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ABSTRACT. In this paper, we apply a model reduction method to find the equilibrium state at
finite strain of geometrically complex structures which have periodic properties in one direction
and exhibit a non-linear material behavior. This method, based on a finite-element approach,
consists in projecting the unknowns fields onto a polynomial basis in order to reduce the size
of the problem. This method was combined with a continuation resolution scheme to find the
instabilities of a laminated rubber bearing subjected to compression loading. Comparisons
with standard finite-element models show the reliability of the present method.

RÉSUMÉ. On présente, dans ce papier, une application d’une technique de réduction de modèles
pour résoudre les problèmes d’équilibre de structures géométriquement complexes possédant
des propriétés de périodicité selon une direction et dont le comportement présente des non-
linéarités géométriques et matérielles. Basée sur une formulation en éléments finis, cette mé-
thode consiste à projeter sur une base polynômiale, bien choisie vis-à-vis des propriétés d’inva-
riance, les champs inconnus. Elle permet ainsi de réduire la dimension du problème à résoudre.
Le couplage d’une telle méthode avec une méthode de continuation, nous permet d’analyser les
instabilités d’un lamifié élastomère-métal en compression. Des comparaisons avec des modèles
éléments-finis standard sont présentées.

KEYWORDS: model reduction, hyperelasticity, finite element, stability, bifurcation, continuation.

MOTS-CLÉS : réduction de modèle, hyperélasticité, éléments-finis, stabilité, bifurcation, continua-
tion.

1



1. Introduction

Rubber bearings are used in many fields of application such as seismic base isola-
tion and aeronautical construction. In most cases, these parts are designed to damp or
transmit complex loads in which compression is the main component. A fine numeri-
cal method is often required for simulating this kind of parts, especially for performing
buckling and post-buckling analysis. However, classical numerical tools (such as the
standard finite-element method) result in some cases in prohibitively large models.
Various approaches which decrease the model size have been proposed.

The first of these models is based on kinematically enriched beam theory or on
behavioral assumptions (macro-models), where the bearing is taken to be an elastic
(or viscoelastic) column. These models are useful for predicting the behavior in single
loading cases or when it is required to determine the buckling load (Kelly 2003, Iizuka
2000). Sub-structuring and homogenization techniques have been proposed to avoid
the problems associated with the prohibitively large size of finite element models. We
do not intend here to review the whole literature on this subject. Readers interested can
refer to (Dumontet 1990, Devries 1998, Léné et al. 2001). The last group of models are
based on specific elements. Boukamel, for instance has used a decomposition method
into Fourier series to deal with the case of a cylindrical rubber bearing (Boukamel
1988) subjected to overall loading.

The model reduction method used in this study is based on the semi-analytical
finite element method (which is usually called the finite-strip method) developed by
Cheung in the mid 70’s for the analysis of shell elastic structures. The finite-strip
method is by now applied in many fields (Cheung et al. 1995, Zhong et al. 1998).
Our aim here is extend this concept to the case of non linear behavior, where the non
linearity is due to both the large strains and the quasi-incompressibility constraint.

The present paper deals with the buckling analysis of laminated structures.
This mechanical analysis is carried out with an arc-length continuation method
(Crisfield 1997, Riks 2004). The singular points are detected and analyzed to identify
the presence of a bifurcation. In the case of a bifurcation, a simple branch switching
strategy is adopted to follow the post-buckling path.

2. Modeling isotropic nearly-incompressible hyperelastic materials

Methods of modeling isotropic nearly-incompressible hyperelastic bodies are
by now readily available. Several books contain a detailed review of the basic
and more advanced concepts developed in the framework of hyperelasticity (Fu et
al. 2001, Holzapfel 2004). The aim of this section is mainly to describe the theoretical
framework required to write the variational form of the equilibrium equations.
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2.1. Constitutive equations

Taking F to denote the deformation gradient and J = detF to denote the volume
variation, the deformation gradient can be split into a volumetric part J 1/3

I and an
isochoric part F such that: F = (J1/3)F. A similar decomposition can be obtained
with the right Cauchy-Green tensor: C = F

T
F = (J2/3)C.

