Aude Lizée 
  
Snorre Farner 
  
Christophe Vergez 
  
Jean Kergomard 
  
Contribution to harmonic balance calculations of self-sustained periodic oscillations with focus on single-reed instruments

come    

I. INTRODUCTION

Since Helmholtz, 1 it has become natural to describe a self-sustained musical instrument as an exciter coupled to a resonator ͓"self-sustained" is a term indicating oscillation driven by a constant energy input.͔ More recently, McIntyre et al. [START_REF] Mcintyre | On the oscillations of musical instruments[END_REF] have highlighted that simple models are able to describe the main functioning of most self-sustained musical instruments. These models rely on few equations whose implementation is not CPU-demanding, mainly because the nonlinearity is spatially localized in an area small compared to the wavelength. This makes them well adapted for realtime computation ͑including both transient and steady states͒. These models are particularly popular in the framework of sound synthesis.

On the other hand, calculation in the frequency domain is suitable for determining periodic solutions of the model ͑the values of the harmonics as well as the playing fre-quency͒ for a given set of parameters. Such information can be provided by an iterative method called the harmonic balance method ͑HBM͒. Though the name "harmonic balance" seems to date back to 1936, [START_REF] Krylov | Introduction to Nonlinear Mechanics ͑Princeton[END_REF] the method was popularized nearly 40 years ago for electrical and mechanical engineering purposes, first for forced vibrations, [START_REF] Urabe | Galerkin's procedure for nonlinear periodic systems[END_REF] later for autooscillating systems. [START_REF] Stokes | On the approximation of nonlinear oscillations[END_REF] The modern version was presented rather shortly after by Nakhla and Vlach. [START_REF] Nakhla | A piecewise harmonic balance technique for determination of periodic response of nonlinear systems[END_REF] In 1978, Schumacher was the first to use the HBM for musical acoustics purposes with a focus on the clarinet. [START_REF] Schumacher | Self-sustained oscillation of the clarinet: An integral equation approach[END_REF] However, in this paper, the playing frequency is not determined by the HBM. This shortcoming is the major improvement brought 11 years later by Gilbert et al. [START_REF] Gilbert | Calculation of the steady-state oscillations of a clarinet using the harmonic balance technique[END_REF] who proposed a full study of the clarinet including the playing frequency as an unknown of the problem.

The fact that the HBM can only calculate periodic solutions may seem a drawback. Certainly, transients such as the attack are impossible to calculate, and the periodic result is boring to listen to and does not represent the musicality of the instrument. Therefore, the HBM is definitely not intended for sound synthesis. Nevertheless, self-sustained musical instruments are usually used to generate harmonic sounds, which are periodic by definition. The HBM is thus very useful for investigating the behavior of a physical model of an instrument, depending on its parameter values. This is possible for both stable and unstable solutions, without care of particular initial conditions, which are necessary in the time domain. Moreover, HBM results can be compared to approximate analytical calculations ͓like the variable truncation method ͑VTM͔͒, [START_REF] Kergomard | Calculation of the spectrum of self-sustained oscillators using a variable truncation method: Application to cylindrical reed instruments[END_REF] in order to check the validity of the approximate model considered.

The present paper is based on the work of Gilbert et al. [START_REF] Gilbert | Calculation of the steady-state oscillations of a clarinet using the harmonic balance technique[END_REF] Our main contributions are an extension of the diversity of equations managed, improved convergence of the method, introduction of basic continuation facilities, and from a practical point of view, faster calculations. In order to test the convergence properties, especially when the number of harmonics increases, we treat a few extreme cases where exact solutions exist in the form of square ͑or "rectangular" sig-nals͒ when losses are ignored. The solutions of such simple models of self-sustained instruments are known to be the so-called Helmholtz motion.

Recently, some of us published a paper discussing the different elements of related clarinet models by using the same software. The influence of the shape of the nonlinear function and of several parameters, such as the reed dynamics or the loss parameter, was studied in the context of cy-a͒ Currently at Department of Electronics and Telecommunications, NTNU, O. S. Bragstads pl. 2, 7491 Trondheim, Norway. lindrical instruments. [START_REF] Fritz | Some aspects of the harmonic balance method applied to the clarinet[END_REF] In contrast, the model used in the present paper is essentially simple, with neither losses nor reed dynamics. This results in square or rectangular signals, corresponding to instruments with cylindrical and steppedcone bores, respectively.

While the main idea was already described by Gilbert et al., [START_REF] Gilbert | Calculation of the steady-state oscillations of a clarinet using the harmonic balance technique[END_REF] Sec. II details the principle of the HBM, in particular the discretization of the problem, both in time and frequency.

Section III is devoted to the various contributions of the current work, which are applied in a computer program called HARMBAL. 11 The framework is defined to include models with three equations: two linear differential equations, written in the frequency domain, and a nonlinear coupling equation in the time domain ͑see Sec. III A͒. As usual in the HBM, this system of three equations is solved iteratively. The solving method chosen ͑Newton-Raphson, Sec. II B͒ has been investigated and its convergence has been improved through a backtracking scheme ͑Secs. III C and III D͒.

To illustrate the advantages of the HBM and the improvements, a few case studies were performed and are presented in Sec. IV. They are based on a classical model of single-reed instruments which is presented in Sec. IV A. In Secs. IV B and further, simplifications and variations of the model are introduced so that the results could be compared to analytical calculations, both for cylindrical and steppedcone bores. Finally, the full model is compared to timedomain simulations. This also shows the modularity of HARMBAL. The comparison is achieved through the investigation of bifurcation diagrams as the dimensionless blowing pressure is altered. The derivation of a branch of solution is obtained thanks to basic continuation with an auto-adaptative parameter step.

Finally, various questions are tackled through practical experience from using HARMBAL. Section V discusses multiplicity of solutions and poor robustness in the frequency estimation.

