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Two original algorithms are proposed for the computation of bifurcation points in fluid mechanics. These algorithms consist of
finding thezerovalues of a specific indicator. To compute this indicator a perturbation method is used which leads to an analytica
expression of this indicator. Two kinds of instability are considered: stationary and Hopf bifurcations. To prove the efficiency and
advantages of suatumericalmethods several numerical tests are discussed.
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1. Introduction

In this paper, we are interested in numerical investigations of two types of classical instability: stationary and Hopf
bifurcations. A stationary bifurcation corresponds to a transition from a steady flow (usually symmetric) to another
flow (in most cases, with nonsymmetric solutions), whereas a Hopf bifurcation indicates the appearance of a time
periodic solution from a steady branch. The conditions necessary for encountering a Hopf bifurcation are as follows
[1,2] a stationary solution exists for which two of the eigenvalues of the Jacobian matrix cross the imaginary axis.
This means that if; are the eigenvalues of the Jacobian matrix, then at a Hopf bifurcation point, two eigenvalues are
purely imaginary (i.e¢1 = {2 = iw, Re(gy) # 0 for k > 3).

Common methods for computing Hopf bifurcation points precisely are generally divided into two families: the
“indirect” and the “direct” method. The indirect method consists of finding the solutions of the equatiph-R6
along the stationary solution branches. This method requires, for each steady state solution, the computation of tl
eigenvalues of the Jacobian matrix [3]. In some cases, when the number of unknowns of the system is too high, it |
sometimes impossible or at least highly prohibitive to compute all eigenvalues. In such cases, only part of the spectru
is calculated [4] using, for example, an Arnoldi algorithm [5].



The direct method consists of solving an augmented system whose solutions are Hopf bifurcation points [6,7].
This method does not need to follow the stationary solution branch, but it requires good initial values (a good initial
Reynolds number and a good approximation of the initial eigenvalue) to obtain an acceptable convergence.

In this paper, we propose another method, which can also be included in the family of indirect methods using a
different function (not, Re(¢>= 0) to characterize the bifurcation points. This method is based on the introduction of
indicators with the distinctive feature of having zero values at singular points. These indicators were first developed
in structural stability mechanics. Boutyour et al. [8] have defined a stationary indicator. Bensaadi [9] has proposed
theoretical work on the determination of Hopf bifurcation and Tri et al. [10] have applied this theory in structural
problems. We use these indicators and adapt them for fluid instability problems.

The basic idea is to perturb the stationary solution (writteip by a load vectog.f, whereu is the intensity and
f is a given vector force. The linearized and perturbed problem arising from this perturbation can then be written in
the following form:

£r(Uy, w) - AV = uf 1)

where AV is the fluctuation in the velocity resulting from the perturbation force(l# , w) is an operator which
depends on the Reynolds number (via the fundamental stationary saljfjcand, for the Hopf bifurcation, of the
angular frequency. This operator depends on whether it is a stationary or a Hopf bifurcation that we are looking for.
In Eq. (1) one can see that whenis null, then (1) is equivalent to an eigenvalue problem. So the quantityour
indicator of bifurcation (as will be shown later): computation of the bifurcation points consists of finding the point of
the fundamental solution branch wherés equal to zero.

When stationary bifurcations are considered, the indicator only depends on the fundamentdl,pdiis sta-
tionary solution is computed using a perturbation method combined with the finite element method (Asymptotic
Numerical Method [11-14], “ANM”). ThuslJ, is an explicit analytical function of a path following parametef.”
Considering the previous idea, the bifurcation indicator only depends on this path parameter. This property has beel
used by Boutyour et al. [8] and Tri et al. [15] to determine the stationary bifurcation points in structural and fluid
mechanics. They used a perturbation method to compute both the indicatat the vectoA V. The advantages of
such a method are as follows: On one hand, in order to determine the quanttiekA V the operator £(U,) is the
same as that used to compute the stationary solution branches. This therefore leads to a very small increase in CP
time to evaluate the indicator as compared with the CPU time required to compute the stationary solution. On the
other hand, when solving a nonlinear problem with ANM, the solutions are continuously known, as is the indicator.
The indicator is then determined along the whole solution branch and not just for some points as the qu@ntity Re
with the indirect method mentioned above.

In the case of a Hopf bifurcation, the indicator depends on the path following paramégerd' also on the angular
frequencyw. So Tri et al. [10] have used a perturbation method with these two parametensl {). However this
method is very difficult to apply and it is almost impossible to build an automatic method for detection of bifurcation
points in this way. To overcome these two drawbacks, we propose another way here, which consists of setting the
Reynolds number and taking the angular frequency as the perturbation parameter. In this way we can easily use
perturbation method and also a continuation method (Cochelin [11]) to compute the indicator for each value of the
angular frequency.

The first part of this paper is devoted to the determination of stationary bifurcation points on stationary branches,
which are solutions of the Navier—Stokes equations. The second part proposes the determination of the first Hop
bifurcation on the stationary solution branches of the Navier—Stokes equations.

