N

HAL

open science

A Bayesian framework for robotic programming

Olivier Lebeltel, Julien Diard, Pierre Bessiere, Emmanuel Mazer

» To cite this version:

Olivier Lebeltel, Julien Diard, Pierre Bessiere, Emmanuel Mazer. A Bayesian framework for robotic
programming. Twentieth International Workshop on Bayesian Inference and Maximum Entropy Meth-
ods in Science and Engineering (MaxEnt 2000), 2000, Paris, France. hal-00089153

HAL Id: hal-00089153
https://hal.science/hal-00089153

Submitted on 11 Sep 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00089153
https://hal.archives-ouvertes.fr

A Bayesian framework for robotic programming

O. Lebeltel*, J. Diard*, P. Bessiére* and E. Mazer'

* Laboratoire LEIBNIZ - CNRS
46, avenue Félix Viallet, 38031 Grenoble, FRANCE
tLaboratoive GRAVIR - CNRS
INRIA Rhéne-Alpes, ZIRST 38030 Montbonnot, FRANCE

Abstract. We propose an original method for programming robots based on bayesian inference
and learning. This method formally deals with problems of uncertainty and incomplete information
that are inherent to the field. Indeed, the principal difficulties of robot programming comes from the
unavoidable incompleteness of the models used. We present the formalism for describing a robotic
task as well as the resolution methods. This formalism is inspired by the theory of probability,
suggested by the physicist E T Jaynes: “Probability as Logic™[1]. Learning and maximum entropy
principle translate incompleteness into uncertainty. Bayesian inference offers a formal framework
for reasoning with this uncertainty. The main contribution of this paper is the definition of a generic
system of robotic programming and its experimental application. We illustrate it by programming a
surveillance task with a mobile robot: the Khepera. In order to do this, we use generic programming
resources called “descriptions”. We show how to define and use these resources in an incremental
way (reactive behaviors, sensor fusion, situation recognition and sequences of behaviors) within a
systematic and unified framework.

INTRODUCTION

Anyone who ever had to program a real robot in a physical environment eventually
had to face problems due to uncertainties. Sensor values are “noisy”, motor commands
consequences are never quite the ones expected, models are “erroneous”. .. In robotics,
dealing with uncertainties is inevitable.

There 1s quite a lot of experimental work involving programming robots to act under
uncertainty, based on Bayesian inference. In robotics, the uncertainty topic is either
related to calibration [2] or to planning problems [3]. Bayesian techniques are used
in POMDP (Partially Observable Markov Decision Processes) to plan complex paths
in partially known envionments [4], in BDA (Bayesian Decision Analysis) for sensor
planning problem [5]. HMM (Hiden Markov Models) and Monte Carlo methods are
used for localization, planning of complex tasks and recognizing situations [6, 7, 8, 9].
These works effectively use the Bayesian approach for accomplishing robot tasks, but
they do not present a structured programming paradigm as the current paper does.

The paper is organized as follows. Section 2 deals with basic definitions and notations.
Section 3 presents our method for robotic programming using a very simple example.
Section 4 shows various instances of bayesian programs: simple reactive behaviours:
instances of behaviour combinations: sensor fusion: and a combination of all these
programs to achieve a patrolling task. Finally, we conclude with a discussion summing
up the principles of our programming method. More details on this approach can be

found in [10, 11].

BASIC CONCEPTS

Following the works of Cox [12] and Jaynes [1], we base our inference on two basic
rules:

« The conjunction rule, which gives the probability of a conjunction of propositions:
P(anb|t) = P(a|m)P(blar) = P(b|r)P(albr). (1)

» The normalization rule, which states that the sum of the probabilities of ¢ and —a

1s one:
P(a|m)+ P(—aln) = 1. (2)

For notational convenience, we define the discrete variable X as being a set Ex of
kx logical propositions [X = x;] such that these propositions are mutually exclusive
([X = ;] A[X = z,] is false unless ¢ = j) and exhaustive (at least one of the proposition
[X = z;] is true). When introducing variables, we will merely give the domain Ex of
possible values for that variable, along with its cardinal kx. The conjunction X ® Y (or
simply X'Y") of two variables X and Y then corresponds to the set of kx ky- propositions
(X =2;)A[Y = y;]. XY corresponds to a set of mutually exclusive and exhaustive
logical propositions: as such, it is a new variable. The two rules 1 and 2, when applied
to variables, become

P(X@Y|r) = P(X|m)P(Y|X7) = P(Y|m)P(X|Y7), (3)

and

Y P(X|r)=1. (4)
X
From these two rules we derive the marginalization rule, which allows easier derivations:

}X:P(Xcgm) =P(Y|n).