II. NUMERICAL METHOD

A. The harmonic balance method

The harmonic balance method is a numerical method to calculate the steady-state spectrum of periodic solutions of a nonlinear dynamical system. The following provides a detailed and general description of the method for a nonlinearly coupled exciter-resonator system.

Let X͑ k ͒, k =0, ... ,N t -1 be the discrete Fourier transform ͑DFT͒ of one period x͑t͒, 0ഛ t Ͻ T, of a T-periodic solution of a mathematical system to be defined, where k =2k / N t . X͑ k ͒ will have a number of complex components N t , which depends on the sampling frequency f s =1/T s with which we discretize x͑t͒ into N t = T / T s equidistant samples. Each ͑Fourier͒ component contains the amplitude and the phase of the corresponding harmonic of the signal. Note that the sampling frequency f s = N t f p is automatically adjusted to the current playing frequency f p so that we always consider one period of the oscillation while keeping N t constant. Note also that N t should be sufficiently large to avoid aliasing. Moreover, if N t is chosen as a power of 2, the fast Fourier transform ͑FFT͒ may be used. Assuming that N p Ͻ N t / 2 harmonics are sufficient to describe the solution, we define X R 2N p +2 ͑i.e., a vector of 2N p + 2 real components͒ as the first N p + 1 real components ͑denoted by R͒ of X͑ k ͒ followed by their imaginary counterparts ͑I͒ X = ͓R͑X͑ 0 ͒͒, ... ,R͑X͑ N p ͒͒, I͑X͑ 0 ͒͒, ... ,I͑X͑ N p ͒͒. ͑1͒

Note that the components X 0 and X N p +1 are the real and imaginary dc components, respectively ͑and that X N p +1 is always zero͒. Our mathematical system can thus be defined by the nonlinear function

F : R 2N p +3 → R 2N p +2 X = F͑X, f p ͒. ͑2͒
Until now, the playing frequency has silently been assumed to be a known quantity. In autonomous systems, however, the frequency is an additional unknown, so that the N p -harmonic solution sought is defined by 2N p + 3 unknowns linked through the 2N p + 2 equations ͑2͒. However, it is well known that as X is a periodic solution of a dynamical system, and XЈ deduced from X by a phase rotation ͑i.e., a shift in the time domain͒ is also a solution. Thus, an additional constraint has to be added in order to select a single periodic solution among the infinity of phase-rotated solutions. A common choice ͑see Ref. 8͒ is to consider the solution for which the first harmonic is real ͑i.e., its imaginary part, X N p +2 , is zero͒. This additional constraint decreases the number of unknowns to 2N p + 2 for an N p -harmonic periodic solution. Thus, we get F : R 2N+2 → R 2N+2 , and it is now possible to find periodic solutions, if they exist.

Finally, a simple way of avoiding trivial solutions to Eq. ͑2͒ is to look for roots of the function G : R 2N p +2 → R 2N p +2 , defined by

G͑X, f p ͒ = X -F͑X, f p ͒ X 1 , ͑3͒ 
i.e., G͑X , f p ͒ = 0. This equation is usually solved numerically through an iteration process, for instance by the Newton-Raphson method as in our case. How to handle the playing frequency f p will be discussed in the following section.

B. Iteration by Newton-Raphson

The equation G͑X , f͒ =0, G being defined by Eq. ͑3͒, is nonlinear and usually has no analytical solution ͑for readability we leave out the index p on the playing frequency until the end of Sec. III͒. The Newton-Raphson method is a multidimensional extension of the well-known Newton's method, both of which are available in many text books on calculus, e.g., Ref. 12, Sec. 9.6. This is the method used in the program HARMBAL ͑see Sec. III͒, although it had to be refined with a backtracking procedure to improve its convergence, as discussed in Sec. III D.

In our 2N p + 2-dimensional case, we have a vector problem: we search ͑X , f͒ for which G͑X , f͒ = 0. As highlighted by Gilbert et al., [START_REF] Gilbert | Calculation of the steady-state oscillations of a clarinet using the harmonic balance technique[END_REF] the playing frequency is unknown and must be included in the root-finding process

͑X i+1 , f i+1 ͒ = ͑X i , f i ͒ -͑J G i ͒ -1 • G͑X i , f i ͒, ͑4͒
where

J G i ٌG͑X i , f i ͒ is the Jacobian matrix of G at ͑X i , f i ͒. ͑The symbol
indicates that the relation is a definition.͒ Note that all derivatives by X N p +2 , which was chosen to be zero, are ignored. The column N p + 2 in the Jacobian is thus replaced by the derivatives with respect to the playing frequency f. J G i is thus a ͑2N p +2͒-square matrix. This means that line number N p + 2 in Eq. ͑4͒ gives the new frequency f instead of X N p +2 . We define the Newton step ⌬X = X i+1 -X i ͑where ⌬f = f i+1f i replaces ⌬X N p +2 ͒, which follows the local steepest descent direction.

The Jacobian may be found analytically if G is given analytically, but it is usually sufficient to use the first-order approximation

J jk = ץG j ץX k Ӎ G j ͑X + ␦X k , f͒ -G j ͑X, f͒ ␦X , ͑5͒
except for k = N p + 2, in which case we use

J j,N+2 = ץG j ץf Ӎ G j ͑X, f + ␦f͒ -G j ͑X, f͒ ␦f . ͑6͒
The components of ␦X k are zero except for the kth one, which is the tiny perturbation ␦X =10 -5 ͉X 1 ͉ or ␦f =10 -5 f.

The iteration has converged when ͉G i ͉ ͉G͑X i , f i ͉͒ Ͻ. We found =10 -5 to be a good compromise between computation time and solution accuracy.