2. Bifurcation indicatorsfor fluid mechanics
We consider a viscous incompressible fluid whose motion is governed by the stationary Navier—Stokes equations:
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wherev is the kinematic viscosity is the density, and where the velocityand the pressurg are the unknowns.
The boundary conditions are:

u=>ug 0N9,S2 3)

whereu, is the prescribed velocity on the boundary? of the fluid domains2. The parametek can be identified
as the Reynolds number. It should be noted that only Dirichlet boundary conditions are considered here. Howeve
Neumann boundary conditions could easily be used. The problem is written in the following operator form:

u=~Aug 0NI,S2
where L(U) represents a linear operator, functionlof(Laplacian and divergence operato@(U, U) a quadratic
operator (convection term), arid a mixed unknown vector defined as:

U:{Z}. 5)

2.1. Indicator for stationary bifurcation

In this section, we present a numerical method for determining stationary bifurcation points. A knowledge of
the fundamental solution of the Navier—Stokes equatibings assumed. This steady solution can be determined, for
example, with an ANM [12,13] or with the incremental-iterative Newton—Raphson method. ANM consists of applying
a perturbation technique in a stepwise manner [11]. The solution is represented by a sequence of local polynomi
approximations. The first method is used in our approach since less CPU time is needed to evaluate the solution bran
than with the Newton—Raphson method [13]. Moreover, the ANM solution curves are determined continuously anc
not point by point as with the incremental-iterative method.

The fundamental solutio#y,, verifies the following equations:

{ LUy + QW,,U,) =0,

up=>Aug ON0yS2. (6)

This fundamental solution is perturbed by a load vegtof wherepu is an unknown scalar anf is a known random
vector. Thus a fluctuation in the velocity fieltl) takes place. Let us denoté= U, + AV. Inserting this expression
in the stationary Navier—Stokes equations (4) and neglecting second-order texiswre obtain the following new
problem:

{ L7 (AY) = pf,

7
AV =0 ong,s2. 0

Here L7 (o) is the tangent operator defined by the expressignies) = L(e) + Q(e, U,) + Q(U,, ).
A supplementary condition has to be imposed to obtain a well-formulated problem. Here we require that the
incrementAY — A)) is orthogonal taA Vg, which gives the following relationship:

(AV — AV, AVg) =0 (8)
with (e, @) being the Euclidian scalar product, and’y the solution of the linear system (7) with= 1:

L7 (AVo) = f,

9
AVo=0 ong, . 9

Finally, the system to be solved is written as:

L7 (AV) = uf,
(AV — AV, AVp) =0, (20)
AY =0 ono,S.




The scalau and the vectonV are computed using:

(AVo, AVo)
(K7 (U171 {f}, AVo)’
AV = u[KrU)17L-{f},
AV =0 o0nog,s2

where[ K7 (U,)] is a discrete matrix corresponding to the tangent opetatgn V).

Note that the resolution of system (11) demands, the triangulation of the mkat(i; ) for each Reynolds number.

So that a considerable amount of CPU time is needed to evaluate it, when there is a high number of unknowns
A perturbation method can be used to reduce this CPU time. This consists of using asymptotic expansions of bott
indicator 1 and the vectorAV. This method has been applied in structural mechanics [8,16] and fluid mechanics
[15] and leads to a very small increase in computing time because the operator needed to gvahdne) is the

same as that needed to compute the fundamental solution. Moreover, if the fundamental solution is computed usin
polynomial approximations, it is then an easy and economical way (in terms of CPU time) of using power series of
the path parameter” to determine the scalar and the vectonAV (see [8,16]).

The scalay represents our stationary bifurcation indicator and is defined at each point of the fundamental solution
of Eq. (4). When the operatdrr (AV) is singular, the indicator is equal to zero. In elastic structural problems, this
indicator can be identified as a stiffness measure. A stationary bifurcation point then corresponds to a disappearin
stiffness (Boutyour et al. [8]).

(11)

2.2. Indicator for Hopf bifurcation

We now consider the nonsteady Navier—Stokes equations which are also written in terms of operators here:

{M(U) +LWU)+ QW,U)=0, (12)
U=AU; o0no,S2

where M is the mass matrix. A perturbatioh) of the stationary solutiol,, is inserted in Eqg. (12). Disregarding
second-order terms inV, Eq. (12) becomes:

{ M(AV) + L7 (AV) =0, (13)

AV =0 onog,s2

with L7 (AYV) being the tangent operator defined at the fundamental pbirfsee Section 2.1). In the case of Hopf
bifurcation, we are looking for points where the tangent operatatA)’) has a complex pair of eigenvalues which
cross the imaginary axis. Let us introduce:

AV(t) = AV - ! (14)
wherew is the angular frequency. Relationship (14) is inserted in Eg. (13), and gives:

{LT(AV) +iwMAV =0, (15)

AV =0 ono,S

where AV is a complex vector whose real part is written &% “ and its imaginary part a&V”. We change the
right-hand side of Eq. (15) by f:

{LT(AV)—l-inAV = uf,

AV =0 ono,S (16)

whereu is still a scalar, andf is a random load vector, assumed to be real. The sgalarour bifurcation indi-
cator, which has the properties of always being positive and null at a bifurcating point (Bensaadi [9], Cadou [17]).
System (15) is written in the real domain:

K1 (Uy) —oM AVE S
[ oM KT(U,\)“:AV”]_[O}' 17



Finally, to compute the Hopf bifurcation points, the following system has to be solved:

£r(Us, ) - AV = uf,
{AV:O onos2, (18)

with £7 (U,,, ) being an operator defined at a point on the stationary solution brahgta(d for a given value of the
pulsation (). This operator is twice the size of the stationary equations. Note that Egs. (18) and (7) are quite similar.
The next step is to find where in the fundamental brakighthe scalai is null. System (18) is equivalent to a
linear eigenvalue problem whenis equal to zero. In this case, the angular frequendy the imaginary part of the
critical eigenvalues andV is the corresponding eigenvector.
To ensure the uniqueness of the solution, an additional condition is needed. This condition is introduced here b
specifying a value for the norm of the vectai .

