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(29 pages, 16 figures)

Summary

This paper presents theoretical and numerical results on the high frequency directivity of an aero-
engine under flight conditions. In this paper, two different theories, based on a Kirchhoff approxi-
mation for semi-infinite cylinders, are combined to obtain the far field sound pressure radiated into
the whole surrounding space. Although the geometric description of the engine is simplified - in
particular, the annular exhaust is not taken into account - it includes some of the main features of
a typical aeroengine: subsonic flow, different diameters at the intake and the exhaust ends and the
occurence of various flow velocities at the exhaust end to account for the effects of a jet. Numerical
examples are given.

PACS no. 43.20.El, 43.28.Py, 43.50.Lj, 43.50.Nm



P-0O. Mattei 2

1 Introduction

The sound radiation emitted by aeroengines has been studied for a long time. From the first studies [5,
18, 17, 12] on the acoustic transmission in a pipe with flow, to those dealing with more complex
complex such as those focusing on more realistic aeronautical engines (see for example [22, 21, 20,
19, 23, 16]), this topic has attracted considerable attention. Schematically, the studies published
so far have been of two kinds. Those of the the first kind have focused on the ends of the engine
(the intake and exhaust points) using analytical methods. Those of the second kind have attempted
to provide a more realistic description of the engine in numerical terms (mainly using boundary
element methods). In the latter studies, however, the description of the engine has always been
oversimplified, especially as far as the geometry is concerned; the problem generally treated has been
that of a finite cylindrical shell immersed in a uniform flow. To the author’s knowledge, the problem
of an aeroengine with various diameters at the intake and exhaust points in the presence of a jet
has never been addresses so far. When addressing such complex problem, it would obviously be
unrealistic to attempt to account completely for the geometry in terms of simple analytical relations.
But if some approximations are made, such as neglecting the interferences between the sound pressure
fields created by each end of the engine, or assuming that exhaust jet is always circular, it is possible,
by combining the results of the previous studies, to obtain a simple asymptotic expression with which
the far field sound radiation emitted by an aeroengine can be readily calculated.

This paper deals with the propagation of high frequency sound radiated by an aeroengine without
annular exhaust jet under flight conditions. The approach used here is based on theories previously
developed by Cargill [3] and by Candel and Homicz & Lordi [2, 11]. This engine is immersed in a
uniform subsonic flow and is prolonged by a jet in which the Mach number differs from the external
Mach number. The engine is assumed to form a thin finite cylindrical surface. This cylinder is

composed of two sections with different diameters that radiate the sound pressure independently. To
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deal with the acoustic pressure propagating inside each section of the engine, each section is assumed
to constitute an infinite semi cylinder. This assumption is based on the idea that the various blade
rows of the engine divide the initial finite domain into two independent domains in which the sound
pressure field propagates toward the outet end of the two sub domains independently. The acoustic
field propagating in each section is therefore only an outgoing field and the acoustic pressure field
reflected by the core of the aeroengine is negligible. The acoustic radiation emitted at the aperture of
each cylinders is described by the Kirchhoff’s approximation. The radiation is taken here to depend
only on the field at the open end of each cylinder, neglecting the interferences radiated between the
fields by engine’s intake and exhaust and by the diffraction from the walls of the cylinder itself. This
latter approximation obviously falsifies the results obtained on the rear arc of each cylinder, but this
portion of space is that where the radiation emitted by the other part of the engine excited by the
same sources becomes prevalent. An other approximation of this model is that the exit plane field
of each cylinder is determined by assuming that at sufficiently high frequencies (above the cut-off
frequency of the incident propagating mode) no reflection will occur at the exit plane and the pressure
field at this point will therefore be that of the incident mode. With this model, one obviously cannot
describe duct modes near the cut-off as they radiate at an angle of almost 90° and have a strong
reflection coefficient at the termination. But as established by Cargill [4] upon studying the analytical
solution obtained using a Wiener-Hopf approach to the low frequency radiation of an incident plane
wave in a pipe with different internal and external flows and by Rienstra [20] upon studying the
acoustic radiation occuring in an annular duct in a uniform flow, the reflection coefficient of the
plane wave and low modal order waves decreases rapidly to zero as the frequency increases. This is
not a crucial point for practical applications since the high frequency contribution to the far field is
masked by the other modes. It is also worth noting that Rienstra’s solution, while not taking the

presence of a primary exhaust jet into account, makes the problem of high by-pass ratio easier to
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handle.