III. IMPLEMENTATION AND HARMBAL

A. Equations for self-sustained musical instruments

Though, to the authors' knowledge, the harmonic balance method in the context of musical acoustics with unknown playing frequency has only been applied to study models of clarinet-like instruments, it should be possible to consider many different classes of self-sustained instruments. It is well accepted that sound production by a musical instrument results from the interaction between an exciter and a resonator through a nonlinear coupling. Moreover, in most playing conditions, linear modeling of both the exciter and the resonator is a good approximation.

Therefore, within these hypotheses, any self-sustained musical instrument could be modeled by the following three equations:

Ά Z e ͑͒X e ͑͒ = X c ͑͒ ͑7a͒ X c ͑͒ = Z r ͑͒X r ͑͒ ͑7b͒
F͓x c ͑t͒,x e ͑t͒,x r ͑t͔͒ = 0, ͑7c͒

where Z e and Z r are the input impedances of the exciter and the resonator, respectively, and X e and X r are the spectra describing the dynamics of the exciter and the resonator during the steady state ͑periodicity assumption͒. X c is the spectrum of the coupling variable. All these quantities, and thus Eqs. ͑7a͒ and ͑7b͒, are defined in the Fourier domain. Equation ͑7c͒ is written in the time domain, where F is a nonlinear functional of x c , x e , and x r , which are the inverse Fourier transforms of X c , X e , and X r , respectively. We apply the discretization as described in Sec. II A, implying that Eqs. ͑7a͒ and ͑7b͒ become vector equations where the impedances must be written as real ͑2N p +2͒ ϫ ͑2N p +2͒-matrices to accommodate the rules of complex multiplication

Z͑f͒ = ͩ R͓Z ˜͑f͔͒ -I͓Z ˜͑f͔͒ I͓Z ˜͑f͔͒ R͓Z ˜͑f͔͒ ͪ ͑8͒ where Z ˜͑f͒ = Z͑0͒ 0 ¯0 0 Z͑ 1 ͒ 0 ] ] 0 0 ¯Z͑ N p ͒ ͑9͒
is complex, and R͑Z ˜͒ and I͑Z ˜͒ are the real and imaginary components of Z ˜. The system ͑7͒ is solved iteratively by HARMBAL according to the scheme illustrated in Fig. 1. In HARMBAL, these equations are easily defined by writing small, new C functions. Only superficial knowledge of the C language is necessary to do this.

Three cases related to models of single-reed instruments with cylindrical or stepped-conical bores are studied in particular in Sec. IV in order to validate the code and to illustrate the modularity of HARMBAL and the HBM.

B. Practical characteristics of HARMBAL

Fast calculation, good portability, and independence of commercial software are easily achieved by programming in C, whose compiler is freely available for most computer platforms. It is, however, somewhat difficult to combine portability with easy usage, because an intuitive usage normally means a graphical and interactive user interface, while the handling of graphics varies greatly between the different platforms.

We have chosen to write HARMBAL with a nongraphical and noninteractive user interface. ͑The term "noninteractive" means that the user has no influence on the program while it is running.͒ The major advantage of this is that independent user interfaces may be further developed depending on need.

Our concept is to save both the parameters and the solution in a single file. This file also serves as input to HARM- BAL while individual parameters can be changed through start-up arguments. The solution provided by the file works as the initial condition for the harmonic balance method. Thus, the lack of a simple user interface is compensated by a simple way of reusing an existing solution to solve the sys- tem for a slightly different set of parameters. Solutions for a range of a parameter values may thereby be calculated by changing the parameter stepwise and providing the previous solution as an initial condition for the next run. The Perl script hbmap provides such zeroth-order continuation facilities. This procedure may also be used when searching for a solution where it is difficult to provide a sufficiently good initial condition, for instance by successively increasing N p when wanting many harmonics.

C. Convergence of Newton-Raphson

When employing the method in its standard version to determine the solution of the system at a given set of parameters, we have found that it is impossible to find a solution at particular combinations of parameter values. Indeed, for the clarinet model of Sec. IV B 1, no convergence was obtained for particular values of the parameter ␥ ͑the dimensionless blowing pressure͒ and its neighborhood. This is seen as discontinuities, or holes, in the curves in Fig. 2 ͑see Sec. IV for the underlying equations and parameters͒. Note that the solutions seem to go continuously through this hole and that the positions of the holes and their extent vary with the number of harmonics N p taken into account. The curves were obtained by using hbmap to calculate a quasicontinuity of solutions descending from ␥ = 0.5 in steps of 10 -4 and drawing a line between them, except across ␥ values where solution failed. In these holes, the Newton-Raphson method did not converge either by alternating between two values of P ͑i.e., X c ͒ or by starting to diverge.

To study the problem, we simplified the system to a one-dimensional problem by setting N p = 1, thus leaving P 1 as the only nonzero value. G 1 thus became the only contributor to ͉G͉, and a simple graph of G 1 around the solution G 1 = 0 could illustrate the problem, as shown in Fig. 3 for several values of ␥. We see that the curve of G 1 ͑P 1 ͒ has inflection points ͑visible as "soft steps" on the curve͒ at rather regular distances. At the center of a convergence hole, in this case at ␥ = 0.4196, an inflection point is located at the intersection with the horizontal axis. This is a school example of a situation where Newton's method ͑the onedimensional limit of the Newton-Raphson method͒ does not converge because the Newton step ⌬P 1 brings us alternatingly from one side of the solution to the other, but not closer.

In fact, the existence of inflection points is linked with the digital sampling of the continuous signal. If the sampling rate is increased, i.e., if N t is increased, the steps become smaller but occur more frequently, as shown for N t = 32, 128, and 1024 in Figs. 4͑a͒-4͑c͒. The derivative dG 1 / dP 1 is included in the figures to quantify the importance of the steps. According to Figs. 4͑a͒-4͑c͒, it seems reasonable to increase N t to avoid convergence problems. However, this would significantly increase the computational cost. Another solution is therefore suggested in the following.