1AV =|lAVo|%. (19)
The vectorA Vy is a solution of the problem:
AVo=£,1(U;,0) - f. (20)

Condition (19) leads to the following definition of the bifurcating indicator:

y= (?{;’S: 2:’)0) (22)
where

U*=£1(Us, 0) - f. (22)
Finally, the complex vectoA V, solution of Eq. (18), is given by:

AV = pU*. (23)
It can be noted that condition (8) in Section 2.1 can also be used to define the indicator

(AV — AV, AVg) = 0. (24)
In this case the bifurcating indicator is defined by the following expression:

= %, with condition (24) (25)

This second condition is very interesting because it leads to a linear expression of the bifurcating ipditChuimr-
tunately, the numerical results presented in the following sections show the difficulties of using such an expressio
with a perturbation method.

3. Numerical implementation

In this section, we will first discuss the numerical method we use to compute the stationary and Hopf indicator.
We then discuss the best choice for the additional conditions (expressions (19) and (24)) in order to compute th
Hopf bifurcation indicator with a perturbation technique. Finally, we propose a continuation method for computing
the indicator of Hopf bifurcation for all values of the angular frequency. Discussion and results for the stationary
indicator will be given in Section 4.1.

3.1. Spatial discretization

The numerical tests presented here are obtained using the finite element method. A quadrilateral element is us
(Q9/3D [18]) with nine nodes for the velocity and three for the pressure. A penalty method [18] is used in the discrete
continuity equation. Velocities are interpolated by biquadratic functions, whereas discontinuous linear functions are
used for the pressure. The use of the finite element method leads to a discrete mass/naaitia tangent matrix
K7 (U,) (resulting from the discretization of the tangent operdtp(U, )).



3.2. Comparison of the two additional conditions (19) and (24)

In this section, the two indicators defined in Egs. (21) and (25) are compared. The numerical test is performed
considering the flow around a cylinder. The configuration and the boundary conditions are presented in Fig. 1. The
Reynolds number of the flow is determined from the inlet velocity and the diameter of the cylinder. We first propose
a “direct computation” of the indicators and of the corresponding vecatdrs For a given value of the angular
frequencyw, systems (25) and (21) are solved. A givertogether with the triangulation of the operatar(¥/;,, w)
provides the corresponding values of the Hopf indicatossd the complex vectak V. The results for each indicator
and for a Reynolds number in the region of 52 are represented as a function of the angular frequency in Fig. 2(a)
for system (25) and in Fig. 2(b) for system (21). The algorithm for the direct computation can be summarized in the
following steps:

Given initial values ofvg (usually equal to zero) and,
ComputeA Vo = £,2(U;,0) - f

Evaluatew = w + Aw, WhereAw is a known increment
ComputeAV andu by solving system (21) or (25)

(e

If W = Wmax

then — chang#&/, and goto@

— or stop algorithm
Else goto@

Note that this procedure is an incremental method and the solution is then known point by point. A small in&vement
gives an excellent description of the cunges 1) but involves some additional CPU time. The most time-consuming
step in the direct computation is step 4 because it requires the triangulation of the opgtatard) .

Another difficulty may arise when definition (25) is used to evaluate the indigatéor some values of the angular
frequencyw, the vectotU* (with U* = £;1(UA, w) - f) can be orthogonal to the initial vectarVy. In this case, which
remains an exception, the scalaiis infinite (see Eq. (25)). In Fig. 2(a) such a point is reacheddJfam the region
of 5. Clearly, for this latter angular frequency, an infinite value of indicatds computed with expression (25),
resulting from the zero value of the denominator of the fractional expression (25). On the other hand, expression (21)
does not lead to such singular points. Thus, with this latter expression the indicstarell-defined for any angular
frequencies.

r=5 D=1

—

4 b (Ux=1,Uy=0)

(Ux=1,Uy=0) — >

=1

- (Ux=1Uy=0)
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Fig. 1. Flow around a cylinder, description of the geometry.
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Fig. 2. Indicator versus angular frequency, flow around a cylinder with Reynolds number equal to 52.

The initial wg value is generally chosen to be zero. However, for some examples, when the critical angular fre-
quencyw, is known, it is more appropriate to take an initial vatug near this critical number. For the flow around
the cylinder, the critical values of the Reynolds number and the angular frequency (through the Strouhal number) at
now well known Re. ~ 46—-47,w. ~ 4). In this special test, it is helpful to reduce the total computing time of the
direct computation by choosing an initial valug close to this critical value. However, in almost all studies, these
critical flow parameters are not known. So the use of an incremental method is not the best choice. Moreover, fo
solving problem (21)—(23) which only depends on one paramgtarperturbation method [19,12] is better than any
iterative method, as for example, the Newton—Raphson method. Indeed, with this method, only one triangulation o
the operator £(U;,, w) is needed in order to compute an analytical part of theu) curve. In the next paragraphs we
will review the perturbation and continuation techniques for calculating thi®) curve.