A similar approach was recently developed by Joseph et al. [14], who modelled the sound radiation
of the semi-infinite cylinder using a Wiener-Hopf approximation [13, 15]: this model is valid at low
frequencies but does not take the effects of a jet into account.

At the intake end of the engine, the cylinder is taken here to be immersed in a uniform subsonic
flow, with the same flow velocity inside and outside the cylinder. The acoustic sound pressure
radiated is easily calculated from the directivity diagram for a fluid at rest based on the Prandtl-
Glauert transformation [2, 11].

At the exhaust end, the cylinder is immersed in the same flow as the intake end, but inside the
cylinder and in an infinitely long circular domain with the same diameter, the internal flow has some
characteristics that differ from the external flow, namely the sound speed velocity, density and Mach
number. Although the jet emitted by an aeroengine is not circular, it can be reasonably assumed
that the acoustic behavior of the exhaust is fairly accurately described by this model on the whole.

The acoustic radiation model chosen here was that proposed by Cargill [3], which is based on a
Kirchhoff approximation of the sound radiated from a semi-infinite duct with various internal and
external mean flows. Since the results obtained are valid both for a uniform flow and a fluid at rest,
this model was also used to compute the sound radiated by the intake of the engine. This model is
valid a priori only in the case of the front arc of the cylinder (between 0° and 90°) and it is a high
frequency model: Cargill gives kR &~ 10 as the low frequency limit where k is the wavenumber and
R the radius of the cylinder. However, comparisons between the results obtained using this method
in homogeneous fluid at rest and those obtained with an exact method based on the Wiener-Hopf
method [9, 10] showed an excellent agreement along the whole front arc, not only at high frequencies
but also at low frequencies. The accuracy of the directivity starts to decrease above an angle of 100°

with respect to the cylinder axis. In and beyond this zone, the pressure levels range between 10 dB
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and 50 dB below the sound pressure levels originating from the other part of the engine, which means

that the inaccuracy of the approximation in this region is irrelevant to the total sound pressure field.

2 Theoretical developments

2.1 Geometry and notations

Let us consider an infinite domain where the reference coordinates defined as cartesian (O, z,y, 2),
cylindrical (O, r, 0, z) or spherical (0,7,0,¢). This domain contains a fluid defined by its sound speed
ce and its density p.. This fluid has a uniform motion at a speed of U, < ¢, (with Mach number
M, = U./c. < 1) parallel to the z-axis. This domain contains at the origin two rigid cylindrical
pipes of finite length with different diameters: R; in the case of the upstream pipe (at the intake
end of the engine) and R, in that of the downstream pipe (at the exhaust end of the engine).
With the model developed here, the length of these pipes has no importance. This picture does
not include the interference introduced by the acoustic fields, but this seems to be of little practical
importance because it is impossible to fix the relative phases corresponding to the various acoustic
sound pressure fields a priori . The downstream pipe is extended by an infinite cylindrical fluid with
radius Ry containing a fluid with sound speed ¢; and density p; with a uniform speed U; parallel to
the z-axis (Mach number M; = U;/¢; < 1). S, is the section of the waveguide and S is the external
part of the cylinder (see figure 1).

Here we examine the acoustic sound pressure p(Q), t) at an observation point @ located outside the
engine, and moving with the flow at Mach number M,. The fixed engine/moving observer system
is equivalent to a system consisting of an engine moving at Mach A, and a fixed observer in a
still space (for example standing on the ground). Point @ is described by its spherical coordinates

R.,0, . downstream and R,, 0, ¢, upstream. These two systems of coordinates are only introduced
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Figure 1: Geometry

to facilitate the subsequent calculations. To simplify the calculations as well as to the results easier
to interpret, it is convenient to introduce a coordinate system based on the reception time [6]. In

the observer’s time, the coordinates of ) are R, 0, . One has:

R,. = \/R2 sin? ¢ + R2(£M, + cos? )2

)

+ for R,
= R\/l + M2 £+ 2M, cos? p,
— for R,
. Rsin
singe = — 4
a,e

)

sin
\/1 + M2 £2M,cos? ¢

2.2 Equations expressing the problem
2.2.1 Equation of wave propagation outside a moving surface

In this part, we recall Cargill’s theory [3].
The acoustic sound pressure in the case of a fluid moving at uniform speed U parallel to the z

axis, is the solution of the convected wave equation

(A—%<%+U%>)MM@:0 (1)
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Let us take 2 5 =

