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Abstract

This paper is concerned with vibroacoustics in the time domain. One of the aims is to compare
results given by an semi-analytical technique based on the resonance modes with a finite difference
technique. An other goal is to describe the response of a fluid-loaded plate (displacement of the
structure and sound pressure in the fluid) coupled to a rigid cavity when it is excited by a Ricker
wavelet and to see the influence of the excitation on the response of system.

INTRODUCTION

The amount of publications on fluid/structure interactions over the past three decades is quite
impressive. The earliest one is due to M.C. Junger and D. Feit [1], the first edition of which
appeared in 1972. Then a couple of books have been published in the eighties [2, 3]. These
books provide a very complete overview of the knowledge in the domain. Let us also mention the
CISM Course [4] in which the basic concepts of the fluid/structure interaction phenomena are
described. Most of the studies are conducted for harmonic time dependence because of its relative
simplicity that allows to give analytical or asymptotic expansion. When explicit time dependence
is needed, less analytical work had been done, most of it in underwater acoustics see for example
[5] ; roughly, most of the methods are based on a numeric inversion of the harmonic equations by
Fourier integrals. An other way to solve time domain problems is to use a direct approximation
of the equation based on finite difference techniques. This paper shows how finite differences
methods and analytical methods can be used to compute sound generation by impulse excited
plates coupled to acoustic cavities. And, in particular how both methods are able to describe the
radiation of subsonic and supersonic plate waves.

Section 2 is devoted to the description of the equations.
In section 3, it is shows how the resonance modes can be used to describe the response of a

fluid-loaded structure (displacement of the structure and sound pressure in the fluid). First, the
response of the system to a harmonic excitation is expanded into a series of eigenmodes which
depend on frequency. By using a Fourier inverse transform, it is then possible to express the
response of the system to a transient excitation in terms of the fluid-loaded structure resonance
modes. These modes do not depend on frequency. When the resonance modes are known, the
response of the system to any kind of excitation is obtained. It is show how a perturbation
expansion that account for a ”light” fluid loading allows to compute these resonance modes in a
very simple way.

In section 4, the equations are solved by a finite difference technique.

GENERAL STATEMENT OF THE PROBLEM
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In the rest of this paper, small case letters correspond to time functions while capital letters
denote time harmonic functions with time dependence exp(−ıωt). Let us consider a rectangular
domain Σ defined in cartesion co-ordinate (O, x, z) by x ∈ [0, Lx]×z ∈ [0, Lz]. ∂Σ is the boundary
of Σ. A thin monodimensionnal plate of thickness h, length Lx and simply supported at its
boundary, occupies the upper surface of this domain. This plate closes a rigid rectangular cavity
lies in Σ. The mechanical and geometric parameters of the plate are Young’s modulus E =
200GPa, Poisson’s coefficient ν = 0.3, density ρp = 7800Kg/m3, h = 5mm and Lx = 1m. The
plate is damped by a proportional damping given by ηp = 1. The geometry of the cavity is given
by Lx = 1m and Lz = 0.8m. The fluid inside the cavity is air, considered as a perfect gas, of
density ρp = 1, 2Kg/m3 and sound speed celerity cf = 340m/s. The critical frequency of this
plate is 2517 Hz.

The plate is excited by a point-mecanical force f(x, t) located at xe of unit maximum ampli-
tude. Its time dependence is that of a Ricker wavelet. It is defined as the second time derivative
of the gaussian function g(t) = exp(−π2(1 − f0t)

2). That is f(x, t) = δxe
(x)g′′(t)/g′′(1/f0) =

δxe
(x)(1−2π2(1−f0t)

2) exp(−π2(1−f0t)
2). One can consider that this signal is of finite duration

between 0 and Te = 2/f0 and of finite spectrum between 0 and 3f0.
Let us denote by u(x, t), the normal displacement of the plate v(x, t) its velocity. u(x, t)

is described by the usual Kirchhoff equation. In the cavity, the acoustic pressure, denoted by
p(x, z, t), is governed by the d’Alembert equation. On the boundary of the cavity, a Neumann
condition is imposed. u(x, t) and p(x, z, t) satisfy the following system of equations:

D∆2u(x, t) + ρphü(x, t) + ηpu̇(x, t) = f(x, t) − p(x, 0, t) (1)

∆p(x, z, t) − 1/c2
f p̈(x, z, t) = 0 (2)

u(0, t) = 0, u′′(0, t) = 0, u(lx, t) = 0, u′′(Lx, t) = 0 (3)

u(x, 0) = 0, u̇(x, 0) = 0 (4)

∂np(x, z, t) = 0 on ∂Σ (5)

p(x, z, 0) = 0, ṗ(x, z, 0) = 0 (6)

∂np(x, z, t) = ρf ü(x, t) on the plate, (7)

where D = Eh3/(12(1 − ν2)) is the bending rigidity if the plate. In these equations ṗ or u̇
stand for the time derivative and ∂n is the normal derivative. Equations (3,5) are the boundary
conditions for the displacement and the acoustic sound pressure. Equations (4,6) are the initial
cauchy conditions for the displacement and the acoustic sound pressure. The last equation (7)
ensures the continuity of the accelerations of both the plate and pressure inside the cavity.