In line with Miehe (1994) (and other authors), we consider an additive split of the
isotropic Helmholtz free energy into a volumetric part and an isochoric part:

ψ(F) = ψiso(C) + ψvol(J) [1]

Taking the first Piola-Kirchoff stress tensor Π, the following constitutive equation is
obtained:

Π = Π : P + pJF
−T [2]

where Π = 2F∂ψiso/∂C. The fourth-order tensor P is a deviatoric operator for the
mixed configuration:

P =
∂F

∂F
= J−1/3

(
I −

1

3
F ⊗ F

−T

)
[3]

where I is the fourth order identity tensor and ⊗ denotes the tensor product (with e.g.
A = B ⊗ C corresponding to Aijkl = BijCkl in indicial notation). The hydrostatic
pressure p is defined from a compressibility law:

p =
∂ψ̃vol(J)

∂J
= ψ̃vol

J [4]

One can find many forms of the strain energy density based on statistical physics or
phenomenological assumptions; see (Holzapfel 2004) for a review. In this paper, we
use the so-called generalized Mooney-Rivlin model, extended from (Mooney 1940),
and a compressibility law proposed in (Hartmann et al. 2003):

ψiso(I1, I2) = a10(I1 − 3) + a01(I2 − 3) [5]

ψvol(J) = k
2G(J)2 = k

2

(
1
10 (J4 − J−6)

)2
[6]

where I1 and I2 are the first principal invariants of C. The material characteristics
are a10 and a01, which are the two Mooney-Rivlin parameters, and k is the modulus
of compressibility.

2.2. Variational form

Several variational principles exist in the case of rubber-like behavior, and partic-
ular attention has been paid to the multi-field methods based on Lagrange multipliers
and Hellinger-Reisner variational theorem since the 70’s, see for example the work
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of Hermann, Hughes and Malkus, Simo and Taylor, Glowinski and Le Tallec and the
references therein (Malkus et al. 1978, Glowinski et al. 1982, Herrmann 1963). In the
present study, we use an approach adapted to modeling nearly-incompressible behav-
ior, consisting of introducing the following two field functional of the total potential
energy (Rüter et al. 2000):

P(u, J) =

∫
Ω0

[
ψ̃iso

(
C(u)

)
+

1

2
kG(J)2

]
dV − Pext(u) [7]

where the external load potential is defined by

Pext(u) =

∫
Ω0

f .δudV −

∫
∂ΩF

T.δudS [8]

where f and T are the prescribed body or surface forces acting on either the domain
Ω0 or the boundary ∂ΩF . Partial Legendre transformation of [7] leads to the same
expression for the potential energy as with the perturbed Lagrange-multiplier method:

P(u, p) =

∫
Ω0

[
ψ̃iso

(
C(u)

)
+ pG(J) −

1

2k
p2

]
dV − Pext(u) [9]

The aim of this formulation is to solve the saddle-point problem:

min
u∈V

max
p∈P

P(u, p) [10]

where V = (H1
0 (Ω0))

2 and P = L2(Ω0) are the space of smooth kinematic and
pressure fields such that u = 0 on the boundary ∂Ωu. The stationary of the functional
[9] gives the equilibrium and quasi-compressibility equations⎧⎪⎪⎨

⎪⎪⎩

∫
Ω0

(Π : P + pJG′(J)F−T ) : δFdV −

∫
Ω0

f .δudV −

∫
∂ΩF

T.δudS = 0∫
Ω0

(G(J) −
1

k
p)δpdV = 0

[11]

∀δu ∈ V , ∀δp ∈ P

3. Implementation of the model reduction method

The main idea underlying this method is to approximate the kinematics and the
pressure fields in the transversal direction of a layer in terms of smooth polynomial
shape functions. By projecting the unknown fields onto a sufficiently complete poly-
nomial basis, we expect to obtain the boundary effects occurring near the free edges.
This approximation leads to the condensation of a geometrical dimension before the
discretization process is performed. A plane strain elastomeric layer will therefore be
modeled by an assembly of 1 dimensional finite elements (figure 1).
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Figure 1. 2D-1D reduction

We take (X, Y ) to denote the position of a material point in the undeformed con-
figuration. The polynomial expansion of the unknown fields is carried out using the
mapping ξ = 2X/L:

u(X, Y ) =

nu∑
i=0

u
i(Y )Ti(ξ) [12]

p(X, Y ) =

np∑
i=0

pi(Y )Ti(ξ) [13]

where nu and np are the polynomial orders of series expansion. The order must be
chosen to obtain a compromise between the accuracy, the computing time and the
numerical stability of the finite elements.