; % +U % to denote the particular derivative. To obtain the acoustic pressure field

outside a mobile surface (the engine) defined by f = 0 with f > 0 outside the surface and f < 0

inside the surface, we multiply equation (1) by H(f) where H(z) is the Heaviside step function. This

gives
1 Dp(M,t)
H Ap(M,t) — — 0
) (awon) - S22 -
but
HAp = A(pH)—div(pVH)—Vp-VH
D'y _ DiH D (DHy DiDy
pez ~ Dz Dit\’Dir) T Dt Dt
Then

(A= 57) WOLOH() = divp(M,)VH() + V(M. ) - TH(f)

2 Dt 1 (D (p(M:t)Dgif)> N Dlgif) Dp%i))

t

2
= f° (2)
Equation (2) is used to calculate the acoustic sound pressure field radiated by each portion of the
engine in term of the Kirchhoff approximation. For example, at the exhaust, the moving surface can
be assumed to constist of the pipe S and its exit section S.. By definition, the normal derivative of
the pressure is zero on S. In the Kirchhoff approximation, the pressure is also taken to be zero at
the surface of the pipe. The only acoustic source is therefore that formed by the exit section of the
pipe S, the pressure and normal derivative of which are those of the incident field inside the pipe.
Let us take the Green’s function G(M,t; My, t), where the particle displacement and acoustic

pressure are continuous across the jet, which satisfies

(30-

1 D; . .

2 D1 ) G(M,t; My, ty) = Opy(M)dy,(t), inside the jet

1D,
(AM — —23> G(M,t; My, ty) = 0, outside the jet
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. D,
with 2t

— 9 9
Dt — ot + Ueﬂaz'

To establish the Green’s representation for the pressure, we start with equation (2 written as
follows: (A — c%%) dx (pH) = f*, where % is the convolution product in time and space extended
to the whole volume V' of the jet. This gives G % (A - C%D%) dx (pH) = G % f* = p. By expanding
the convolution product, one obtains:

p(M1) = [ GOM, 6 M8 (iv(p(M', YT H () + Tp(M', ¢ TH(f)AM dt
Vit

DY) | DE)DAM)
Dt Dt Dt

1

2 Jvi

G(M,t; M', ") <£ (p(M',t')

dM'dt
)

while integrating by parts, we obtain:
/VtG(M,t; M’ div(p(M',\VH(f))dM'dt" = /thiv(G(M;t, M p(M' " \VH(f)dM'dt
_ /V MOV arGOM, 4 M) - VH(f)dMdt
= —/th(M’,t’)VM,G(M,t; M' ") - VH(f)dM'dt

Likewise, we have:

D (p(M, 1) 250
D

D
/ G(M,t; M', 1) )dM’dt’ = / <G(M,t; M’,t’)p(M',t')w
Vit v,

+ Dt/ Dt
DG(M,t; M' 1) , ~DH(f)
v Dt p(M.t) Dt
DH(f)

DG(M,t; M' 1)
= — S Akl Mt ——LdM'dt
/V,t Dt p(M', ) Dt

> dmM’'dat

dm'dt’

Finally:

p(M,t) = /V(G(M,t;M’,t’)Vp(M’,t’)—p(M’,t’)VM,G(M,t;M’,t’))-VH(f))dM’dt’
,t

Dp(M', t') DG(M,t; M",#)\ DH(f)
Dt' Dt Dt'

1

c Jvy

— p(M', 1) dM'dt'.