MODAL EXPANSIONS AND TIME DOMAIN SOLUTION

In the harmonic regime, one has

D∆2U(x, ω) − ρphω2U(x, ω) − ıωηpU(x, ω) = F (x, ω) − P (x, 0, ω) (8)

∆P (x, z, ω) + ω2/c2
fP (x, z, ω) = 0 (9)

U(0, ω) = 0, U ′′(0, ω) = 0, U(lx, ω) = 0, U ′′(Lx, ω) = 0 (10)

∂nP (x, z, ω) = 0 on ∂Σ (11)

∂nP (x, z, ω) = −ρfω2(x, ω) on the plate. (12)

This system of equations for U and P can be brought back to an integrodifferential equation
for U only by using Green’s representation of the pressure. G(x, z, x′, z′, ω), the Green’s function
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of the rigid cavity is given by the modal expansion

G(x, z, x′, z′, ω) =
c2
f

LxLz

∞
∑

m=0

∞
∑

n=0

ǫmǫn
Ψmn(x, z)Ψmn(x′, z′)

ω2 − ω02
mn

,

where ω0
mn = cf

√

(

mπ
Lx

)2

+
(

nπ
Lz

)2

is the mn-th eigenpulsation, ǫm is the Neumann factor, that is

ǫm = 1 if m = 0 and ǫm = 1 if m 6= 0 and Ψmn(x, z) = cos(mπx/Lx) cos(nπz/Lz) is the mn-th
eigenmode of the rigid cavity. The pressure inside the cavity is given by the integral equation

P (x, z, ω) = ω2ρf

∫ Lx

0

U(x′, ω)G(x, z, x′, 0, ω)dx′. (13)

Introducing this result in equation(8), one obtains

D∆2U(x, ω) − ρphω2

(

U(x, ω) + ı
ǫp

ω
U(x, ω) − ǫf

∫ Lx

0

U(x′, ω)G(x, 0, x′, 0, ω)dx′

)

= F (x, ω)

U(0, ω) = 0, U ′′(0, ω) = 0, U(lx, ω) = 0, U ′′(Lx, ω) = 0,

where ǫp = ηp/ρph and ǫf = ρf/ρph are small parameters for a slightly damped plate in air. Now,
one defines the eigenmodes Ũl(x, ω) and the eigenpulsations ω̃l(ω) of this problem as the non zero
solutions of

D∆2Ũl(x, ω) − ρphω̃2
l (ω)

(

Ũl(x, ω) + ı
ǫp

ω
Ũl(x, ω) − ǫf

∫ Lx

0

Ũl(x
′, ω)G(x, 0, x′, 0, ω)dx′

)

= 0,

Ũl(0, ω) = 0, Ũ ′′
l (0, ω) = 0, Ũl(lx, ω) = 0, Ũ ′′

l (Lx, ω) = 0.

It is easy to see that, because G(x, z, x′, z′, ω) depends on the frequency, both the eigenmodes and
the eigenpulsations are frequency dependent. The only difficulty is to compute these eigenmodes
and eigenpulsations ; if ǫp and ǫf are small parameters, one can use pertubation expansions [6, 8]
to shows that :

Ũl(x, ω) = U0
l (x) + ǫf

∞
∑

s=1,s 6=l

ω02
l

ω02
s − ω02

l

βω(U0
l , U0∗

s )U0
s (x), ω̃l(ω) = ω0

l (1 − ı
ǫp

2ω
+

ǫf

2
βω(U0

l , U0∗
l )),

where U0
l (x) =

√

2/Lx sin(lπx/Lx) and ω0
l are the usual l-th eigenmode and eigenpulsation of the

simply supported elastic plate in vacuum. The energy exchanged with the fluid is describe by
βω(U0

l , U0∗
s ) =

∫ Lx

0

∫ Lx

0
U0

l (x′)U0
s (x′)G(x, 0, x′, 0, ω)dx′dx. Due to the various expression involved,

βω(U0
l , U0∗

s ) is given by an very simple analytical series. One shows that the solution reads

U(x, ω) =
1

ρph

∞
∑

l=1

〈F, Ũ∗
l 〉Ũl(x, ω)

ω02
l − ıǫpω − ω2(1 + ǫfβω(U0

l , U0∗
l ))

, (14)

where 〈Ũl, Ũ
∗
l 〉 is the usual inner product. The pressure radiated into the cavity is obtained by

replacing the displacement given by equation 14 into equation 13.
The response of the plate and its pressure radiated into the cavity is computed using inverse

time Fourier transform. Using residu integration theorem, one can shows that the response of the
system involves resonance mode series expansion

u(x, t) =
−1

ρph

∞
∑

l=1

2ℑ

(

〈f, Û∗+
l 〉Û+

l (x)
e−ıω̂lt

ω̂+

l − ω̂−
l

)

, (15)

p(x, z, t) = ρf

∫ Lx

0

d2u(x′, t)

dt2
∗
(t)

g(x, z, x′, 0, t)dx′, (16)
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where ∗
(t)

is the usual time convolution product. The resonance modes Ûl(x) and resonance

pulsations ω̂±
l do not depend on the frequency and correspond to the free oscillation of the

system. ω̂±
l are the zeros of ω02

l − ıǫpω−ω2(1+ ǫfβω(U0
l , U0∗

l )) and have negative imaginary part
. Each resonance mode is the corresponding eigenmode computed at the resonance frequency
Û+

l (x) = Ũl(x, ω̂+

l ). It is to be noted that to obtain the previous results, care must be taken when
applying the residue integration around the first resonance frequency of the cavity which is zero
for a rigid cavity. But for an excitation force with a spectrum without a continuous component,
there is no particular problem.

RESULTS

We present figure 1 two pressure fields inside the cavity 1 ms after the beginning of the
excitation. The first is obtained for an excitation with f0 = 500 Hz and the secondwith f0 =
3000 Hz. In both cases, the maximum pressure amplitude is close to 0.014 Pa.

Figure 1: Pressure fields inside the cavity at 1 ms for f0 = 500Hz (left) and f0 = 3000Hz (right)
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