3.3. Perturbation technique

The basis of the perturbation method is the performance of a Taylor expansion in terms of the pulsHtibe
two unknowns i, AV) near to a known solutionup, A Vp):

{AV=AVo+wAV1~|—w2AV2~I----+w1’AVp, (26)

W= po+ op1+o’uz+ -+ ol .
These asymptotic expansions are then inserted in Egss. (16) and (19). This latter condition (19) is chosen inste:

of (24) so as to ensure the continuity of the @) curves. This property is compulsory when a perturbation technique
is used. With the help of balancing terms with identical powersJsfowre obtain the following set of equations:

Order0in w:
K7(U,)-AVo=f,
no=1, (27)
AVo=0 o0nos2,.

Orderlin w:
Kr(Uy) - AV1+iM - AVo=u1f,
(AVy, AVp) =0, (28)
AVi=0 o0nas,.



Order p in w:

Kr(U,) - AV, +iM - AV(,_1) = up f,

2. (AV,, AVo) + YPHAV(p — 1), AV,) =0, (29)
AV,=0 0nagQ,.

Finally, at each order, the indicator and the complex vector could be computed from the following expressions:

AVo=I[Kr (Ut f,
AVog=00n052,.

Since f has been chosen as being real, ¥, vector is also real. This condition on thferandom vector leads to
some remarkable properties concerning the indicator and the complex vector at each order. For instance, by insertin
expression (30) at order 0 in Egs. (28), the indicator and complex vector at order 1 become:

AVi=—[Kr (U™ M- AV,

n1=0.

At order 1, the indicator is equal to zero and the corresponding vector is purely imaginary.

AVy = pu2AVo + AVS,

(AVy, AVy) — 2(AV2*, AVp)
2. (AVo, AVp)

with AV = [K7(U)]171- M - AVy.

(31

po=— » (32)

At order 2, the indicator is computed with the use of expressions (32) and the complex vector at this order is real.
Finally, a general expression for both indicator and complex vector can be made for any:order
Order p, with p even:
AV, =u,AVo+ AV,
-1
—2(AV;. AVo) = 3T {AVp—n). AV;)

- 33
Hr 2 (AVo, AVo) ’ (33)
AVI=[Kr(U)I™t M - AVp1).
Order p with p odd
AV, =iAV},
/’Lp :07 (34)

AV =—[Kr (U™t M- AV, ).
Previous expressions (33) and (34) are used to build series (26) which are written in the following forms:

AV ={AY0) 4 of iAOVf b+ {22} 4+ 0P iAV?;Fl)} +aor {27},

(35)

w=po+w’uz+o*ug+ -+ PP with p even

This method has been applied to compute the indicator and the complex vector for the flow around the cylinder. The
results for several truncation orders of asymptotic expansions and for a Reynolds number equal to 46 are plotted an
compared with the direct method (Section 3.2) in Fig. 3. It is shown that the series have a finite radius of convergence
The asymptotic representation of the solution is only valid up to a certain value of the angular frequédtmy

the highest truncation order (order 22), the asymptotic expansion seems to be valid up to a valeguef to 1.

Since the “area of interest” of this test is located near 4, this first step of the perturbation technique is not
sufficient to study the stability of this example. In order to determine the indicator for any angular frequency values,
we propose applying the perturbation method step by step. This method, called the continuation technique [11], ha:
been successfully applied for the computation of the complete solution branches of nonlinear problems (nonlinear
elasticity [11] or Navier—Stokes equations [13]).
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reference (direct computation with Eg. (21)), for flow around a cylinder at Reynolds number equal to 46.

3.4. Continuation technique

The continuation technique consists of applying the perturbation technique from a new startingupoiavy).
First the range of validity of approximation (35) is computed automatically using the following criterion [11]:

AV 1/(p—1)
o = (1200 )
AV,

where ¢ is a small number angb the truncation order of the series expansion. The end of the solution path
(o, p(@), AV(0)) = (wm, m, AVy, ) is defined by criterion (36) and expansions (35) and this point is taken as
the new starting pointwo, 1o, AVy,, ). The angular frequency then becomes:

w=wy+ o (37)

whereo is the new perturbation parameter. The unknownsX V) are again expanded into power series and balanc-
ing identical powers i gives a new set of linear equations:

OrderQin @:
(AVE, AV])
HO= | This A’
(AVE, AVE) (38)
AV =E£r(Up, w0)*- .
AVp= pLoAV(;k
whereAV{ is the solution of the first step of the method (i€ is solution of Eqg. (30)).
Order1lin @:
(AVS, AVp)
NN N TAS
° (39)

AV =iEr Uy, wo) ™1 M - AV,
AV, = ;,LlAVC;k + AVf.
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Fig. 4. Bifurcation indicator versus angular frequency—comparison of the continuation technique solution and the reference (direct computation
with Eq. (21)), for flow around a cylinder at a Reynolds number of 52.

Order p inw:

—2-(AV}, AVp) — Zf:_ll(AV(p —7), AV,)
2 (AVE, AVo)

AV =iEr(Up, w0) M - AV,_y,

AV, =pupAVG + AV}

Up =

3

(40)

The linear systems (38)—(40) have the same tangent operatdh £v0). Only one triangulation of this operator (at
order 0, Eq. (38)) leads to the determination of an analytical part of the curve)( The following problems (40)
need only backward and forward substitutions. It should be noted that problems (38)—(40) can also be solved using
an iterative solver (like GMRES). But in this case, the CPU times required to solve all these problems are the same
Finally, the total CPU times for computing all the terms of the asymptotic expansions (35) can be greater with an
iterative solver than with a direct solver even if the problem involves a large number of unknowns.