<G(M,t; Mt

2.3 Sound pressure radiated by the engine

As an example, let us consider the downstream part of the engine. In this case, one can set the

position of S, at z = 0. One has VH(f)) = nd(z) and %if) = U;0(z), where @ is the normal to
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Se and 0(z) is the Dirac delta distribution at z = 0. Taking into account the Neumann condition
and the zero pressure condition on the external surface S, one obtains the Kirchhoff formula for a

moving surface [7] :

p(M,1) = / (G(M, t; M, ) 0pe (M, 1) — pe( M, )02 G (M, t; M', ') dM'd#’

Se,t
1 Dipe(M/ t/) DZG(M t; M’ t’)

—— M, t; M' ') ———"> — p. (M, L ;dM'dt .
CZ2 Se,t <G( » 7 ) ) Dt/ p( ’ ) Dtl U

Thanks to the 27-periodicity in 6 of the geometry, all the quantities involved in the problem can

be expanded into angular Fourier series:

m=+o00

fr,0,2/9) = > fulrz/p)e™

m=—0oQ

—wt

Let us now assume that the time dependency is harmonic: e ™", The acoustic pressure outside

the pipe is then given by:

Ry 0 0
Pme(r,2) = / G (7, 2,70, 20) 5—Pme(T0, 20) — Pme(T0, 20) 5—Gm (T, 2570, 20) rodro
0 02 029 20=0
Uy R D;pme(ro, 20) D,G,(r, z; 70, 20)
T Gm ) ) ) - A, me ) d 3
) (Ot P o PERCEIZL)
where 1?;0 = —w + Ui%.

By continuity, if no reflection of the incident pressure occurs at the exit plane (this is valid only
when the operating frequency is much higher than the cut-off frequency of the mode considered),

one has on the exit plane of the pipe
Pme(T0,20) = Pmi(r0, 20) at 20 =0
8zopme(T07 ZO) — azapmi(rm ZO) at 20 = 0

where p,,;(r, z) is the incident pressure inside the pipe. Obviously, near the cut-off, a significant
reflection occurs and these results are therefore not valid. Let us now assume that the incident

pressure field is given by a propagating mode with index (m,n) and wavenumber k¢, [7, 8]:

! e kz i 2
Pmi(r,2) = Jm(jan)e’km"z, where k¢, = M+ 41— {5 Frmn
Ry kb

B
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where kj = w/ci, Bi = \/1 — M? and &!,,, = j..../Ra. Ju(2) is the Bessel function.
One has (see Appendix) :

G (7,270, 20) = == " Ho (ko) Ton (k) I (o) =G0k, (4)

where H,,(z) is the Hankel function of the first kind and T,,(k.) is the transmission coefficient of the
jet. Using the continuity relations and the expressions for the incident pressure fields and Green’s
function, one obtains the pressure outside the downstream pipe:

o0 / To

1 (R .
pe(r2) = = [ ) T Do)k (05, o G 72

—00

_ (—z/.cz)Jm(j;,m;—O) / > Hm(/fer)Tm(kz)Jm(niro)e’kzzdkz} rodro
2 J—o0

! U’ R o 1k, 2 e . To
+——2/ {/ Hy (Ker) T (k) I (kim0 e 2 dk, (—w + 2UikS ) I (Jn =)
4¢ Jo —c0 R,

= Tl ) (0 = ik) [

—0o0

Hm(/{er)Tm(kz)Jm(/-ciro)e’kzzdkz} rodro

And by rearranging the terms :

7 o

) = =1 [ Bt {0 k) + 5 = Gik) = (o4 Uk

Ro
/ Jm(ﬁirﬂ)‘] (JmnR )TOdTO Hm(“er)emzz] dkz
0

But since we know [1] that [(8% — a?)zJ(2a))n(B2)dz = 2 (ot (a2))n(B2) — BInm(82),(az))
then

Rglﬁli
i = (%)

Finally, the acoustic pressure outside the jet is given by:

Ry ,
L Taniro) i oo = (i B22) I ()

Poe(r,2) = —i _°:O le(kz) {—z(—kz — k) + ZCU—2 [(w—Uke, ) — (w+ Uikz)]}
%J (HZRQ)J (]mn) Hm(’ier)elkﬂ] dk., (5)

with x;. = K;e(k,). This result is valid only for subsonic flows but it is valid for identical Mach

numbers (where the transmission coefficient 7,,(k,) = 1) and even for zero Mach numbers.
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Now to compute the acoustic pressure radiated by the upstream part of the engine, one can either
use this result directly (by imposing M; = M,) or use the Prandtl-Glauert’s transformation which
consists in calculating the sound pressure field in the moving reference frame, taking M; = M, =0

in equation (5). Because of its simplicity, this latter method is used.

