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Abstract
Structure of pipe networks minimizing the total energy dissipation rate is studied analytically. Among all the pipe networks

possible to build with a given amount of total pipe volume (or pipe lateral surface area), the network minimizing the dissipation
rate is shown to be loopless. Furthermore, such an optimal network is shown to contain at most N − 2 nodes, in addition to
the N sources plus sinks that it connects. These results are valid whether the possible locations for the additional nodes are
chosen freely or from a set of nodes (such as points of a grid). Applications of these results to various physical situations and
to efficient computation of optimal pipe networks are also discussed.

PACS numbers: 89.75.Fb, 05.65.+b, 45.70.Vn, 45.70.Qj

Finding the most efficient transport network is an issue
arising in a wide array of different contexts [1, 2]. One
can cite, among others, the water, gas and power supply
of a city, telecommunication networks, railway or car traf-
fic, and more recently the design of labs-on-chips or mi-
crofluidic devices. Besides, this problem also appears in
theoretical works intending to describe the architecture
of vascular systems of organisms [3, 4]. Generally speak-
ing, consider a set of sources and sinks embedded in a
two- or three-dimensional space, their respective number
and locations being fixed. Flow rates coming in through
each source and going out through each sink are also
given. The challenge consists in interconnecting them via
possible intermediate junctions, referred to as additional
nodes, in the most efficient way. That is, to minimize a
cost function of general form

∑

k wkf (ik), where the sum
is carried on all the links that compose the network. wk is
the “weight” associated with the kth link, and f is some
function of the flow rate ik carried by this link (usually,
f is some power law: f (ik) = |ik|

γ
, with γ ≥ 0). The

flow rates are not independent but must satisfy a conser-
vation law (Kirchhoff’s first law) at every source, sink,
and additional node of the network.

In the present letter, the structure of pipe networks
minimizing the dissipation rate U =

∑

k rki2k is studied,
where the weight rk of each pipe is the ”flow resistance”,
defined as:

rk =
ρlk
sm

k

, (1)

ρ being some positive constant, lk and sk the respective
length and cross-sectional area of each pipe, and m a pa-
rameter characterizing the flow profile (examples of flows
are given hereafter). It is shown that – among all the pipe
networks possible to build with a given value of total pipe
volume (or total lateral surface area) – the network min-
imizing U is necessarily loopless. As a consequence, it is
also shown that the number of additional nodes in such
an optimal network cannot exceed N − 2, where N is

the number of initial nodes (sources plus sinks). These
results are valid whether the positions of the additional
nodes are chosen in a set or free to be adjusted for a
further minimization of U .

Since the minimization is done under a global con-
straint on the total pipe volume, or pipe surface area,
it is convenient to introduce the function Cn =

∑

k lksn
k ,

which represents the total volume (n = 1) or total lateral
surface area (n = 1/2) of the network [5]. For most flows
encountered in physics, m ≥ 1, ensuring that m ≥ n.
In many physical situations also, ik derives from a po-
tential function (electrical potential, pressure, concentra-
tion, temperature,...) so that potential difference vk, flow
rate ik, and resistance rk of the kth pipe are related by
the Ohm’s law vk = rkik.

Consider a network of given topology, connecting the
sources to the sinks, and whose total pipe volume/surface
area is equal to Cn. The dissipation rate U is a function
of the cross-sections and lengths of all the pipes that com-
pose the network. Pipe cross-sections can be adjusted to
minimize the dissipation rate, while preserving the value
of Cn. It has been shown in a previous study [4] that, as
a result of this optimization of the network geometry, the
flow rate ik carried by each pipe in the optimal network
scales with its cross-sectional area sk as:

|ik| = κIs
(m+n)/2
k , (2)

where I is the total flow rate coming in through the
sources (and going out through the sinks), and κ is a
function depending on m, n, and the geometry and topol-
ogy of the network. Consequently, the dissipation rate in
such a network can be rewritten as:

U = (κI)
2
Cn. (3)

Similarly, pipe lengths may also be optimized in order
to minimize U (while preserving Cn). Actually, coordi-
nates of the additional nodes are the appropriate inde-
pendent optimization parameters. As a result, the fol-
lowing vector balance is also satisfied at every junction
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of the network with optimized cross-sections and node
locations [4]:

∑

k

sn
kek = 0, (4)

where ek is the outward-pointing unit vector along each
adjoining pipe. In some situations however, the positions
of the additional nodes cannot be freely adjusted, but
must be chosen from a set of nodes (such as points of
a grid, or some particular cities of a country). In these
cases Eq. 4 is usually not satisfied.