Two different ways of calculating the starting pointo( AVp) at each step of the continuation technique can be
deduced from the property of the common tangent operat@£ wo). The first method has been discussed above
(by inserting the optimal value,, in the asymptotic expansions (35)). The second way is to compute valgies Vo)
for the new value of the angular frequeney by solving system (38) for the order 0. This second method enables
us to avoid accumulations of errors due to successive polynomial approximations (with method one) and has beel
chosen in the numerical tests presented in this paper. The continuation technique has been applied to the example
the flow around a cylinder. A comparison of this method and direct computation is given in Fig. 4 for a Reynolds
number of 52.

The final algorithm for precise determination of the Hopf bifurcating point is as follows:

0. Setthe parameters of the method:

(a) The area of interest for the Reynolds numife#: c [Re', R€].

(b) The order of truncation of the asymptotic expansigns:

(c) The number of steps in the continuation technique.

(d) The minimum value of the indicatos:
1. Compute the stationary soluti@h and the corresponding Reynolds numlifes, with ANM [13].
2. If Ree [Re', R&, then:

2.1 Computation of the,; andAV;:

10



(i) first step with the expressions (30), (33) and (34).
(i) following steps with the expressions (38) and (40).
2.2 Evaluation of the range of validity of asymptotic expansions with the criterion (36).
2.3 Building of series with the expression (35), for the first step, or with the expression (26) for the following
steps.
2.5 For this Reynolds number, determine the value of the angular frequenhgre the indicaton is minimum,
(wrFf”l?ni’ Mﬁ'iani):
2.6.1 First step(wmini, Kmini) = (a)r?]ieni’ Mﬁfni)
2.6.2 Following steps: IRS. < ftmini TheN(omini, wmini) = (@RS, uRe )
3.1 If umini < € then
3.1 R€¢ = Re w° = wnmini
3.2 Stop
3.2 Else goto 1.

4. Applications and discussion

In this section, we will consider several traditional fluid stability tests to assess the ability of the methodology that
has been presented to predict stationary and periodic bifurcations.

4.1. Computation of stationary bifurcation points in fluid flows

We will first apply the stationary indicator defined in Section 2.1 to the example of a two-dimensional symmetric
flow through a channel with a symmetrical expansion about its centerline. Shapira et al. [20] have proposed a linez
stability analysis with computation of eigenvalues for several channel width values. In this paper, we consider ¢
configuration that Shapira has also investigated: a channel expansion ratio of 2 and an expansioncaagd®rof
(see Fig. 5). The configuration and the boundary conditions are given in Fig. 5. A parabolic velocity profile is imposed
at the inlet channel (in the direction). The Reynolds number is based on the channel diamBtehé maximum
velocity at the inlet and the kinematic viscosity

Re= Umax d. (41)

v

The mesh used in the numerical computations is made of 642 elements (Q9/3D) (roughly 6000 degrees of freedo
for velocity). The stationary solution is computed with an Asymptotic Numerical Method [13]. This method is an

automatic procedure which allows a nonlinear solution branch to be followed. Such a method can lead to a ste
accumulation in the continuation procedure near a turning point or a bifurcating point. To illustrate this idea, the
velocity U, measured at the location P1 (see Fig. 5) is plotted versus the Reynolds number in Fig. 6(a). In this plot
a step accumulation is observed for a Reynolds number close to 200 (each step in the continuation procedure
represented by a square symbol on curve Fig. 6(a). We then apply the procedure for detection of stationary bifurcatic

Parabolic velocity profil
Ux =0
and Uy =0

AN
5.0 <X=90/|

P2 (1150 ; 10.0)
10. d D «

50 | P1 (1x60; 1.25)
Ux =0
Uy =0 Ux =0 V

y Uy =0
L 20.0 520.0

Fig. 5. Configuration and boundary conditions for flow in a channel.
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Fig. 6. Study of stability of flow through a channel with a symmetrical expansion.

points given in Section 2.1 for a Reynolds nhumber between 200 and 250. In Fig. 6(b) the indicator is plotted versus
the Reynolds number. This indicator is equal to zero for a Reynolds humber value between 214 and 215. For the sam
example, Shapira et al. [20] have found that the eigenvalue which corresponds to the least stable mode is real an
changes sign for a Reynolds number between 212.2 and 216 (the eigenvalue is eué3oE-3 for Re=212.4

and 0.1E-3 for Re= 216).

This indicates that for a Reynolds number greater than 216, several other steady solutions exist. Thus, to comput
these stationary solution branches after the bifurcating point, we performed computations with several parameter:
of the ANM. The streamlines of the flow for three different computations with the ANM are given in Fig. 7 for a
Reynolds number equal to 600. Another interesting feature of the ANM is the ability to jump near bifurcation points
to different bifurcation branches (see Cochelin [11], Boutyour et al. [8] for further explanations) by modifying only
some parameters of the continuation method.

Our indicator therefore gives accurate values for the critical Reynolds number where a bifurcation appears. The
eigenmode corresponding to the bifurcation can be computed either by applying linear interpolation or using an
automatic procedure (Vannucci et al. [16]). In this paper, an easy automatic algorithm, based on ANM, is proposed
for calculating and switching on stationary branches emanating from a bifurcating point in solid mechanics problems.

It should be noted that this indicator has been applied for studying the Coanda effect which occurs in several flow
configurations [21] (sudden expansion with or without divergent, open cavity). This work shows a high degree of
consistency between the results obtained with the stationary indicator and the results found in the literature.