2.4 Directivity of the aeroengine
2.4.1 Exhaust of the engine

Let us now consider the far field R/R;5 > 1 and kR > 1. In the reception coordinate system (cf.
figure 1), the cylindrical coordinates of the point @) are given by (r,0, z) = (Rsin ¢, 8, R(M,+cos ¢)).
Sufficiently far from the jet axis, one has r = Rsin ¢ > 1. By performing asymptotic expansion, we

obtainH,, (ker) & 1/2/(7wker) exp i(ker — mm/2 — w/4). Equation (5) is then written

pme('r’ Z) = /oo fm(kz)el(mer—kzZ)dk-z. (6)
with
7 e Uz e
fulk) = (k) {—z(—kz ko) 4 1 [0~ Uikt — (o + %)1}
- 7 N 2 T T

%Jm(ﬁifb)‘]m(]mn) e_l(m§+z)'

2 Jmn 7”4}67"
Ri — (R—Q)

The exponential term can be written:

ez(ner—k;z) R(ke(k:)sin p—k.(Me+cos ¢)) eth(k:Z)
3

:eZ

this gives:
pme(r, z) = pme(R, 99) = / fm(kz)eZRh(kZ)dkz-

By applying the stationary phase method [6], we obtain:

2T 0 1(1.0\\
me R ~ m kO - th(kz)+ngn(h (kz))z



P-O. Mattei 12
if 1/ (k%) = 0 and K" (k%) # 0.
It can easily be established that

cos ¢
RO = —k¢
z %(14 M, cos )

where kf = w/c.. h(k?) = k¢ and h"(k°) = —(1 + M, cos ¢)?/ (k& sin p)? < 0. Then finally:

27 (k§ sin )? ¢ _,x
e ~ kO 1RE§ '
p (Ra (,0) f ( z)\l R(l +Me COSQO)?’e (&

Now, still in line with Cargill’s method, let us denote

xo(k)) = —kJ+ M;(ki + M;k?),
Xmn (K2) = =k, — Mi(ki — Miks,,),
and
D (k)) = —1Ra(xo(k]) + Xmn (K2)),
1) = By () BT

K; (KRS = Join

Then finally

ek TR .
e R ~ Tm kO Dm ]{30 Im kO o hrwe amZ
eleS
= _47TR:‘$nn(k87S0) (7)

=e (kS ©) is the directivity diagram of the engine exhaust.

2.4.2 Intake of the engine

To calculate the sound pressure emitted at engine intake end, we apply the theory of Candel [2] or
Homicz and Lordi [11] which consists in solving the problem for a medium at rest with the following
variables:

COS Y, . Be sin @,
,sin @y, =
\/1—M§sin2(pa \/l—MgsiHQ%

COS Q14
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ko= =i
R

R
Ry, = ﬂ—a\/l—Mzsin290a— \/1+M3—2Mecosgp\/1—M§sin290a
€

€

with (see figure 1) sin ¢, = sin gp/\/l + M2 £+ 2M, cos? p.

This gives:
etfiaki . 1 — M, cos p,
pma(Ra 90) ~ _47TR1 :‘?nn(kb 30111) > 2 (8)
1= Moy - ()

where =0 (k, ) is the directivity diagram of the upstream pipe calculated without any flow, which
is obtained simply by taking the Mach numbers M; and M, to be equal to zero in Z¢, (k§, ). It is
worth noting that in this case, the incident pressure wave is given by the propagating mode (m,n)

with wavenumber £

T
Ry

pmz’(r7 Z) =Jn (j;nn ki

N\ 2
a Ky

Je "*mn® where k% = k¢ | \[1 — ( m.”)

where ki = w/c; and k! =4 /R.

Upon carrying into equation (8) the various expressions for the transformed variables, the expo-

nential term becomes:

RV o Be kG 1= M2 sin? po/1+-MZ—2Me cos ¢

AR 4r 1 — M2sin® p,\/1+ M2 — 2M, cos ¢

Since only the amplitude is significant in the calculation of the directivity one can neglect the phase
term in the previous relation (this approximation becomes exact when the Mach number is zero).