Conditions 2 and 4 do not uniquely determine the
structure of the optimal network: they do not restrict
the number of pipes and junctions, or give indication on
the presence or absence of loops in the network. Besides,
these are properly necessary conditions for extrema of U .
It can be shown (see Appendix) that these extrema are
either local minima, or saddle points. Here, it is proven
that condition 2 cannot lead to a local minimum of U
in a network containing loops. As a consequence, it is
shown that, starting from any network containing loops,
it is always possible to build a new loopless network with
lower dissipation rate (and with a same value of Cn).

Consider a network satisfying Eq. 2 and containing a
loop. To go from a given junction A to another junction
B of the loop, there are two different paths, noted (α)
and (β) , as depicted on Fig. 1a. Let us make a shift of
material, in such a way that flows in path (α) tend to be
strengthened in one direction (say A to B) and flows in
path (β) tend to strengthened in the opposite direction
(B to A). That is, the new cross-sectional areas s′k in

the loop are defined as: s
′(m+n)/2
k = s

(m+n)/2
k ± s

(m+n)/2
0

with, for path (α), a plus sign if flow rate in pipe (i, j) is
in direction A → B and a minus sign if the flow rate is in
opposite direction, while signs are inverted for path (β)
(see Fig. 1b). s0 is a positive number smaller than any
cross-sectional area sk of the original loop. Cross-sections
outside the loop remain unaltered (s′k = sk). Note that
flows in a loop cannot turn all clockwise, or counter-
clockwise (otherwise, the potential difference VA − VB

between nodes A and B, and thus the flow rates in the
loop, would trivially be zero). This guarantees that the
cross-sectional areas of the loop did not all simultane-
ously increase (or decrease).

Such a variation of cross-sectional areas implies a re-
distribution of flows in the entire network. Let {i′k} be
the new distribution of flow rates in this new geometry,
r′k = ρlk/s′mk the new resistances, and U ′ =

∑

k r′ki′2k the
new dissipation rate. Although we do not know the val-
ues of the new flow rates, an upper bound on the new
dissipation rate U ′ can be established, using Thomson’s
principle [6, 7]. This principle (which happens to be a
theorem) states that – among all possible flow rate dis-
tributions {jk} which satisfy conservation of flow at every
source, sink, and additional nodes – the actual flow rate

A B

(β)

(α)

(β)

(α)

(a) (b)

A BA B

(β)

(α)

(β)

(α)

(a) (b)

A B

FIG. 1: Shift of material in a loop of the network. (a): the
original loop, where flow directions in each pipe are indicated
with arrows. (b): the same loop, where cross-sectional area
of a pipe is increased when the direction of its carried flow
is A → B along path (α) or B → A along path (β), and
decreased otherwise. The other cross-sectional areas in the
network remain unaltered.

distribution (i.e.: the one satisfying Ohm’s law) is the
one that makes the function

∑

k rkj2
k an absolute mini-

mum. Consider in particular the flow rate distribution
defined as: jk = ik + i0 along path (α), jk = ik − i0 along
path (β), and jk = ik for any pipe outside the loop. i0
is some positive number, and {ik} is the actual distribu-
tion in the original network, the sign of ik being defined
in both paths as positive if directed from A to B. The
distribution {jk} satisfies flow rate conservation at every
source, sink, and additional nodes, since the distribution

{ik} does. Besides, by choosing i0 = κIs
(m+n)/2
0 and us-

ing Eq. 2, the flow rate distribution jk can be rewritten:

jk = sgn (ik) κIs
′(m+n)/2
k . Thus, according to Thomson’s

principle:

U ′ ≤ (κI)
2
C′

n, (5)

with C′
n =

∑

k lks′nk . Let us now compare the new value
of pipe volume/surface area C′

n with the original value
Cn. This can be done by studying the variation of C′

n

with s0. With no difficulty, we obtain the derivative of

this function with respect to x = s
(m+n)/2
0 :

∂C′
n

∂x
=

2n

m + n

∑

path α

lk

(

s
(m+n)/2
k + x

)(n−m)/(n+m)

(6)

−
2n

m + n

∑

path β

lk

(

s
(m+n)/2
k − x

)(n−m)/(n+m)

.