The polynomial basis consists of order one Lagrangian functions (to account for
kinematic constraints such as translations and rotations) and bubble functions. Using
the order n Legendre polynomial Ln(ξ), we have:

T0(ξ) =
1 − ξ

2
, T1(ξ) =

1 + ξ

2
, Tn(ξ) =

Ln(ξ) − Ln−2(ξ)√
2(2i − 1)

[14]

Starting with equations [12] and [13], we can make a finite-element approximation
in the vertical direction with Lagrangian shape functions N(Y ). The kinematic and
pressure fields in an element are:

u(X, Y ) =
∑nu

i=0

∑lu
j=1 N j

u(Y )ui
jTi(ξ) [15]

p(X, Y ) =
∑np

i=0

∑lp
j=1 N j

p (Y )pi
jTi(ξ) [16]

The degrees of freedom are the components of the polynomial expansion, denoted
u

i
j for the kinematics and pi

j for the pressure. Linearizing the equilibrium equations
[12], yields the following system:

nel∑
e

< Δue, Δpe >

([
[kt] [g]

[g]
t

− [mp]

] {
{Δue}
{Δpe}

}
[17]

−

{
{fext} − {r}

−{i}

})
= 0
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where nel is the number of elements in the mesh. The elementary matrices are defined
by:

[kt] =

∫
Ωe

[B]t
[
∂Π

∂F

]
[B]dV

[g] =

∫
Ωe

np∑
i=0

Ti
∂G(J)

∂J

{
[B]tCofF

}
⊗ {N e

p}
T dV [18]

[mp] = α

∫
Ωe

np∑
i=0

np∑
j=0

TiTj{N
e
p} ⊗ {N e

p}dV

The residual and external forces are:

{r} =

∫
Ωe

[B]t{Π}dV

{fext} =

∫
Ωe

nu∑
i=0

nu∑
j=0

TiTj{N
e
u}{f

j}dV +

∫
∂ΩF

e

nu∑
i=0

nu∑
j=0

TiTj{N
e
u}{F

j}dS

{i} =

∫
Ωe

np∑
i=0

Ti{N
e
p}(G(J) −

1

k
pe)dV [19]

where [B] is the linear operator relating the variation of the deformation gradient to
the degrees of freedom: δF = [B]δu. The pressure degrees of freedom of each
element are eliminated at elementary level by performing a static condensation step.
This condensation of the pressure, gives a global number of dof per node define by:

ndof = dim × (nu + 1) [20]

where dim is the physical dimension of the initial problem.
These developments have been implemented using the finite element software Ze-

BuLoN (Foerch et al. 1996).

4. Validation of the reduced model

In this section, we present some examples tests carried out to check the validity
of the present reduced models. Shear and flexion tests were performed on a plane
strain layer. This layer, 1 mm thick and 50 mm long, is composed of a Mooney-Rivlin
materials which has the following characteristics: a10 = 0.31 Mpa, a01 = 0.11 Mpa
and k = 2500 Mpa. In all these tests, the bottom part of the layer was fixed and
the upper part was constrained so as to obtain rigid body motions. In this way, only
one degree of freedom of the upper part was activated in each test. The occurrence
of coupled motions was reflected in the resulting loads. The standard 2-D model is
composed of Q9P3 elements (quadratic in displacement, linear in pressure) and the
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Figure 2. Flexion and shear test on plane strain layer

reduced one, of L3P2 elements (quadratic in displacement, linear in pressure). The
same mechanical formulation and the same software is used to compare the models.

Figures 2 show that good agreement was obtained between the reduced and stan-
dard models in both the shear and the flexion tests. It can be seen from figure 2(b) that
the coupling between transversal and normal motions required greater enrichment of
the polynomial basis than the other types of coupling. The other tests carried out
showed good agreement with the reduced model in terms of local behavior: for exam-
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ple, the boundary effects occurring near the free edges were accurately modelled in
terms of the stress values (Lejeunes et al. 2005).

5. Buckling and post-buckling analysis

In studies on the non-linear responses of structures, three main problems tend to
arise. First, the primary equilibrium path has to be followed, secondly, the singular
points have to be detected and calculated, and thirdly, in the case of bifurcation points,
the secondary path has to be followed. Nowadays, several approaches can be used
to solve these three main problems. Incremental-iterative strategies with arc-length
control are the most popular, see (Crisfield 1997, Riks 2004). Alternative methods
such as the asymptotic numerical method have also been proposed, see (Damil et
al. 1990).

In this study, we used a pseudo arc-length method, in line with Riks, to follow an
equilibrium path. By expressing the equilibrium equation [12] as:

R(a) − λP = 0 [21]

where a denotes the vector of nodal displacements, R(a) the internal forces, P some
constant load pattern and λ a scalar load factor, the pseudo arc-length method consist
in the resolution of the following augmented system:[

R(a) − λP

f(Δa, Δλ) = ΔaT Δa − dl2

]
= 0 [22]

where Δa relates to the lastest converged equilibrium states, dl is the given initial
radius of the constraint. During the corrector process, this procedure is linearized
(Riks 1984).