D. Backtracking

When the Newton-Raphson scheme fails to converge, it often happens because the Newton step ⌬X leads to a point where ͉G͑X , f͉͒ is larger than in the previous step. However, acknowledging that the Newton step points in the direction of the steepest descent, there must be a point along ⌬X where ͉G͑X , f͉͒ is smaller than in the previous iteration of the HBM. A backtracking algorithm described in Sec. 9.7 of Ref. 12 ͑see the Appendix͒ solves the problem elegantly by shortening the Newton step to ⌬X for 0 ϽϽ1.

IV. CASE STUDIES

A. Equations for the clarinet

The three equations ͑7a͒-͑7c͒ may be constructed by physical modeling. In the case of the clarinet, a common simple model can be constructed by a reed equation nonlinearly coupled to a pipe equation by the Bernoulli equation. [START_REF] Schumacher | Self-sustained oscillation of the clarinet: An integral equation approach[END_REF][START_REF] Fritz | Some aspects of the harmonic balance method applied to the clarinet[END_REF][START_REF] Worman | Self-sustained nonlinear oscillations of medium amplitude in clarinet-like systems[END_REF][START_REF] Kergomard | Elementary considerations on reed-instruments oscillations[END_REF][START_REF] Dalmont | Nonlinear characteristics of single-reed instruments: Quasistatic volume flow and reed opening measurements[END_REF] The equations are summarized below in dimensionless form with the variables and constants defined in Table I. The corresponding mouthpiece is illustrated in Fig. 5.

The exciter is an oscillating reed which may be modeled as a spring with mass and damping

Mx ¨+ Rx ˙+ Kx = p, ͑10͒
where the dimensionless reed displacement x ͑dots denoting time derivative͒ is the exciter variable x e and the pressure p in the mouthpiece is the coupling variable x c . The coeffi-cients M = r 2 / e 2 , R = g e r / e 2 , and K = 1 are the dimensionless mass, damping, and spring constant of the reed, where g e is the reed damping and r and e are the first mode angular frequencies of the resonator and the exciter, respectively. K = 1 because the reed closes when blowing at the maximum blowing pressure in the static regime ͑p =0͒. The exciter impedance in Eq. ͑7a͒ thus becomes

Z e ͑͒ = K -Mͩ 2 ͪ 2 + iRͩ 2 ͪ, ͑11͒
where the dimensionless angular frequency is 2 at the first resonance of the pipe.

The cylindrical quarter-wave resonator is simply described by the dimensionless input impedance to be used in Eq. ͑7b͒

Z r ͑͒ = i tanͩ 4 -i␣͑͒ͪ , ͑12͒
where ␣͑͒ ͱ /2 is the dissipation in the tube, Ӎ 1.3, and being the dimensionless loss parameter. Here, depends on the tube length and is typically 0.02 for a normal clarinet with all holes closed. We set to almost zero in our lossless calculations.

Finally, the nonlinear coupling equation ͑7c͒ is given by relating the volume flow u of air through the reed opening, i.e., the coupling variable x c , to x and p by the Bernoulli equation. Taking into account high blowing pressures ␥, the dimensionless version becomes [START_REF] Kergomard | Elementary considerations on reed-instruments oscillations[END_REF] u͑p,x͒ = ͑1 + x -␥͒ ͱ ͉␥ -p͉sign͑␥ -p͒, ͑13͒ as long as x Ͼ ␥ -1, and u = 0 otherwise because the reed closes the mouthpiece, i.e., the reed "beats." is a dimensionless embouchure parameter roughly describing the mouthpiece and the position of the player's lips. Only the nonbeating-reed regime is considered in this study.

Disregarding the reed dynamics, i.e., considering the reed mass and damping negligible, we have x = p instead of Eq. ͑10͒. The exciter impedance thus simplifies to Z e = 1 and the coupling equation to

u͑p͒ = ͑1 + p -␥͒ ͱ ͉␥ -p͉sign͑␥ -p͒ ͑ 14͒
for p Ͼ ␥ -1, and, as before, u = 0 otherwise.

B. Verification of method and models

In the following we want to verify that the HBM ͑and its implementation in HARMBAL͒ gives correct results. By using very low losses in the resonator ͑small ͒ and disregarding the reed dynamics, we can compare the results of the HBM with analytical results. Moreover, we can compare our results with numerical results from real-time synthesis. For this we need to include mass and damping of the exciter. These case studies also illustrate the modularity of HARMBAL as both the exciter and the resonator are changed. An example of changing the coupling equation is shown by Fritz et al. 10

Helmholtz oscillation for cylindrical tubes

To compare the HBM results with analytical results, we assume a nondissipative air column, i.e., setting = 0 and thus ␣ = 0 in Eq. ͑12͒. Furthermore, we neglect reed dynamics and thus use Z e = 1 and Eq. ͑14͒. The resulting squarewave amplitude ͑the Helmholtz motion͒ 1 may be found by solving u͑p͒ = u͑-p͒, which results from the fact that the internal pressure p͑t͒ and the power p͑t͒u͑t͒ averaged over a period are zero according to the lossless hypothesis. [START_REF] Kergomard | Elementary considerations on reed-instruments oscillations[END_REF] This leads to a square-wave oscillation with amplitude p͑␥͒ = ͱ -3␥ 2 + 4␥ -1.

x e = x = y ˆ/ H + ␥ / K, x c = p = p ˆ/ p M , x r = u = u ˆc / Sp M , = ˆ/ f r , ␥ = p m / p M ,