Since m ≥ n,
∂C′

n

∂x is a decreasing function of x, and then:

∂C′
n

∂x
≤

(

∂C′
n

∂x

)

x=0

. (7)

Therefore, if the bound in inequality 7 is negative, C′
n

is a decreasing function of x. Using Eqs 1 and 2, this
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bound can be rewritten as:

(

∂C′
n

∂x

)

x=0

=
2n

m + n





∑

path α

rk |ik| −
∑

path β

rk |ik|



 .

(8)
We could have chosen to reinforce flows in direction

B → A in path (α), and A → B in path (β) instead,
which comes to swapping (α) and (β) in the calculations
above. Inequalities 5 and 7 would still be satisfied for this
new geometry, but this time with an opposite sign for
(

∂C′

n

∂x

)

x=0
(see Eq. 8). So, necessarily

(

∂C′

n

∂x

)

x=0
≤ 0 for

one of the two shifts, and C′
n is a decreasing function of s0

for this particular shift, implying that C′
n (s0) ≤ C′

n (0) =
Cn. From Eqs. 3 and 5, we obtain that the corresponding
dissipation rate U ′ is lower too: U ′ (s0) ≤ U [8].

Afterwards, the total volume/surface area can be in-
creased up to its original value Cn by increasing any
cross-sectional areas in the network. This will imply a
further decrease in U [9]. Thus, we found a small pertur-
bation of the cross-sections such that the dissipation is
reduced for a fixed value of Cn. This proves that condi-
tion 2 cannot lead to a local minimum of U in a network
containing loops. Moreover, we can apply the reasoning
above with increasingly large values of s0, until eventu-
ally one of the pipe in the loop has a zero cross-sectional
area, so one of the paths is cut of. Possible dead branches
can be removed, the equivalent material being shifted to
the rest of the network by increasing any other cross-
sectional areas again, so that the constraint stays at its
initial value while the dissipation rate is subjected to a
further decrease. We can repeat the same procedure and
eliminate all the duplicate paths until there are no loops
in the network. The argument holds even in case of over-
lapping loops (that is, loops having pipes in common),
and more generally for any topology of the original net-
work. Therefore, we conclude that the architecture of
the network minimizing U is necessarily loopless. Note
that we do not make use of condition 4 throughout the
reasoning, so the demonstration is valid whether or not
the positions of additional nodes are optimization param-
eters.

It must be mentioned that the absence of loops in
the least dissipative network has already been specu-
lated, but not formally proved, in the particular case
of a constrained total pipe volume [10]. Besides, in or-
der to make connection with recent studies on networks
minimizing the cost function

∑

k wk |ik|
γ

[11, 12], let
us rewrite the dissipation rate of a network with op-
timized cross-sections as U = (κI)δ ∑

k lk |ik|
γ , where

δ = 2m/ (m + n) and γ = 2n/ (m + n) ≤ 1 (this expres-
sion was obtained by using Eqs. 2 and 3). Banavar et
al. [11] showed that the flow rate distribution satisfying
the conservation law at every node, source and sink, and
minimizing the cost function

∑

k wk |ik|
γ is loopless when

γ < 1. In that study however, the whole network struc-

ture (i.e.: its topology and geometry) and the weight wk

of every link are set. The only optimization parameters
are the flow rates ik (they do not necessarily obey to
Ohm’s law). Xue et al. [12] obtained a similar result
with the cost function

∑

k lk |ik|
γ , although the topol-

ogy of the network is not necessarily settled, since the
number and location of additional nodes are free to vary.
However, this cost function differs from U , since κ is not
a constant, but depends on the geometry and topology
of the network. Therefore, our result on the absence of
loops cannot be deduced from those previous studies.

(a) (b)(a) (b)

FIG. 2: (a): the two adjoining pipes of a two-fold junction
carry flows in opposite directions in order to satisfy flow rate
conservation. (b): we can favorably replace the two adjoining
pipes with a straight one: since the total channel length is
shortened, the dissipation rate will be decreased for a fixed
value of Cn.