4.2. Computation of Hopf bifurcation points in fluid flows

4.2.1. Flow around a cylinder

In this section, we will apply our Hopf bifurcation indicator to a traditional test: flow around a cylinder. The
configuration and the boundary conditions are given in Fig. 1 and are the same as in Jackson’s study [7]. The Reynold
number is calculated taking the cylinder diameter, the kinematic viscosity and the inlet velocity into consideration. The
mesh used for all computations has more than 3000 velocity nodes. A Galerkin weighting was used in all numerical
tests.

In the case of stationary bifurcation, for each Reynolds number, an indicator value was computed. In the case of
Hopf bifurcation, for each Reynolds number, we compute an indicator versus the angular frequency curve, written
Ore(ut, w). We know for this example that the critical Reynolds number is between 40 and 50. So computations have
been performed in this range of Reynolds numbers. The results are given in Fig. 8 where the indicator is plotted versu:
the angular frequency for several values of Reynolds numbers. A Hopf bifurcation is characterized by a zero indicator
value. In fact, looking for some critical parameters (Reynolds number and angular frequency) whose indicator is zero,
consists of detection of the minimum of functigre(i, ). In Table 1 the minima of this function are given for five
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(¢) Nonsymmetrical stationary solution past the critical Reynolds number

Fig. 7. Flow in a channel—streamlinesk¢= 600.

Table 1

Evolution of the minimum of functiore(t, w) versus Reynolds number, for flow around a cylinder
Re 38.00 43.83 45.98 46.13 47.53

Lmini 0903x 1071 0184x10°1 1x108 0112x102 0.11x10°1
o (Umini) 3.195 3.769 3.972 3.986 4.117
Number of steps 8 10 30 18 10

Reynolds numbers. The smallest minimum for these five Reynolds numbers occRs=£045.98 andw = 3.972
(Gre—as9s (n = 1 x 1078, » = 3.972)). Since the critical angular frequency is found, it is then easy to compute
the eigenvalue and the corresponding eigenmode for this point of bifurcation. Indeed smisezero then (16)
becomes:

{LT(AV)—i—inAV =0,

AV =0 onoj,s2. (42)

Therefore, @ is the eigenvalue andV is the eigenmode. In this test, the eigenvalues corresponding to the Hopf
bifurcation are¢; = ¢2 = 3.972i. The corresponding eigenmode is simply computed with Eq. (26)avithw, =
3.972:

AV = AVo+ 0 AV1 + 0 AVa + -+ ocP AV, (43)

With these asymptotic expansions (43), there is no singular matrix at a bifurcating point because the operatc
£7(U,, w) is triangulated far from the singular point. In Fig. 9, streamlines for real 9(a) and imaginary parts 9(b)
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Fig. 8. Computations of indicator versus angular frequency for different Reynolds numbers, for flow around a cylinder.

of the bifurcating eigenvector are drawn. The Strouhal number corresponding to this bifurcating point is equal to
St. = 0.137. This number is computed from the expression:
D - w,

St=5 e (44)

where the subscript indicates critical parameters. Jackson [7] found the following critical parameters for this test:
Re. = 46.184,St. = 0.138. These are similar to the values we found.

4.2.2. Flow around a square cylinder

We now consider the flow around a square cylinder. The geometry and the boundary conditions are given in Fig. 10.
The mesh used leads to 3098 velocity nodes for 725 elements Q9/3D. This test is the same as that proposed &
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(a) Real part of the bifurcating eigenvector {b) Imaginary part of the bifurcating eigen-
vector

Fig. 9. Streamlines of the complex bifurcating eigenvectd®@t 45.98 andw = 3.972.
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Fig. 10. Geometry and boundary conditions, for flow around a square cylinder.

Table 2

Evolution of the minimum of functiore(t, w) versus Reynolds number, flow around a square cylinder
Re 41.50 50.64 54.70 55.00 56.53

Lmini 0.19 0.47x 1071 2.65x 1077 0.37x 1072 0.18x 1071
o(Wmini) 35 4.30 4.65 4.68 4.8

Number of steps 7 8 16 13 8

Kelkar and Patankar [22]. The Hopf bifurcation indicator has been computed for a Reynolds number between 4(
and 60. This Reynolds number is based on the length of the side of the square cylinder and also on the uniform inle
velocity. In Table 2, the minima of functio@ire(it, ) are given for five Reynolds numbers. The indicator is almost
null (u = 2.65x 10~ ") for a Reynolds number equal to 54.70 and an angular frequency equal to 4.65. The critical
Strouhal number of this flow is computed using expression (44) in whidh the length of the side of the square
cylinder and the critical velocity is in the inlet velocity for a Reynolds number equal to 54.70. The critical Strouhal
number is therst. = 0.135. This value is consistent with the numerical results reported by Kelkar$22}(0.126)

and the experimental results of Okajima [23], close to 0.1 for a square cylinder.

4.2.3. Flow in a channel with a symmetric expansion

The two first tests are standard tests used in fluid stability analysis. With these tests our results have been compar
with the results found in the literature. We will now study the stability of the flow in a channel with a symmetric
expansion. This example has been studied in Section 4.1 and a stationary bifurcation has been found for a Reynol
number close to 215. We are now looking for a Hopf bifurcation from the bifurcated solutions that are displayed in
Fig. 7(a). Computations have been made for some Reynolds numbers between 10 and 900. The Hopf indicator is thi
plotted versus the angular frequency for four Reynolds numbers in Fig. 11. With these four values, we can isolat
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Fig. 11. Computations of the indicator versus the angular frequency for different Reynolds numbers, for flow in a channel with a symmetric
expansion.