One then obtains:

et Riaks otk§ R /1— M2

4Ry, AT R \/1 — Mg sin? QDa\/l + Mg —2M. cos ¢

Finally, by reporting this result into equation (8) :

ekol 1 — M, cosp, 11— M2

pma(Ra (,0) ~ _—;mn(kfa (Pla)
ATR 1—Me\/1— (kie{lﬁl_)?\/1—Mgsin2gpa\/1+M§—2Mecoscp
1

oths R
- ATR ;im(kga (,0) (9)

Q

za (K, ¢) is the directivity function of the upstream part of the engine in a uniform flow.
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2.4.3 The complete directivity

To obtain the directivity of the complete engine, the two partial directivities are simply added,
taking the upstream change of variable into account. If the origin of the angular variable ¢ is fixed
downstream, one has:

zkeR
pma(Ra 9‘9) 47TR ( (kOa - (,0) + Efnn( 87 (/9)) (10)

2.4.4 Maximum directivity of the engine

It can easily be seen that the engine has two directivity maxima, one at each of its ends. Let us take
@ to denote the maximum at the intake end, as previously proposed by Candel [2] and Homicz
and Lordi [11], and ¢P¢ to denote the maximum at the exhaust end.

To calculate ¢P¢ | let us start by looking for the angle of the maximum directivity without flow,

denoted ¢? . It can be easily seen that kR, sin? With flow, in line with Candel, one

. . .
has kR sin @by 10 = Jom- From singb? | = [, sin P / \/ 1 — M2 sin? phna, one obtains sin P? =

(j;,m/(le))Q/\/l + M2(j,.,/(kRy))%. From sin ¢P% = sin @b /\/1 + M?2 + 2M, cos? @hin, one ob-

tains a quadratic equation in term of cos ¢P¢, :
cos® P — 2Mycos P + (1 + M?) — 1 =0,

with v = (j..,,/(kR1))?/(1 4+ M2(j, . /(kR1))?). then :

P = arccos < Y+ \/ 1— M2v) 7)) (11)

By a similar way, it can be easily established that ©P¢ corresponds to the maximum of I,,(k?).

This occurs when k2 (k%¢) R2 with £%¢ = kSMmr From x2(k,) = (ki + M;k,)* — k2,

- ]mn ( + eCOS(pmn)

one again obtains a quadratic equation in term of cos ¢P¢ :

(M? — a? — a2, M?) cos®* @?° +2(M, — o

mn

Me) cos Qplrzfn +1- Cy72nn = O:
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with o, = ¢;/Ce, My = M, — a,M; and a,ny, = j.. /(kiR5). Then, one obtains

02 Mo = Mo 4/ (Mo — 02, M.)° — (1~ a2, (M3 — 02 %M&)) 12)

pe __ «@
b = arccos 5 5 5 5
Mz — a2 — a2, M:

3 Results and comments

Here we present some examples in the case of an engine where the intake radius is set at a value of
Ry = 0,086. The exhaust radius Ry has fixed values of R; in all the figures except for figures 11 and
12, where it has the following values Ry = Ry, Ry = Ry X 0.9, Ry = Ry X 0.75 and Ry = R; x 0.5.
The internal and external fluids are both air (p; = 1,3, ¢; = 330m/s). In the various examples, we
consider two modes: the mode (3,2) the cut-off frequency of which is given by k%, R = j}, = 8.015 and
the (4, 1) mode the cut-off frequency of which is given by x%; R = jj; = 5.318. The computations were
carried out using the Mathematica software program on a personal computer; each run, consisting
of about twenty lines, takes a few seconds. Two kinds of results are presented. The first set (figures
3, 4, 5, 6 and 7) shows the evolution of the maximum directivity upstream and downstream with
respect to the Mach numbers and frequency. The second set of results (figures 8 to 16) give the
evolution of the directivity of the aeroengine at various Mach numbers and intake and exhaust radii;
this is done with three frequencies kR, = 11.7 in figures 8 to 12, kR; = 12.47 in figures 13 and 14
and kR, = 23.43 in figures 15 and 16.

In the figures giving the second set of results, except for figure 16 for the highest external Mach
number (see next paragraph), one can see the two directivity maxima, corresponding to the two ends
of the engine. As shown by the equations, the maximum at the exhaust end (¢?® =~ 30°) depends on
the difference between the jet’s internal and external Mach numbers.