Given a set of n variables {X;,X,,..., X, }, a question is defined as a partition
of this set in three subsets &g, £k and &, denoting the sets of searched, known
and unknown variables. Let Searched, Known and Unknown be the conjunctions
of the variables in g, {x and &y. Given the joint distribution P(X;X,--- X, |7) =
P(Searched ® Known ® Unknown|r), it is possible to compute the probability dis-
tribution P(Searched| K nown ®), using the following derivation:

P(Searched|Known ®)
= Y P(Searched® Unknown|Known ®)

Unknown

> Unknown P(Searched ® Unknown @ Known|r)
P(Known|m)

Pertinent variables

Preliminary Decomposition
Description Knowledge () Parametrical Forms
Program Forms .
(Questions to) Programs

Data (é)
Question

FIGURE 1. Structure of a bayesian program.

S Unknown P(Searched ® Unknown ® Known|r)
2 Searched,Unknown P (S€arched ® Unknown ® Known|r)
1

= X Y P(Searched ® Unknown® Known|r),

Unknown

where Z is a normalization constant. Answering a “question” consists in deciding a
value for the variable Searched according to the distribution P(Searched|Known®).
Different decision policies are possible, in our programming system we usually choose
to draw a value at random according to that distribution.

It is well known that general Bayesian inference is a very difficult problem, which
may be practically intractable. Exact inference has been proved to be AP-hard [13];
however, we developed an inference engine which proceeds in two phases, the first
consisting of symbolic simplifications which reduce the complexity of the considered
sums, and the second which computes an approximation of the distributions.

METHOD

Our programming method relies on the fact that, given the joint distribution, one can
answer any question. A robotic task can be seen as two components:

* A declarative component, where the user defines a description. The purpose of a
description is to specify a method to compute a joint distribution over a set of rel-
evant variables X1, Xy,..., X),, given a set of experimental data § and preliminary
knowledge 7. This joint distribution is denoted P(X X, --- X,,|m).

* A procedural component, which consists of using the previously defined descrip-
tion with a question.

These two components, along with their sub components, form a structure we always
apply when programming a robotic task: this structure can be seen Figure 1.

We now detail each of these two phases, using a very simple example. In this example,
our goal is to program a light following reactive behaviour. Suppose we have, on a robot,
a sensory variable # obtained from low level sensors, giving information about the light
source orientation relative to the robot. Suppose we control the robot using one motor
variable, Vrot, the rotation speed of the robot (the translation speed, Virans, is setto a
constant for this program). A reactive behaviour is simply a relation between the motor

Specification

-~ Variables
+ 8 :domain {-170, -90, -45, -10, +10, +45, +90, 170}, cardinal §
+ Vrot : domain {-10,-9, ... +10}, cardinal 21
— Decomposition
g ¢ POVIO] Ry = PO Ry,) PVIOL O 1y)
«a - Parametrical forms
‘5 * P8 Ty yupy,) — Unitorm
4 « P(Vrot}8 my) — Gaussians
g /A
E <
2] -
Q
j = e
a
Identification SIS
- A priori s
=\ P e
2 e
% Question wor =
8, ~ Draw(P(Vrot [[6 =8] 7T,0)

FIGURE 2. An example of a program. It shows both the program structure our method defines.
and an example where the robot follows light. The plot shown represents the probability distributions
P(Vrot|0 & mphototary), one for each value of 6, that were defined a priori.

command at time ¢ and the sensory state at the same time step ¢. A program to perform
the light following task is shown Figure 2.
The specification phase has three components:

« Variables The programmer specifies which variables are relevant for the task. In
our running example, we have one sensory variable, #, which can take 8 different
values, from -170 (light source behind, slightly on the left of the robot), to +170
(light source behind, slightly on the right of the robot). We also have one motor
command, Vrot, with 21 possible values, from -10 (turn on the left with maximum
rotation speed) to +10 (turn on the right with maximum rotation speed).