Table 3
Evolution of the minimum of functio@re(i, @) versus the Reynolds number, for flow in a channel with
a symmetric expansion

Re 606 607 609 610
Wmini 5.017x 1073 2.949x 1073 8.888x 1074 1.118x 1073
o (imini) 0.536 0.537 0.538 0.539
Number of steps 63 69 71 71

the zone of Reynolds numbers for which Hopf bifurcation can occur. Indeed, the indicator remains far from zero
while the Reynolds number is less than 270. No Hopf bifurcation can be found in this area. On the other hand, the
minima for the indicator tend to be zero for Reynolds numbers greater than 550. A first zone, for a Reynolds humber
between 606 and 610, is then isolated. The Hopf indicator for this zone becomes zero for an angular frequency valug
close to 0.5396, thus indicating a Hopf bifurcation for these critical parameter vatees-(609 andw. = 0.538
see Table 3). These critical numbers lead to a Strouhal number of 0.14 (computed with expression (44) in which the
length D is the channel diameter aridx,. is the maximum velocity at the inlet).

When the Reynolds number is increased, a second zone is found where the indicator is null. For Reynolds number
between 617 and 621 (see Table 4), the indicator is then null for a critical Reynolds number of 620 and a critical
angular frequency of 0.6667. The Strouhal number for these critical parameters & thed.17.
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Table 4
Evolution of the minimum of functionGre(it, @) versus the Reynolds number, for flow in a channel with
a symmetric expansion

Re 617 618 619 620 621
Lmini 8203x 1073  4.884x 1073 1595x 1073 1588x 104 1.672x 1073
®(lmini) 0.6631 0.6646 0.6661 0.6667 0.6676
Number of steps 87 88 90 133 96
Table 5
First Hopf bifurcation in the 2-D lid-driven cavity. Comparison of the critical values obtained in the literature
Authors Re. Critical frequency
Proposed method 13122 d.o.f. mesh b Fig. 14(b) 7890 0.44
Poliashenko and Audin [26] 7763 0.45
Fortin et al. [4] 14082 d.o.f. 7745 0.45
18678 d.o.f. 7937 0.45
25814 d.o.f. 79985 0.45
31922 d.o.f. 8000 0.45
Cazemier et al. [24,27] DNS 7922 0.44
Cazemier et al. [24,27] POD 7819 0.60
Tiensinga et al. [28] 8375 0.43
Peng et al. [25] 100 x 100 grid points 7402 0.59
150 x 150 grid points 7694 -
200 x 200 grid points 7704 -
Sahin and Owens [29] 129 x 129 grid points 8244 0.45
193 x 193 grid points 8109 0.45
257 x 257 grid points 8069 0.69
y=1 (u=1,v=0)
(u=0,v=0) (u=0,v=0)
y=0
x=0 (u=0,v=0) x=1

Fig. 12. Geometry for the 2-D lid-driven cavity flow.

4.2.4. The 2-D lid-driven cavity flow

We will now consider the flow in a 2-D lid-driven cavity. The domain and boundary conditions of this problem are
shown in Fig. 12. In the past decade there have been a large number of papers in the literature on the study of tl
stability of the 2-D lid-driven cavity. We limit ourselves here to the first Hopf bifurcation. A detailed description of
the whole dynamic phenomenon that occurs in this example can be found in Cazemier [24] or Peng et al. [25].

In Table 5 we have given the critical Reynolds number and frequency for which the steady flow becomes periodic
The results given by the proposed method are compared with the results found in the literature. A large numbe
of authors have studied this problem using different methods to characterize the critical parameters. For exampl
Poliashenko and Audin [26] use a direct method, Fortin et al. [4] compute the smallest eigenvalues of the matri
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resulting from the discretization of the Navier—Stokes equations. Cazemier et al. [27] propose a direct numerical
simulation (DNS) for checking the results from a proper orthogonal decomposition (POD) coupled with an eigenvalue
computation of the resulting low dimensional matrix. Tiesenga et al. [28] have used a Newton—Picard method which
results in the determination of the eigenvalues. The results of Peng et al. [25] are obtained by a direct humerical
simulation while those of Sahin and Owens [29] rely on Arnoldi’'s method.

For our computations, we have used a mesh witlx 8D elements, that leads to 13.122 d.o.f. This corresponds to
the maximum size problem that can be processed with our computer resources. The corresponding mesh is drawn |
Fig. 14(b). Despite this coarser mesh, when compared with those used by Fortin et al. [4] the critical Reynolds numbel
we obtain is very similar to those in the literatuRe({ ~ 8000). The critical frequency result based on our indicator is
about the same as those in the literature (0.45).

For this example, several authors have computed the eigenvalues of the Jacobian matrix for a Reynolds numbe
close to 8000 (see for example Tiesenga et al. [28] or Fortin et al. [4]). These results are given in Table 6. For this
Reynolds number, there are a large number of eigenvalues close to the imaginary axis. For the critical Reynolds
number,Re. = 7890, the evolution of the indicator versus the frequency is plotted in Fig. 13. We have also given all
the minima of functiorGre-7890(1¢, ) in this figure. If we compare these values with the results presented in Table 6,
it is easy to see that these minima correspond to eigenvalues near the imaginary axis.
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0 0.1 02 03 04 05 06 07 08 09 1
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Fig. 13. The 2-D lid-driven cavity. Indicator versus frequeriRg= 7890.