One interesting aspect of the problem is illustrated in equation (12). Since the argument of the

inverse cosine function could be larger than unity, the maximum ¢P¢ could not exist. This can be
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seen in figures 6, 10 and 16 at the highest external Mach number, where there is an external Mach
number above which the maximum directivity of the exhaust merges with the axis of the jet. At a
ratio of wave speeds a.. close to one, there always exists a combination of parameters «,,,, M, and

M; at which ¢P¢ tends to zero. The three possibilities are given below:

1 — Mo, — a2, — ac\/l + (M2 —1)a2,

M, > - %, for a, and M; fixed
o, — 1
L+ M, — \Ja2+ (1+ M2)o2,
M, > , for a, and M, fixed
G
1+ M2 = 2Mia, — o + M?a2 + 2M.(1 — M)
Q. < T; , for M; and M, (M; < M,) are fixed.

The latter result means that when a. is close to one and M; < M, at high frequencies the mode does
not radiate far into the external fluid and the jet serves as a waveguide. This can be seen from figure
6, where one can see that when a sufficiently large difference exists between the two Mach numbers
at high frequencis, the sound radiated by the exhaust part of the engine is well below that occuring
at the intake end.

Figure 8 is presented the sake of comparison, based on the same parameters as those used by
Cargill [3] in his figure 2. As noted by Cargill upon comparing his results with the exact ones
obtained using a Wiener-Hopf solution, “the agreement is exceptionally good until an angle of 100°
is reached”. And it is clear from figure 8 that even at an angle of 90° to the jet axis, the radiation
from the exhaust is completely swamped by the the radiation from the intake. Figure 9 shows
the influence of the exhaust jet in the engine at rest. Except in the cone of silence (corresponding
to xZ(k2)), which widens with the internal Mach number, the maximum level remains practically
constant and is shifted to the side. Figures 10, 13 and 14 show the effects of the external Mach
number. Here one can see the classical (see for example chapter 14 in [6]) change in the pressure
level resulting from the subsonic movement of the engine which increases the sound pressure level

radiated by the intake engine and decreases the sound radiated by the exhaust. In addition to these
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effects, the shift toward the axis of the engine of the maximum radiation of the intake predicted by
equation (11) can be clearly observed.

Figures 11 and 12 show the influence of the change of exhaust radius size on the directivity of the
engine at rest (figure 11) and moving (figure 11). In all the cases studied, the smaller the exhaust
radius was, the quieter the engine became. The change in the shape of the directivity was particularly
interresting. As long as the radius of the exhaust is similar to that of the intake, the sound level
decreases possibly due to a spreading of energy. But when the exhaust radius becomes twice as small
as the intake radius, a dramatic change occurs, the sound pressure radiated by the exhaust becomes
very small, and the sound radiated by the engine at the exhaust end practically equal to the intake
level. This can be seen from the two figures in which the directivity of the intake has been plotted, at
small exhaust radius, the directivity of the engine can be seen to be practically equals to the intake
level ones.

Figures 15 and 16 differ only in the internal Mach number which is smaller in figure 16, where

the maximum directivity disappears.

4 Conclusion

There we propose an expression for the far field acoustic sound pressure radiated at high frequency by
an aeroengine under flight conditions. This expression takes into account some of the main features
of a true engine: the intake and exhaust diameter differ and an exhaust jet is present. Studies can
easily be conducted on many parameters not mentioned here such as the influence of the diameter of
each part of the engine, the influence of the relative Mach numbers, and the change in the properties
of the fluid inside the jet, or a multi modal analysis could be carried out. Some other important
features have not yet been taken into account, such as the presence of a secondary annular exhaust

jet, the influence of the length of the engine, the presence of the wing or the axial and radial change in
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the velocity profile inside the pipe (see for example [24]). But since they are so difficult to approach,
these aspects can probably only be handled by developing complex programs involving finite or

boundary elements which would make the numerical computational cost of these studies prohibive.
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A Green’s function of a jet

The result presented in this appendix is classical and is intended to facilitate the reading of the text.
Let us consider an infinite domain with a cylindrical reference coordinate (see figure 2) (O, r,6,2). A
fluid, with density p, and sound wave celerity ¢, occupies part of this domain. The fluid flow velocity

is uniform with speed U, parallel to the z axis. At the origin an an infinitely long cylindrical domain
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with radius a, contains a fluid with density p; and sound wave celerity ¢; and moves with uniform
movement at speed U;. The pressure and displacement are assumed to be contuinuous. The time

dependence is also supposed to be harmonic exp(—wt).