͑15͒

As shown in Fig. 6, the HBM solution close to the oscillation threshold shows very good convergence towards the Helmholtz motion as the number of harmonics increases. Note that the points do not match for higher harmonics, not even for 299 harmonics. Dissipation in the resonator ͑ 0͒ causes higher harmonics to be damped more close to the threshold ͑␥ Ӎ 1/3͒ than for higher blowing pressures ͑as explained, e.g., in Ref. 9͒. The deviation from a square-wave signal is thus more noticeable close to the threshold, and as the HBM calculations imposed a nonzero dissipation, this is probably the reason for the small deviation in Fig. 6. Our calculations at ␥ = 0.4 confirm that the HBM results for N p = 299 approach the Helmholtz motion further away from the threshold. Figure 2 in Ref. 10 shows P 1 as a function of ␥ for various N p for = 0.02, calculated by HARMBAL. A similar diagram may be made for the lossless case here, as shown in [START_REF] Grand | Oscillation threshold of woodwind instruments[END_REF] i.e., the oscillation starts continuously from zero as ␥ is increased beyond the threshold. This means that a single harmonic is enough to study the solution around the threshold. Far from the threshold, more harmonics have to be taken into account for P 1 to converge toward the Helmholtz solution. This is not obvious and contradictory to the hypothesis made for the VTM, [START_REF] Kergomard | Calculation of the spectrum of self-sustained oscillators using a variable truncation method: Application to cylindrical reed instruments[END_REF] for example. Thus, HARMBAL appears as an interesting tool to evaluate the relevance of approximate methods at certain parameter values.

Helmholtz oscillation for a stepped conical tube

The saxophone works similarly to the clarinet, but the bore has a conical shape. In this section we compare HBM calculations with analytical results, so we simplify the cone by assuming that it consists of a sequence of N cylinders of length l and cross section S i = 1 2 i͑i +1͒S 1 for i =1, ... ,N and S 1 = S being the cross section of the smallest cylinder ͑see Ref. 17͒. The total length of the instrument is thus L = Nl. The input impedance of such a stepped cone may be written as

Z r ͑͒ = 2i cot͑Ј/4 -i␣͑Ј͒͒ + cot͑ЈN/4 -i␣͑ЈN͒͒ , ͑16͒
where Ј 2 / ͑N +1͒ so that =2 at the first resonance of this resonator. Equation ͑16͒ is used instead of Eq. ͑12͒, and the losses ␣͑͒ are zero in the analytic Helmholtz case and very small for the HBM calculations ͑ =2•10 -5 , below which convergence became difficult͒.

Similarly to the cylinder case, the pressure amplitude of the ideal lossless stepped cone is calculated by solving u͑p͒ = u͑-Np͒. Two solutions are possible ͓This result corrects Eq. ͑14͒ in Ref. 17͔: 

p ± ͑␥͒ = ͑N -1͒͑2 -3␥͒ 2͑N 2 -N + 1͒ ± ͱ ͑N -1͒ 2 + ͑N + 1͒ 2 ͑-3␥ 2 + 4␥ -1͒ 2͑N 2 -N + 1͒ , ͑17͒
as long as ␥ Ͻ 1/͑N +1͒ for the standard Helmholtz motion ͑p + ͒ and ␥ Ͻ N / ͑N +1͒ for the inverted one ͑p -͒, which is unstable. Above these limits p + = ␥ and p -=-␥ / N. The magnitude of the first harmonic of a square or rectangular wave is then given by

P 1 ± ͑␥͒ = sin͑/͑N + 1͒͒ /͑N + 1͒ p ± ͑␥͒. ͑18͒
For N = 1, Eq. ͑17͒ reduces to Eq. ͑15͒. For higher N, the pressure wave becomes asymmetric. We take the case N = 2 and get

p ± ͑␥͒ = 1 6 ͑2 -3␥ ± ͱ -27␥ 2 + 36␥ -8͒.

͑19͒

This result is compared with HBM calculations in Fig. 8 for ␥ = 0.31. Theoretically, the spectrum of the Helmholtz solution, Fig. 8͑a͒, shows that every third component is missing ͑actually zero͒ while the remaining components decrease in magnitude, thus forming the asymmetric pressure oscillation as shown in A bifurcation diagram is plotted in Fig. 9, i.e., the amplitude of the first harmonic is plotted for different numbers of harmonics as a function of the blowing pressure ␥. This was done by first finding the solution at ␥ = 0.31; then, the script hbmap was used to make HARMBAL calculate a solution for each of many consecutive values of ␥ down to the oscillation threshold by using the previous solution as initial value. The procedure was repeated from the solution at ␥ = 0.31 up to the point where the reed started to beat, i.e., where p Ͻ ␥ -1 in Eq. ͑14͒. In practice, these curves are more difficult to obtain with hbmap than for the cylindrical bore, especially close to the subcritical oscillation threshold around ␥ = 0.28, where computation was not possible at these low losses. More sophisticated continuation schemes should be considered to obtain complete curves.

The Helmholtz solution ͓Eq. ͑18͒ with N =2͔ is included with a solid line in Fig. 9. The lower part of the standard Helmholz branch and the branch of the inverted Helmholtz motion ͑see the figure͒ are unstable. [START_REF] Ollivier | Idealized models of reed woodwinds. II. On the stability of 'two-step' oscillations[END_REF] Despite the uncompleted curves, the diagram shows that the model experiences a subcritical Hopf bifurcation, which agrees with the conclusion of Grand et al. [START_REF] Grand | Oscillation threshold of woodwind instruments[END_REF] This means that a single-harmonic approximation is not enough to study the solution around this threshold, since the small-amplitude hypothesis with few harmonics close to the threshold does not hold. Convergence toward the Helmholtz motion is ensured as the number of harmonics N p is increased. It can be noted that the beating threshold for the model with N p harmonics depends on N p but converges toward the Helmholtz threshold ␥ =1/3 ͑corresponding to the lossless, continuous system͒ as N p is increased.