+ Decomposition of the joint distribution The second specification step consists
in giving a decomposition of P(0 ® V70t|A ® Tphototasy), as @ product of simpler
terms. Using the rule 3, several decompositions are mathematically correct, we
choose

P(e ® VTOtIA X thototazy) = P(H I A X thototazy)P(VTOtle X A 2y Tphototazy) .

We could further simplify some terms appearing in the decomposition, using con-
ditional independence hypotheses (see Section for some examples).

+ Parametrical forms To be able to compute the joint distribution, we finally need
to assign parametrical forms to each term appearing in the decomposition:

POIA® thototamy) = Uniform,
P(Vrot|0 @ A® Tphototazy) = Gue).e(e)(Vrot).

We have no a priori knowledge about the general orientation of the light source,
relative to the robot. Therefore we assign a uniform distribution to P(f|A ®

Tphototasy)- 1N addition, we assume a single rotation speed must be prefered for each
sensory situation. Hence, P(V70t|0 ® A @ Tpnototazy) has to be unimodal. However,
the confidence in this choice may vary with the situation; this leads to assigning
gaussian parametrical forms to this term'.

This completes the specification phase.

In the identification phase, the programmer has to assess the values of the free
parameters. In simple cases, the programmer may do it himself, by writing a function
or table that stores these parameters. The light following program shown in Figure 2
was obtained this way (see the gaussians in the plot): we call this method a priori
programming. However, it is often easier to justify parameters when they have been
computed by a learning algorithm. In our example, since we only have mean values
and standard deviations to set, this learning phase is simple. Using a joystick, we pilot
the robot to follow the light. Every tenth of a second, we record experimental data
< @y,vroty >, where 6, is computed from the low level sensors at time ¢, and vrot,
is the motor command given by the user at the same time ¢. Given a set A follow Of such
data, computing the mean values and standard deviations of the gaussian distributions
associated with the P(Vrot|0 ® A fouiow ® Tphototazy) term is straightforward.

The description being now completed, we can have the robot play back the knowledge
it has been given, by a question. In this case, the robot should answer the following
question:

Draw(P(Vrot|[0 = 0,] ® A foiton @ Tphototazy))-

EXPERIMENT

The goal of this section is to program a robot so that it patrols its environment, goes
back to its base when asked to, or when its batteries get low. When patrolling, the robot
will wander aimlessly, while avoiding obstacles. The base of the robot will be a recess
in the environment, with a strong light source over it, so that the homing behaviour can
be obtained by combining obstacle avoidance with light following. This program will be
built incrementally: we will first describe the low level reactive behaviours relevant to
the task (obstacle avoidance, light following, homing). Then, we will define two sensor
models, one for accurately sensing the light source position, the other for deciding if the
robot is at its base. Next comes the patrolling layer, where we relate high level sensory
information (orders from the user for example) with high level motor commands (choice
of behaviour). The final program integrates together all these building blocks.

! This is actually a discrete approximation of a gaussian form:

vite (v—p)?
P([V =v]|A7) = \/%e‘ 227 du

Since the domain for variables are finite, we also have to normalize afterwards.

The robot and its variables

LA

i

FIGURE 3. On the left, a picture of the Khepera. On the right, a schema of the Khepera with some
sensory and motor variables.

The Khepera (see Figure 3) is a miniature mobile robot built by the EPFL (Ecole
Polytechnique Fédérale de Lausanne) and produced by K-Team. The Khepera is a
mobile robot with two wheels, is 57 mm in diameter and 29 mm tall, for a total
weight of 80 g, in the basic configuration. It is equipped with eight light sensors (6
in front and 2 behind) having values ranging from 0 to 511, values decreasing with
increasing light (variables Lm0 to Lm7). From these light sensors, we can derive a
variable 6, that corresponds to the bearing of the most powerful light source of the
environment. These eight sensors can also be used as infrared proximity sensors, with
values from 0 to 1023 as a decreasing function of the obstacle distance (variables Pz0
to Px7). From the six front proximeters, we derive two variables, Dir and Prox (with
domains {~10,-9,---,410} and {0,1,---,15}, respectively), that roughly correspond
to the direction and proximity of the nearest obstacle. The Khepera also has rough
odometry capabilities. The robot is piloted using the rotation and translation speeds,
using variables Vrot and Virans. In the following, Vtrans is set to a constant, unless
noted otherwise.

