Madrid, Spain.

David E. Goldberg. 1989.Genetic algorithms in search,
optimization, and machine learning. Addison-Wesley
Publishing Company.

J. J. Hopfield. 1989. Neural networks and physical
systems with emergent collective computational
abilities. Proceedings of the National Academy of
Sciences (U.S.A.).

Daniel Hunter. 1986. Uncertain reasoning using
Maximum entropy Inferencein Uncertainty in Artificial
Intelligence; edited by L. N. Kanal & J. F. Lemmer.
Elsevier Science Publishers.

S.Kirkpatrick, C.D.Gelatt & M.P.Vecchi. 1983.
Optimization by simulated annealing. Science,
Vol.220, No0.4598, pp.671-680.

D.Macfarlane & I[.East. 1990. An investigation of
several parallel genetic algorithm. Proc. of the 12th
Occam User Group, Exeter, UK, pp.60-67.

H.Miihlenbein & J.Kindermann. 1989. The dynamics of
evolution and learning: Towards genetic neural networks
Connectionism in Perspective, R.Pfeifer et al. eds.,
North-Holland, pp.173-197.

C.B.Pettey, M.R.Leuze & J.J.Grefenstette. 1987. 4
parallel genetic algorithm. Proc. of the Second Int.
Conf. on Genetic Algorithms, MIT, Cambridge,
pp.155-161.

E-G. Talbi & P. Bessi¢re. 1991a. 4 parallel genetic
algorithm for the graph partitionning problem. A.C. M.
International Conference on SuperComputing, Cologne,
Germany.

E-G. Talbi & P. Bessiére. 1991b. Superlinear
performance of a genetic algorithm on the SuperNode
parallel architecture. S..AM. News.

E-G. Talbi & P. Bessi¢re. 1991c. Genetic parallel
algorithm : performances and applications. Proceeding
of "International Conference on Novel Optimization
Technics", Copenhague, Danemark.

R.Tanese. 1987. Parallel genetic algorithms for a
hypercube. Proc. of the Second Int. Conf. on Genetic
Algorithms, MIT, Cambridge, pp.177-183.