Validation with time-domain model

When adding mass and damping to the reed, and viscous losses or dispersion to the pipe, it becomes more difficult to find analytic solutions to compare with the HBM. As far as the playing frequency is concerned, this has been studied by Fritz et al. [START_REF] Fritz | Some aspects of the harmonic balance method applied to the clarinet[END_REF] by comparison with an approximate analytical formula. Here, we compare both the playing frequency and the amplitude of the first partial with numerical results obtained with a time-domain method. We use a newly developed ͑real-time͒ time-domain method ͑here called TDM͒ by Guillemain et al. [START_REF] Guillemain | Real-time synthesis models of wind instruments based on physical models[END_REF] It is based on the same set of equations as presented in Sec. IV A except that the impedance of the bore is modified a little to be expressed as an infinite impulse response. In the Fourier domain it becomes

Z r ͑ ˜͒ = 1 -a 1 e -i ˜-b 0 e -i ˜D 1 -a 1 e -i ˜+ b 0 e -i ˜D , ͑20͒
where ˜is the angular frequency normalized by the sampling frequency f s , and the integer D = round͑f s /2f r ͒ is the time delay in samples for the sound wave to propagate to the end of the bore and back. The constants a 1 and b 0 are to be adjusted so that the first two peaks of resonance have the same amplitude as the first two peaks of Eq. ͑12͒.

To express Eq. ͑20͒ using our terminology, we write that = ˜fs / f r and obtain

Z r ͑͒ = 1 -a 1 e -if r /f s -b 0 e -i/2 1 -a 1 e -if r /f s + b 0 e -i/2 . ͑21͒
Because the TDM does not work for zero or even for small values of the mass M and damping R, we include reed dynamics in the calculations and use a reed with weak interaction with the pipe resonance as well as one with close to normal reed impedance. The corresponding values for e and q e g e / e are shown in Table II. Figure 10͑a͒ shows the bifurcation diagram for two values of and for weak and normal reed impedance, while Fig. 10͑b͒ shows the corresponding variation in the dimensionless playing frequency f p / f r . The lines represent the continuous solutions of the HBM, and the symbols show a set of results derived from the steady-state part of the TDM signal. The TDM symbols fall well on the lines of the HBM, except for = 0.50 when ␥ approaches 0.5. Then, the TDM experiences period doubling, i.e., two consecutive periods of the signal differ. At the same time, not being able to show subharmonics, the HBM shows signs of a beating reed, possibly a solution that is unstable and thus not attainable by time-domain methods.

Note that three points have to be verified before comparing results from the HBM and the TDM:

͑1͒ The numerical scheme used in the TDM to approximate the time derivatives in the reed equation ͑10͒ requires discretization. Depending on the sampling frequency f s , the peak of resonance of the reed deviates more or less from the one given by the continuous equation. For normal reed interaction ͑ e /2 = 2500 Hz͒, the deviation is negligible, but it may become significant in the case of weak reed interaction, where the peak is at 10 000 Hz. However, the fact that the reed and the bore interact weakly in the latter case implies that the exact position of the peak has little importance. Therefore, at the used sampling frequency, it was not necessary to compensate for the discretization in the TDM in the HBM calculations. ͑2͒ Then, there should be agreement between the sampling frequency f s in the TDM and the number of samples N t per period in the HBM. Their relation is given by

N t = f s f p . ͑22͒
In order to have a sufficiently high sampling rate, we have chosen N t = 512. The playing frequency f p is plotted in Fig. 10͑b͒, and we used an average f s = 51 100 Hz for both the HBM and the TDM. ͑3͒ Finally, it also seems necessary that N p and N t are chosen so that

N p + 1 = N t 2 . ͑23͒
In practice, however, when comparing bifurcation diagrams of the first harmonic P 1 , as in Fig. 10, rather low values of N p give good results. Nevertheless, more harmonics are obviously needed to compare waveforms in the time domain, especially far from the oscillation threshold.

V. PRACTICAL EXPERIENCES

A. Multiple solutions

As we consider a nonlinear problem, we cannot anticipate the number of solutions. Therefore, it should not be surprising that it is possible to obtain multiple solutions for a given set of parameter values. When searching for a particular solution, this may be a practical problem. Fritz et al. [START_REF] Fritz | Some aspects of the harmonic balance method applied to the clarinet[END_REF] have discovered that some solutions seem to disappear when increasing the number of harmonics N p , implying that solutions may arise from the truncation to a finite N p . We have now discovered alternative solutions that persist even at very high N p .

Let us illustrate this with the simple model of the clarinet used in Sec. IV B 1, where the reed is a spring without mass or damping, the nonlinearity is given by Eq. ͑14͒, and the bore is an ideal cylinder with nearly lossless propagation. Figure 11 shows a three-level sister solution together with the related Helmholtz solution for a large number of harmonics, N p = 2000.

A solution of the lossless problem should satisfy the criteria ͑the dimensionless period being 2͒ ͑Ref. 14͒.

ͭ p͑t + ͒ = -p͑t͒ u͑t + ͒ = u͑t͒, ͮ ͑24͒
which, for a square signal, is equivalent to the conditions stated before Eq. ͑15͒, noting that p͑t͒ = u͑t͒ = 0 for all t is the static solution. It is easily verified graphically that both of the solutions in Fig. 11 satisfy these conditions. Moreover, since they also satisfy Eq. ͑14͒ at any time, the three-level solution is a solution of the lossless model.