Behaviour combination
In this section, we want to program a homing behaviour for the robot, by combining

light following and obstacle avoidance. We first describe these two components using
two descriptions, then we write a program that combines them.

Light following behaviour

This description has already been defined Figure 2. Let us just recall here that the
preliminary knowledge corresponding is mpphototazy -

P(Vrot | Dir Prox) pour Dir =7

FIGURE 4. The gaussians for the distribution P(Vrot|[Dir = 7| Prozmayeiq). [Dir = 7] corresponds
to an object on the right side of the robot (approx. 45f). When Proz is high (obstacle near), Vrot takes
negative values with high confidence (turn to the left). However, when Proz is 0 (no obstacle sensed),
Vrot is not constrained much, and the resulting law gets close to a uniform distribution.

Obstacle avoidance behaviour

The obstacle avoidance behaviour will simply consist of controlling the rotation speed
of the robot (V' rot), with two sensory variables Dir and Proz, describing the direction
and proximity to the nearest obstacle. The preliminary knowledge associated with this
behaviour description is the following:

«+ Variables Vrot, Dir and Proz.
- Decomposition of the joint distribution

P(Dir ProzVrot|Amtaeia) = P(Dir Prox| Amtgyeia) P(Vrot| Dir Prox AT gyeia)
« Parametrical forms

P(Dir Proz|ATgea) = Uniform,
P(Vrot|Dir Prox A ® Masia) = Gupir,Pros)e(Dir,Proz)(VT0t).

This preliminary knowledge, 7ay0ig, 15 Very similar to Tyuotoras© in both cases, it consists
of a product of a uniform distribution P(.S) over the sensory variables S and of the direct
control law of the form P(M|S), with M the motor variables. The free parameters of
the gaussians can be obtained by experimentation (data A obtained by joysticking the
robot), however, for the 7,,0:4 case, we choose to define them a priori, therefore the A
variable can be omitted. For example, the specification of the standard deviations express
constraints on Vrot: far from obstacles, the rotation speed need not be constrained (large
standard deviation), and near obstacles, the rotation speed need to follow closely the
order (small standard deviation around the mean value). We show an example of the
gaussians for the case [Dir = 7], Figure 4.

Homing behaviour

We now have two descriptions that can control the rotation speed of the robot. The
goal of the next description Tpopming 1s to combine them. This description concerns all

the variables appearing in Tppototazy and Tayeid, and a new variable, H. This variable
indicates what behaviour should be used: when [H = p|, we do phototaxy, when [H =
a), we do obstacle avoidance. The choice between these two modes depends on the
proximity of the nearest obstacle only (variable Prox) : the nearer this obstacle, the
higher the probability of doing obstacle avoidance. We translate all these choices in our
formalism:

» Variables Dir, Prox, 0, H, Vrot.
+ Decomposition of the joint distribution

P(Dir Prox@ HVrot| Amhoming) =
P(Dir Prox8|Thoming) P (H|Proxmhoming) P(Vrot|H Dir Protfmhoming)-

« Parametrical forms

= UnifOTm7

Table,
P(Vrot|0mphototazy) s

= P(Vrot|Dir Proxmaygia)-

P(Dir Prox8|Thoming
P(H|Proxmhoming

P(Vrot|[H = p|Dir Proz0mhoeming
P(Vrot|[H = a]|Dir Prox0moming

The tables associated with P(H|Proxmheming) are defined a priori, so that when
Proz is minimum, the probability of doing phototaxy is maximum, and when Prozx
is maximum, the probability of doing obstacle avoidance is maximum. The last
term makes the link between the homing program and its two resources, via two
questions to the Tppototazy aNd Tyyeiq descriptions.