P;,C4

v

2a R

o Pe.Ce

Figure 2: Geometry of the jet

Because of the 27m-periodicity of the geometry, all quantities have been expanded into angular

Fourier series. One has:

m=-+o0

fr0,2,8) = > fulr,z)e™e

m=—0oQ

For each angular harmonic m, the Green’s function G,,(r, z; 79, 29) is the solution of

Lo o m 1 AN 5(r — o)
(;ETE + T2 g (—zw + Ui%) + ﬁ) Gn(r, 2510, 20) = fé(z — %), forr <a
10 0 m?2 1 o 2 92

A LI o 07 ‘ _ -
(r ar or + 2 2 < wt Ue@z) + 322) Gm(r, 2,70, 20) 0, forr >a

G (r, 2570, 20) is calculated by Fourier transform with respect to z

~ +o0o

Gm(r7 kz;rOazO) = Gm(rvz;TOVZO)e_Zkzzdz'
then
10 0 2 ~ o(r —
<;6_’r7¢§ + T_z + H?) Gm(r7 kZ;TOJZO) = we_mzzoa forr <a
190 0 m? 9\ ~
(;8_7“ ar + T + /{e> Gu(r ky;r0,20) = 0, forr > a,
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where x? = (ki + Mik,)? — k? and 2 = (k§ + M,k,)? — k2, with ki = w/c; . and S(kge) > 0.

The solution of (1/70,70, +m?/r? + k2) Gy (r;70) = 6(r — 19) /1 is given by ([17], p. 366)

1

ém(ra kz;TO,ZO) = _gHm(HiTO)Jm(HiT)v"" < Ty
~ 1T
G (r k1m0, 20) = —5Hm(/<ci7“)Jm(f€ﬁo),r > 7o

where H,,(z) is the Hankel function of the first kind. The interface at r = a involves the presence of

a reflected field éRm(r; r9) and a transmitted one éTm(r; r9). One has:

N o
Grm(r;rg) = —?Jm(HiTO)Rm(/ﬁz)Jm(ﬁiT)

~ 1T
GTm(T;TO) = _?Jm(HiTO)Tm(kz)Hm(’{er)a

where R,,(k,) and T, (k,) are reflection and transmission coefficients. These coefficients are calculated

by imposing the continuity conditions. One obtains:

H,(kia) + Jm(kia) R (k) = Hp(kea)Tn (k).

/iepi(w + Uzkz)2

Hy, (kia) + 0, (kia) Rin (k) = (ko) H, (Kea) T (k2), i () = Kipe(w + Uck,)?

Combining these relations gives the transmission coefficient:

21 1

) = e T ks o (rv) — (B () o)

Then finally, by inverse Fourier transform

1 [T

= Jon (110 Hyn (Ke1) T (K ) e =200k, 1 > a

Gml(r, 2510, 20) =

Bonjour
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Figure 3: Change of the upstream maximum directivity of the (3,2) mode with the external Mach

number
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Figure 4: Change of the upstream maximum directivity of the (3,2) mode with the frequency
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Figure 5: Change of the downstream maximum directivity of the (3,2) mode with the internal Mach

number
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Figure 6: Change of the downstream maximum directivity of the (3,2) mode with the external Mach

number
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Figure 7: Change of the downstream maximum directivity of the (3,2) mode with the frequency
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Figure 8: Comparison betwwen the directivities of the exhaust alone and that of the aeroengine at

rest for the (4,1) mode
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Figure 9: Influence of the jet Mach number on the directivity of the aeroengine at rest for the (4,1)

mode
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Figure 10: Influence of the external Mach number on the directivity of the moving aeroengine for

the (4,1) mode
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Figure 11: Influence of the exhaust radius on the directivity of the aeroengine at rest for the (4,1)

mode
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Figure 12: Influence of the radius of the exhaust on the directivity of the aeroengine for the (4,1)

mode
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Figure 13: Influence of the external Mach number on the directivity of the aeroengine at low jet

Mach numbers for the (3,2) mode
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Figure 14: Influence of the external Mach number on the directivity of the aeroengine at high jet

Mach numbers for the (3,2) mode
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Figure 15: Influence of the external Mach number on the high frequency directivity of the aeroengine

at low jet Mach number for the (3,2) mode
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Figure 16: Influence of the external Mach number on the high frequency directivity of the moving

aeroengine at very low jet Mach numbers for the (3,2) mode