Whereas the system of time-domain equations ͑24͒ has an infinity of solutions, truncation in the frequency domain limits the number of solutions. The unique solution of the HBM with only one harmonic is obviously a sine. Let us analyze the situation in the simplest nontrivial case of the lossless problem with two odd harmonics and a cubic expansion for nonlinear coupling. Ignoring even harmonics, the HBM gives a system of two equations ͑see Ref. 9͒

ͭ ␣ = 3P 1 2 ͑1 + x + 2͉x͉ 2 ͒ ͑25a͒ ␣x = P 1 2 ͑1 + 3x͉x͉ 2 + 6x͒, ͑25b͒ 
where ␣ =-A / C and x = P 3 / P 1 . As Eq. ͑25a͒ imposes P 3 to be real, solving this system amounts to solving

x 3 + x 2 -x = 1/3. ͑26͒ 
This equation has three real solutions: x Ӎ -1.5151, -0.2776, and 0.7926. All of them are found by HARMBAL for negligible losses ͑ =10 -5 ͒, and the corresponding waveforms are presented in Fig. 12. We note that the second solution leads to the Helmholtz motion when increasing the number of harmonics ͑with the theoretical value known to be x =-1/3͒, whereas the third one corresponds to the threelevel solution in Fig. 11. We can also easily imagine that these three solutions of the truncated problem are threeharmonic approximations of square waves that are distributed on three levels: p ± Ӎ ± 0.5 and p = 0. It should be noted that the conditions ͑24͒ for the continuous problem do not constrain the duration of each step. This has to be kept in mind when increasing N p using the HBM. While the Helmholtz motion is known to be stable, [START_REF] Kergomard | Elementary considerations on reed-instruments oscillations[END_REF] the two three-level solutions can be considered as a combination of the static solution ͑the zero level͒ and the square wave ͑two levels with opposite values͒. Since we know from Kergomard [START_REF] Kergomard | Elementary considerations on reed-instruments oscillations[END_REF] that in the case of ideal propagation without losses the stability domains of these two solutions are mutually exclusive, it can be concluded that the three-level solutions are unstable.

Taking into account losses in the propagation does not make the three-level solutions vanish. But, a simple reasoning to determine the stability of this solution is not possible in this case. To the authors' knowledge, however, such a solution has never been observed experimentally at low level of excitation.

B. Initial value of the playing frequency

A practical difficulty encountered is the convergence of the playing frequency f p . If its initial value is not close enough to the solution, divergence is almost inevitable. This occurs because the resonator impedance Z r tends to vanish outside the immediate surroundings of the resonance peaks of the resonator, rendering F͑P , f p ͒ very small and thereby G Ӎ P / P 1 nearly constant with respect to f p . The slope ץG / ץf p thus becomes close to zero, the Newton step leads far away from the solution, and convergence fails. Dissipation widens the resonance peaks and thus also the convergence range.

For a simple system where the playing frequency is known to correspond to a resonance peak of the tube, initializing f p is easy. However, with dispersion or other inharmonic effects, choosing an initial value for f p may be difficult. In HARMBAL the problem may to some extent be avoided by the possibility of gradually adding the dispersion ͑or other inharmonic effects͒, so that the playing frequency can be followed quasicontinuously from a known solution without dispersion, for instance by using hbmap.

VI. CONCLUSIONS

The harmonic balance method ͑HBM͒ is suited for studies of self-sustained oscillations of musical instruments, and the computer program HARMBAL has been developed for this application. It is available with its source code, [START_REF] Farner | Computer program in C[END_REF] has a free license, and is already in use by several researchers. It is programed in C, runs fast, and is easily used by other applications, such as for continuation purposes.

Some difficulties are related to the digital sampling of the signal and can be solved by introducing a backtracking mechanism. When using a large number of harmonics, the extreme case of the ͑lossless͒ Helmholtz motion can be solved for different shapes of resonators. Nevertheless, the value of the first harmonic P 1 seems to be well predicted by lower values of N p , in particular close to the threshold of a direct bifurcation. For the saxophone we used a stepped-cone bore and observed one or more dips during the longest part of the period, depending on the number of steps. These dips approach pure impulses as N p increases. The number of samples N t in a period proved to be insignificant for these dips.

The HBM can lead to some alternative solutions for a unique set of parameters. The nondissipative versions of these solutions satisfy the continuous model equations, but they are not stable and thus cannot be attained by ab initio time-domain calculations. Another problem is the great sensitivity to the guessed playing frequency.

As a consequence, a certain expertise is needed in order to use the method, but, thanks to an automatic continuation procedure, the calculation is easy. We note that also experimental results can be used for the impedance of the resonator. 
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APPENDIX: BACKTRACKING SUMMARY

The principle of the backtracking algorithm 12 is illustrated in one dimension in Fig. 13, where g͑x͒ replaces ͉G͑X , f͉͒, although we use the multidimensional notation in the following. Defining the axis along the Newton step, we simply take a step ⌬X in this direction with between 0 and 1. The optimal value for is the one that minimizes the function h͑͒ h͑͒ = 1 2 ͉G͑X i + ⌬X͉͒ 2 ͑A1͒

with derivative

hЈ͑͒ = ͉͑J G • G͉͒ X i +⌬X • ⌬X. ͑A2͒
During the calculation of the failing Newton step, we computed G͑X i ͒ and G͑X i+1 ͒, so now it is possible to calculate with nearly no additional computational effort h͑0͒ = 1 2 ͉G͑X i ͉͒ 2 , hЈ͑0͒ =-͉G͑X i ͉͒ 2 , and h͑1͒ = 1 2 ͉G͑X i + ⌬X͉͒ 2 = 1 2 ͉G͑X i+1 ͉͒ 2 . This allows us to propose a quadratic approximation of h for between 0 and 1, for which the minimum is located at 1 = -1 2 hЈ͑0͒ h͑1͒ -h͑0͒ -hЈ͑0͒

. ͑A3͒

It can be shown that 1 should not exceed 0.5, and in practice 1 ജ 0.1 is required to avoid too short a step at this stage.

If ͉G͑X i + 1 ⌬X͉͒ still is larger than ͉G͑X i ͉͒, h͑͒ is then modeled as a cubic function ͓using h͑ 1 ͒ which has just been calculated͔. The minimum of this cubic function gives a new value 2 , again restricted to 0.1 1 Ͻ 2 Ͻ 0.5 1 . This calculation requires solving a system of two equations, so if 2 also is not accepted because ͉G͑X i + 2 ⌬X͉͒ is still too large, we do not enhance to a fourth-order model of h, which would increase the computational cost much more. Instead, subsequent cubic modelings are performed using the two most recent values of . In practice, however, not many repetitions should be necessary before finding a better solution, if possible.