All the terms are specified, no learning is needed.
The question we ask, and its resolution, are:

P(Vrot|[Dir = di][Proz = pi][Lum = L] Thoming) =
P([H = a]l[Proz = pi|Thoming) P (Vrot|[Dir = di][Prox = p]maveia)
+P([H = p”[PTO:C = pt]ﬂ-homing)P(VTOtHLum = lt]ﬂphototazy)y

which means that the resulting command is a weighted combination of motor commands
given by the obstacle avoidance and light following programs, and not just a all-or-
nothing kind of combination.

Sensor fusion

The goal of this section is to provide an effective way of computing the variable 6, in
two steps. we first build, for each light sensor, a description m,,,; modelling the sensor’s
response to a given light source (direction and distance to the robot known). Then, we
merge all these models associated with each sensor, in a description 75z (SF for sensor
fusion), to compute the light source position relative to the robot.

Sensor model

For a given sensor 7, we decide to consider only three variables: Lmi, the response of
the sensor, # and Dist, the angle and distance of the light source relative to the robot (see
Figure 3). The domains of these variables are {0,1,---,511}, {-180,-170,---,+170}
and {0,1,---,25}, respectively. The decomposition we choose for the joint distribution
is the following:

P(LmibDist|ATiy;) = P(6Dist| Amtyi) P(Lmi|0 Dist Ay).

It is our modelization choice to assign a uniform distribution to P(Dist|Amy,,;). This
choice represents our ignorance about the direction of the light source in the environ-
ment. Finally, gaussian forms are associated to the P(Lmi|0DistAny,;) term,

For the identification phase, we only have to define the means and standard deviations
of the P(Lmi|0DistAmy,;) term. This can easily be done, following the manufacturer’s
characterization of the sensor. Indeed, this characterization describes the response of the
sensor to a given stimulus, which is exactly the semantics associated with this term of
the decomposition. Since this is done without any experimental data (some calibration
could indeed be included at this point), we can drop the A variable.

There are several ways of using this description: for instance, the question
P(6|Lmim,y,;) corresponds to computing the probability distribution over all possi-
ble # values, knowing the sensor value, but ignoring the distance of the light source.
P(Dist|Lmimyy;), or P(Distf| Lmim,,;) are other possible questions.

Fusion

In order to merge the information given by the eight light sensors about the light
source position and distance, we naturally select the variables characterizing the light
source (# and Dist, see above), and the eight sensor values (Lm0 to Lm7, with the same
domain as Imz). For our application, we use the following decomposition (we omit the
A and g variables for clarity) :

P(0DistLm0---Lm7)
= P(0Dist)P(Lm0|#Dist) P(Lml|Lm0#Dist)--- P(Lm7|Lm6--- Lm0f Dist)
= P(9Dist)P(Lm0|§Dist) P(Lm1|dDist) - -- P(Lm7|9Dist).

The first equality is simply an application of the product rule, while the second is the
translation of a conditional independence hypothesis stating that, knowing the character-
istics of the light source, we consider the readings on the different sensors independent.
Again, we decide to assign a uniform distribution to the P(8Dist|Amsy) term. As for
the terms P(Lmi|#DistAngg), that concern a single sensor, we can use the description

Tumi» DY asking a question to it: formally, we write:

P(Lmi|0DistAngp) = P(Lmi|@Distrsp) = P(Lmil0Distr,,;)*.

There are no free parameters in 7gp, therefore there is no identification phase, and we
can drop the A variable.

mt N kpmTe Lol

e, | im 16

FIGURE 5. Fusion of the eight sensors for a light source placed slightly on the right side of the robot
(6 should read 10), and moderately far (Dist is around 10). The eight peripheral plots are the individual
sensor model responses P(6|Lmim;y,;), and the central plot is the answer to the P(6|Lm0--- LmTrsr)
question.

We can now use the mgr description in many different ways, for example:

.

.

P(8|LmOLm]1--- Lm7ngp), if we want to compute the position of the light source
relative to the robot. A specific example, showing how well the signal gets enhanced
when merging the eight sensor models, is shown Figure 5. We clearly see that, while
no individual sensor can measure # precisely, the fusion of the eight models give a
very accurate and certain response. If we decide for a value of 6, according to this
distribution, we can obtain at every time step ¢ a value for the variable 4. This is
how 6 was obtained in the Tphototazy AN Thoming Programs previously described.
In the same way, we can also ask P(Dist|LmOLml---LmTrsp), or
P(Distd|LmOLml--- LmTrgp).