Table 6
Eigenvalues near the imaginary axis from Refs. [28,4]

Eigenvalues and corresponding frequencies from

Tiesenga et al. [28] Fortin et al. [4]

A St Re A St Re

—0.014440.9392i 0.1495 8000 ~ 2.83786i ~ 0.45 8000

—0.0268+1.8667i 0.2971 8000 ~ 1.95i ~0.31 8000
0.0009+ 2.764i 0.4399 8375 ~1 ~0.16 8000

—0.0312+3.7956i 0.6041 8375

—0.0151+3.3252i 0.5292 8875

—0.0348+4.4752i 0.7123 8875
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Table 7
Computations ofirst Hopf bifurcation point—critical numbers for several mesh size

Numerical tests mesh Re. St

Flow around a cylinder 2800 d.o.f. 52.716 0.167
5000 d.o.f. 49.33 0.171
6400 d.o.f. 45.61 0.163

2-D lid driven cavity 3362 d.o.f., reg.-mesh 9224 0.19
3362 d.o.f., irr.-mesh 9151 0.48
7442 d.o.f., irr.-mesh 7119 0.45
13122 d.o.f,, reg.-mesh 7673 0.45
13122 d.o.f., irr.-mesh 7890 0.44

B

(a) regular mesh (b) finer grid near the walls

Fig. 14. Meshes used for the 2-D lid-driven cavity.

4.2.5. Influence of the grid size and discretization scheme

We will now present a short examination of the influence of the mesh size for characterizing the Hopf bifurcation.
This study concerns the flow around a cylinder and the 2-D lid-driven cavity. For the flow around a cylinder, we use
three different meshes and the corresponding numbers of d.o.f. are given in Table 7. Five meshes are used for the 2
lid-driven cavity. One can distinguish two kinds of mesh: regular mesh (Fig. 14(a), denoted by reg.-mesh in Table 7,
and irregular mesh (Fig. 14(b), denoted by irr.-mesh in Table 7). Clearly the critical Reynolds humber and the Strouhe
number converge with the fineness of the mesh. Our final results areR&outd5.5-46 St= 0.16-0.17 for the flow
around the cylindeiRe. = 7600-7900St= 0.44-0.45 for the driven cavity. As noted by Fortin et al. [4], the critical
frequency is not highly mesh sensitive. Moreover, in the second example, the accuracy of the results seems to be mc
depending on the total number of d.o.f., rather than on a local fineness near the wall. Nevertheless, meshes used
this study seem to be not enough fine to give relevant conclusions.

The weighting method is another important key for finite element solution of the Navier—Stokes equations. For
example, a Petrov—Galerkin [18,30] weighting can be chosen. The advantage of this formulation is the elimination o
the spatial oscillations that occur with a Galerkin weighting [18]. The difference between these formulations lies in
the discretization of the convection term and the mass matrix [18,30]. Note that all previous results have been obtaine
with a Galerkin method. Details concerning the computation of the fundamental solutions and the bifurcating points
with the Asymptotic Numerical Method and a Petrov—Galerkin weighting are presented in Refs. [13,17]. In Ref. [17],
it has been stated that the Petrov—Galerkin formulation often leads to incorrect estimations of the Hopf bifurcation
This conclusion is consistent with the point of view of Gresho [31] and Sahin and Owens [29], who do not recommenc
the use of upwind methods (such as the Petrov—Galerkin method) for computing fluid flow and instabilities.
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5. Conclusions

According to the computational tests presented here, the numerical methods we propose in this paper give critica
values that are consistent with the results in the literature, for both stationary bifurcations and Hopf bifurcations.

In the case of the stationary indicator, the numerical method presented here can be improved using asymptoti
expansions (see Boutyour et al. [8] and Tri et al. [15]) and an automatic algorithm could be used to switch on the
bifurcating branches (see Vannucci et al. [16]).

In the case of Hopf bifurcation, the method gives accurate values of the critical parameters. Moreover, this method
enables ready computation of the complex bifurcating eigenvector. Note that with a direct method [7] the complex
bifurcating eigenvector is also determined and the critical parameters are also very accurate. With the algorithm
presented in this paper, several critical points can be determined (see Section 4.2.3 for the flow in a channel with ¢
symmetric expansion). With this method, the convergence to a Hopf bifurcation point is not secure and depends or
the choice of the initial values. However, the detection of a Hopf bifurcation point is difficult to automate with the
proposed method, because the indicator does not change its sign at the critical point. Thus, the method presente
in this paper could be combined with a direct method, for example by providing a good initial guess for the exact
computation.

We have not discussed the CPU time needed with the proposed algorithm in this paper. In fact the largest amoun
of time is for the triangulation of the operatoy &/, , wp). This is nearly ten times that required to triangulate the
tangent matrixLy of the stationary nonlinear problem due to an appropriate storage of the operétfr, &g). On
the other hand, the total CPU time is governed by the number of steps in the continuation method (this means the
number of triangulations of the operator @/, wp)). This number of steps can be reduced by using a continuation
technique based on Padé approximants [32] instead of polynomial approximations. This continuation method was
recently proposed by Elhage-Hussein et al. [33] and leads to a reduction of nearly 50 per cent in the number of step:
within the asymptotic numerical method. Such a method can easily be applied to the algorithm presented here and th
same reduction in the number of steps in the continuation is expected.
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