FIG. 1 .

 1 FIG.1. The iteration loop of the harmonic balance method for a musical instrument ͑notations defined in the text͒.

FIG. 2 .

 2 FIG. 2. Solution holes: first pressure harmonic P 1 versus blowing pressure ␥ for different N p with N t = 128, = 0.5, and =10 -3 . ͑Even N p give the same as N p -1.͒ Equations and parameters are defined in Sec. IV.

Fig. 7 .

 7 Fig. 7. The oscillation threshold is reduced to ␥ =1/3, at which point the model experiences a direct Hopf bifurcation ͑which is known since the work of Grand et al.͒,[START_REF] Grand | Oscillation threshold of woodwind instruments[END_REF] i.e., the oscillation starts continuously from zero as ␥ is increased beyond the threshold. This means that a single harmonic is enough to study the solution around the threshold. Far from the threshold, more harmonics have to be taken into account for P 1 to converge toward the Helmholtz solution. This is not obvious and contradictory to the hypothesis made for the VTM,[START_REF] Kergomard | Calculation of the spectrum of self-sustained oscillators using a variable truncation method: Application to cylindrical reed instruments[END_REF] for example. Thus, HARMBAL appears as an interesting tool to evaluate the relevance of approximate methods at certain parameter values.

FIG. 6 .

 6 FIG.6. The Helmholtz solution, Eq. ͑15͒, compared with the HBM truncated to 3, 9, 49, and 299 harmonics close to the oscillation threshold ͑␥ = 0.334, = 0.5, =10 -5 ͒ in ͑a͒ frequency and ͑b͒ time domain.

  Fig. 8͑b͒. The HBM, on the other hand, arrives at a solution where the first component in each pair of nonmissing components, i.e., components 1, 4, 7, etc., deviate more from the Helmholtz solution than the second component, i.e., 2, 5, 8, etc. This results in a dip at the middle of the long, positive part of the period ͓i.e., on both extreme times 0 and 1024 of the curve in Fig.8͑b͔͒. The same was observed for N = 3 and N = 4, where the long part of the period was divided by similar dips into three and four parts, respectively ͑not shown͒. The number of time samples, N t , did not change this fact, but as Fig.8indicates, the dips gradually become narrower as the number of harmonics N p increases. This indicates that the HBM approaches the Helmholtz solution as N p approaches infinity.

FIG. 8 .

 8 FIG. 8. Comparison between the standard Helmholtz motion of a stepped cone ͑N =2͒ and the HBM for various N p at ␥ = 0.31, = 0.2, and =2•10 -5 . ͑a͒ The magnitude of the harmonics and ͑b͒ one oscillation period. N t varies from 128 for N p = 5 to 1024 for N p = 180.

3 FIG. 10 .

 310 FIG. 10. Comparison between HBM and TDM of the amplitude of ͑a͒ the first harmonic P 1 and ͑b͒ the dimensionless playing frequency f p / f r as the blowing pressure ␥ increases for a clarinet-like system with viscous losses and weak and normal reed interaction. TDM values for = 0.50 and ␥ Ͼ 0.48 are omitted due to period doubling, as are the beating regimes of HBM calculations ͑f s = 51100 Hz, N t = 512, f r = 103.4 Hz, N p =15͒.

FIG. 11 .

 11 FIG. 11. The pressure and volume-flow wave form of the Helmholtz solution and a three-level sister solution calculated by the HBM employing the simple clarinet model with = 0.5, ␥ = 0.4, N p = 2000, =10 -5 .

FIG. 12 .

 12 FIG. 12. The pressure waveform of the three solutions found by the HBM with N p = 3 employing the simple clarinet model with = 0.5, ␥ = 0.4, =10 -5 .

TABLE I .

 I Description of variables and constants. The dimensionless variables and parameters used in Sec. IV are derived from dimensional variables ͓denoted by a hat ͑Ù͔͒ as follows:

  and = ͑Hw / S͒ ͱ 2c 2 / p M . The dimension- less time is t = t ˆr . The coefficients of the reed equation are M = K r 2 / e 2 , R = Kg e r / e 2 , and K = e H e 2 / p M . Note that index e denotes exciter and r resonator. SI units in parentheses.

	y ˆdisplacement of reed from equilibrium ͑m͒
	p ˆpressure in reed opening ͑Pa͒
	u ˆvolume flow though reed opening ͑m 3 /s͒
	f ˆr	first mode frequency of pipe ͑Hz͒
	f p	playing frequency ͑Hz͒
	p m	mouth pressure/blowing pressure ͑Pa͒
	p M	pressure p m that closes reed opening ͑Pa͒
	H	equilibrium height of reed opening ͑m͒
	w	width of reed opening ͑m͒
	S	cross section of the pipe ͑m͒
	g e	damping of the reed ͑s -1 ͒
	e	specific mass of the reed ͑kg/ m 2 ͒
	e	first mode angular frequency of the reed ͑s -1 ͒
	r	first mode angular frequency of the pipe ͑2f r ; s -1 ͒
	Z c	characteristic input impedance of the pipe ͑c / S͒
		dimensionless loss parameter for the pipe
		density of air ͑kg/ m 3 ͒
	c	sound speed in air ͑m/s͒

FIG.

5

. Illustration of the mouthpiece. The mouth pressure p m becomes ␥ in dimensionless quantities, and the instantaneous reed opening y + H becomes x e -␥ +1 ͑see Table

I͒

.
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1 H. L. F. Helmholtz, On the Sensations of Tone ͑Dover, New York, 1954͒, English translation of 4th German edition from 1877.