Questions like P(Lm3|0Lm2LmA4ngr), for example, allow to predict what should
be read on some sensors, knowing what the nearest sensors read. In this fashion,
we approach sensor failure diagnosis.

2 This actually requires a little geometric computation in order to shift the individual models to account
for the sensor placement on the robot body.

Base recognition

In the same fashion, we can program the robot to recognize its base, which is a small
recess in its environment, with a light source over it. This sensory situation is considered
typical of “being in the base”, and can be learned experimentally by the robot. The
associated description is a sensor model of the base, called 7,5, and allows to compute
values of a boolean variable, Base, which is true if the robot recognizes the current
sensory situation as the one learned for the base.

Patrolling

The next description, Tya01, is providing the task level control of the robot: the
“motor” variable of this layer is B; (for Behaviour at time t), which can take four
possible values: [B; = standby| when the robot is inactive (at the base), [B; = patrol]
when the robot is randomly patrolling the environment, [B; = homing| when the robot
was asked to go back to standby mode, and [B; = hepergy] When the robot goes back to
the base to recharge its batteries. There is one internal variable, B,_,, which memorizes
what was the selected behaviour at the previous time step. Finally, there are three
binary sensory variables, Base, which is obtained via a question to the 7y, description,
Energy, which is read from an internal sensor (actually simulated: four possible values:
vH, H, L,vL, for very high, high, low and very low), and V'igil, which is an order given
by the user ([V'igil = 1] asks the robot to go on patrol, [Vigil = 0] asks it to go back to
its base and get in standby mode).

As in the sensor model programs, we apply in the decomposition phase what we call
“inverse programming” (we omit Tpqe for clarity, and A, since there is no learning
involved):

P(B,B;_1BaseEnergyVigil) =
P(B;_1)P(By|B;—)P(Base|B;) P(Energy|B,) P(Vigil| By).

These terms may appear counter-intuitive at first, but they actually are very easy to
define, and allow to break the complexity of the sensory-motor space. B;_; is treated as
a sensory variable given by the same description at the previous time step. The P(B;_;)
term is thus assigned a uniform distribution. The “diagonal” elements of P(B;|B;_)
describe the stability of each behaviour, and we can specify in the rest some impossible
transitions (for instance, if we were inactive at the previous time step, we therefore
are at the base, and there is no sense in switching suddenly to any homing behaviour:
we set P([B; = homing]|[B;—; = standby]) to 0). The last three terms, P(Base|B;),
P(Energy|B,) and P(Vigil| B;), decribe what should be read on the sensory variables,
given what is the current behaviour.

These terms (except the P(B;_,) one), are defined using tables, which are shown
Figure 6.

B.. B.. B,

stanitby patral hommg h-cnergy sindby pamit hotbmg h-cocray siandhy pairst hpiving h-cnerps

“ ™ - —
B,, tandhy ne w3 11.03 03 Base " 1" "oy e odnt Energy Vi 0325 [0 135 e
pairut [0 3 [' ' i 0ol 1w % 3z w1 "2s "

huming " nat 1wt G Vigil 1" "o 0 ' "s " 125 143 (55} 1"

[03 "ot ' 01 ' [s Vit 1 045 1S 1"

h-ciergy,

FIGURE 6. The tables defining the terms of the decomposition. Each column sums to one.

Integration

The final program glues together all the previous components: it includes all variables,
and the decomposition and parametrical forms are as follows:

P(VrotB,B, BaseEnergyVigilH Dir ProxLm0--- Lm7Pz0--- Px7|r)
= P(EnergyVigilDir ProxLm0--- Lm7Pz0--- Px7|r)
P(H|Proxmhoming)
P(A|LmO---LmTrgp)
P(B;|By_1BaseEnergyVigilTpuro)
P(Vrot| BiHODir ProxTmevingmode)-

The only term not defined here is the last one, which refers to the description Tmovingmode
which makes the link between the behaviour to apply and the value of the variable B,.
Please refer to [10, 11] for more details.