The pseudo arc-length control is suitable to follow equilibrium path that exhibit
snap-through or limit points. To detect a singular points, we use the smallest pivot of
the tangent matrix KT , for this purpose we define:

τ = min {pivot KT } [23]

A singular point is crossed if τ makes a changes of sign.

To analyze the characteristics of the singular point, we need to compute it precisely.
This was done with an iterative bracketing procedure, which consists in performing
a linear interpolation of the load factor between two points straddling the bifurcation
point, such that:

λi = λi−2 − τi−2
λi−1 − λi−2

τi−1 − τi−2
[24]

where λi−2, λi−1, τi−2, τi−1 are the control parameter and the value of the smallest
pivot at the latest solutions that straddle the bifurcation point. More elaborated pro-
cedures exist for the determination of singular point see for example (Magnusson et
al. 1998).
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When the singular point has been carefully obtained, we compute Z the lowest
eigenmode (corresponding to the lowest eigenvalue) at the singular point. We are
now able to determine whether this point is a bifurcation point or a limit point by
computing:

P
T
Z = 0 bifurcation point [25]

P
T
Z �= 0 limit point [26]

In the case of a bifurcation point, we could use the bifurcation equation (see Crisfield
(1997), section 20.3) to determine the nature of the bifurcation point, and in the case
of a simple bifurcation to exactly compute the two tangent. However, this procedure
involves calculating higher order derivatives of the equilibrium equation. This is gen-
erally not an easy task and alternative simplified procedures have been proposed. For
instance, the step at the bifurcation point is initiated by taking the predictor in the
direction of the eigenvector Z:

Δa = dlZ Δλ = 0 [27]

This procedure is exact in the case of a pitchfork bifurcation, as it often occurs in struc-
tural analysis. For a transcritical bifurcation, it could still be used as an approximated
predictor (Crisfield 1997).

6. Application

As an example of how the reduced model can be applied to stability analysis, we
propose to determine the buckling load and the post buckling behavior of a plane
strain laminated bearing. This structure is composed of 10 layers: the rubber layers
are 1 mm thick and the steel reinforcements are 1 mm thick. All the layers are 10
mm wide and the steel material is modeled as an elastic medium with E=210000 MPa
and ν=0.3. The rubber is modeled as a Mooney-Rivlin material, such that a10 = 0.31
Mpa, a01 = 0.11 Mpa and the compressibility modulus is k = 2500 Mpa. We study
the response of the bearing in two loading cases. In the first case, the bottom layer
is fixed and the upper layer is subjected to a compression load, this layer can only
move in the vertical direction. In the second case, the bottom layer is still fixed and
the compression load is applied to the upper layer which can move in both the vertical
and transversal directions.

Figure 3 (on which, for simplicity, the beginning of the primary path is not shown)
allows to compare the responses obtained with the reduced and standard models. Very
good agreement is observed between the buckling loads. As far as the post-buckling
behavior is concerned, a good agreement is obtained in the second boundary case,
and a softening response of the reduced model is obtained in the first boundary case.
In terms of buckling modes, the reduced and standard models both give the same
response, as can be seen from figures 4.
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Figure 3. Equilibrium paths in the two boundary case
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Figure 4. Buckling modes in the fixed/fixed case and the fixed/free in transversal mo-
tion case

To illustrate the advantages of reduced models, table 1 compares the reduced and
standard models in terms of model size and the computing time required for the stabil-
ity analysis (in the first boundary case). The corresponding computations have been
performed on an Athlon MP processor (1533 Mhz) with a 768-Mb memory.

dof cpu time gain

2-D standard 10282 154
2-D reduced nu = 9, np = 8 1494 12 12.8

Table 1. Model size and cpu time required by the reduced and standard models for the
laminated bearing
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7. Conclusion

In this paper, we have applied a model reduction method accounting for non-linear
behavior under finite strain conditions, which can be used to simulate the behavior
of laminated bearing structures. This study shows the reliability of this method in
the context of an incremental-iterative procedure for performing buckling and post-
buckling analysis on rubber bearing structures.

The reduced method was compared with standard plane strain finite element mod-
els, and proved to be advantageous in terms of both the computing time (which was
nearly 13 fold shorter) and the model size (which was nearly 7 fold smaller). This
method is an useful alternative to the classical finite element method, which involves
either prohibitively large numbers of dof, or elements with a high aspect ratio. Other
kinds of reduced finite element approaches have been developed elsewhere based on
these concepts, which are suitable adapted for the modeling of three-dimensional
beam-like structures (3D-2D reduction) and 3-D rectangular shape laminated bear-
ings (3D-1D reduction), see (Lejeunes et al. 2005).
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