Let us now show that the number of additional nodes
is at most N − 2 in the optimal network, where N is the
total number of sources plus sinks. This result limits the
number of possible topologies for the optimal network.
Note first that a loopless network (or tree) has one more
node than it has links. So, the number of links in a net-
work with A additional nodes is N+A−1. Since each link
has two ends, the number of “incident lines”, summed
over all the nodes, is 2 (N + A − 1). This number can
be evaluated differently: let Np be the number of sources
or sinks with p incident lines. Since each source or sink
is linked to the rest of the tree, the smallest value of p
for which Np has a nonzero value is 1, so

∑

p≥1 Np = N .
Similarly, let Ap be the number of additional nodes with
p incident lines. By definition, two-fold junctions can ex-
ist only if its two links are not parallel. Such junctions
cannot exist whenever their locations are optimization
parameters (since condition 4 must be satisfied). Two-
fold junctions could a priori exist if their positions cannot
be freely adjusted. However, they can be favorably (i.e.:
with no increase of U and Cn) removed and their two
adjoining pipes replaced with a straight one, the way it
is depicted in Fig. 2. Thus, the smallest value of p for
which Ap is not zero is p = 3 in both cases, and the to-
tal number of incident lines is:

∑

p≥1 pNp +
∑

p≥3 pAp.
Comparing these two expressions for the number of in-
cident lines, and considering that

∑

p≥1 pNp ≥ N and
∑

p≥3 pAp ≥ 3A, it appears that:

A ≤ N − 2, (9)
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which was to be proven.
Because of the broad definition of the flow resistance

(Eq. 1), the results presented in this letter can be applied
in various situations. For example, the m = 1 case can
correspond to electrical current in wires, liquid flow in
porous conducts, mass or heat diffusion in bars (provided
that for the latter the bar lateral surface is insulated).
The m = 2 case corresponds to the laminar Poiseuille
flow in hollow pipes. Minimization can be done under a
fixed lateral surface area (n = 1/2) if one wants to save
the material required to build the hollow pipes, or a fixed
volume (n = 1), if one wants to preserve the amount of
liquid flowing through the network.

Unfortunately, the results presented in this letter do
not give insights into the way of building the optimal net-
work practically, or even into the uniqueness of such an
optimal network. In fact, as for the Steiner tree problem -
which consists in finding the tree of minimal length inter-
connecting a set of given points- this problem is likely to
be NP-hard, meaning that the solution cannot be found
without an exhaustive search of all the possible topolo-
gies. However, the NP-hardness does not exclude the
possibility of establishing basic properties on the geome-
try and topology of Steiner trees [13]. Similarly, we were
able to address features on the structure of pipe networks
minimizing the total dissipation rate under a global con-
straint. Specifically, the upper bound on the number of
additional nodes restricts the number of possible topolo-
gies for the optimal network(s). These results make pos-
sible the conception of efficient algorithms for computing
the optimal pipe network problem [12]. In many situ-
ations however, and especially for vascular systems of
organisms, the capacity of the network to resist random
injuries may also play a key role in its design. Obvi-
ously, a reticulate network containing redundant paths is
more adapted than an arborescent one for that purpose.
Therefore, it is sometimes essential to look for a compro-
mise between optimization of flow and robustness of the
network. Definitely more works need to be conducted in
that direction.

B. Abou, S. Durand, and A. Rabodzey are deeply ac-
knowledged for useful discussions and inspection of this
work.

APPENDIX

In this appendix we prove that conditions 2 and 4 can-
not lead to a local maximum of U . It is more convenient
to show first that for a fixed value of U , a small devi-
ation from condition 4 can lead to an increase of Cn.
Suppose that the location of a given node in the net-
work is moved by a small amount δr. The new length
of each of the adjoining links can be easily evaluated

as: l′k = lk

(

1 − 2ek · δr/lk + (δr/lk)
2
)1/2

(where lk is

its original length). Now let us adapt the cross-sectional
areas such that each individual resistance is unchanged:
r′k = rk. Thus, the dissipation rate is also unchanged,
while the value of the total volume (or surface area) is

now C′
n =

∑

sn
k l

′(m+n)/m
k /l

n/m
k , which can be expanded

as:

C′
n = Cn −

m + n

m

∑

j

sn
kek · δr (10)

+
m + n

2m

∑

j

sn
k

lk

(

|δr|
2
−

m − n

m
(ek · δr)

2

)

+ O
(

|δr|
3
)

.

Hence, when condition 4 is satisfied, we obtain that C′
n ≥

Cn (with the assumption that m ≥ n). We can then
decrease C′

n down to Cn by reducing some cross-sectional
areas. This can only imply an increase in U . Thus, we
found a small perturbation from the extremum defined
by Eqs. 2 and 4 leading to an increase in U for a fixed
value of Cn. We conclude that this extremum cannot be
a local maximum of U .
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