DISCUSSION

We have introduced a new formalism for programming robots. Our approach closely
implements the Bayesian paradigm and, as a result, follows a clear mathematical frame-
work. It permits programming robots while explicitly taking into account the incom-
pleteness of the models chosen by the programmer.

Our programming method relies on the fact that, given the joint distribution, one can
answer many questions. A robotic task results from both a declarative component which
specifies a method to compute the joint distribution, and a procedural component which
consists of using the previously defined description with a specific question solved by
inference.

When programming a robot, the necessity to completely specify the joint distribution
may seem coercive and superfluous: for example, in the phototaxy program, defining and
using only P(Vrot|f) is enough. Generally, the bayesian approaches in robotics do not
define anything more than what is needed for the task at hand. In constrast, our method
relies on this distinction between what we “know”, and what we want to “do”. This
gives the programmer more freedom when defining the preliminary knowledge: some
conditional independence hypotheses may help choose toward a certain decomposition,
some terms may be chosen because they are easier to assess than others (by learning or
by hand), some terms because they can be defined as questions to other descriptions,
some terms because they make inference easier, etc. This distinction also gives the

possibility to use a description for other purposes than the first intended. All these
aspects have been exemplified in the presented programs.

Hence, a description may be considered as a resource, allowing programming of
complex tasks in an incremental manner. We have illustrated both the combination of
descriptions (defining a new behaviour as a weighted mixture of simpler ones) and the
hierarchical composition of descriptions (similar to calling sub-procedures in classical
programming, as some of the parametric forms appearing in a decomposition may be
questions addressed to more “basic” descriptions).

Descriptions offer a large capacity of expression to specify models and use them
as well. The specification phase compels the programmer to exhaustively express the
information he has about the task. Everything that should be known about a given
robotics problem is in the description: the synthesis between the preliminary knowledge
and the experimental data. There is no hidden knowledge in either the inference program
or the decision algorithm. As the description encapsulates all the revelant information,
exchanging, sharing or discussing models is easy and rigorous.

REFERENCES

1. E. Jaynes, Probability theory - The logic of science, Unfinished book, Note : Publicly available at
http://bayes.wustl.edu., 1998.

2. R.Bernhardt and S. A. (editors), Robot Calibration, Chapman & Hall, 1993.

3. R. Brafman, J.-C. Latombe, Y. Moses, and Y. Shoham, “Applications of a logic of knowledge to
motion planning under uncertainty,” Journal of the ACM, 44(5), 1997.

4. L. Kaelbling, M. Littman, and A. Cassandra, “Planning and acting in partially observable stochastic
domains,” Artificial Intelligence, 101, 1998.

5. S.Kristensen, “Sensor planning with bayesian decision theory,” Robotics and Autonomous Systems,
19, pp. 273-286, March 1997.

6. O. Aycard, Architecture de contréle pour robot mobile en environnement intérieur structuré. Thése
de doctorat, Univeristé Henri Poincaré, Nancy, France, 1998.

7. S. Thrun, D. Fox, and W. Burgard, “A probabilistic approach to concurrent mapping and localization
for mobile robots,” Machine Learning and Autonomous Robots (joint issue), 31/5, pp. 253-271, 1998.

8. F. Dellaert, D. Fox, W. Burgard, and S. Thrun, “Monte carlo localization for mobile robots,” In
Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), 1999.

9. J. Leonard, H. Durrant-Whyte, and . Cox, “Dynamic map building for an autonomous mobile robot,”
International Journal of Robotics Research, 11, August 1992.

10. O. Lebeltel, Programmation bayésienne des robots. Thése de doctorat, Inst. Nat. Polytechnique de
Grenoble, Grenoble, France, Octobre 1999.

11. O. Lebeltel, P. Bessiére, J. Diard, and E. Mazer, “Bayesian robots programming,” Les cahiers du
laboratoire Leibniz ; 01, 2000.

12. R. Cox, The algebra of probable inference, The John Hopkins Press, Baltimore, USA, 1961.

13. G. Cooper, “The computational complexity of probabilistic inference using bayesian belief net-
works,” Artificial Intelligence, 42, 1990.

