A Time Domain Method for Modeling Wave Propagation Phenomena in Viscoacoustic Media

Jean-Philippe Groby and Chrysoula Tsogka CNRS/LMA, 31 Chemin Joseph Aiguier, 13402 Marseille cedex 20, FRANCE Summary. In many applications, realistic propagation media disperse and atten uate the acoustic waves. This behavior can be taken into account by a viscoacoustic model. Since in general, the viscoacoustic modulus is a function of frequency, in corporating this into time domain computations is practically non-feasible with classical discretization methods. However, one can use an approximation of the viscoacoustic modulus by a low-order rational function of frequency. We use here, such an approximation and show how it can be incorporated in the velocity-pressure formulation for viscoacoustic wave propagation. For the discretization in space we use a finite-element method and for the time discretization a second order centered finite difference scheme.

Viscoacoustic wave propagation

In an isotropic viscoacoustic medium occupying a domain Q c IRd ,d = 1, 2, wave propagation phenomena are described by the following system of equations, ) with some initial conditions at time t = 0, that we will systematically omit in the following, and where T is some finite time, up to which we compute the solution. In (1), u is the displacement, p the pressure, (} = Q(x) the density andµ= µ(x,w ) the viscoacoustic modulus, which is complex and frequency dependent. Given that dispersion and attenuation are related through the Kramer-Kronig relation [6], µ, (x, w) is uniquely determined from the quality factor Q ( x, w ) defined by,

{ (}�:'; -'Vp = f, in ilx JO, T[ , p = µ *t divu, in Qx ]O, T[ , (1 
Q ( ) = Re( µ(x,w)) x, w Im( µ(x, w) ) " (2)
Since µ( x, w ) is a function of frequency, the constitutive relation in the time domain (second equation of (1)), is expressed in terms of a convolution op erator, denoted here by *t:

p(t) = µ *t divu =[ t oo JL (x, t -s) divu(x, s) ds.
(

) 3 
This equation, however, is of no practical use for numerical calculations, as it requires saving in memory the whole history of the solution at all points of the computational domain. To overcome this inconvenience, we approximate the viscoacoustic modulus by a rational function in frequency, as it was pro posed in [4, 5,3]. To explain this approach, it is convenient to introduce the relaxation function R(x, t), defined by µ(x, t) = aR 1� ' t) ; R(x, t) = (µR(x) + 6µ(x) 1= r(x, w')e-w'tdw') H(t),

where µR(x) = limt_,+00 R(x, t) is the relaxed modulus, µu(x) = µR(x) + 6µ(x) = lim t ->oR(x,t) the unrelaxed modulus, r(w', x) the normalized re laxation spectrum (f000 r( x, w')dw' = 1) and H ( t) the Heaviside function.

Replacing this into equation (3) gives, p(x, t) = µu(x ) divu ( x, t) -6µ(x ) /_ t oo 1+ = w'r(w') e-w'(t-T) divu(x, T)dw' dT .

(4) We assume now that the relaxation spectrum can be approximated by L single peaks of amplitude O'. j at relaxation frequencies Wj:

L L r(x, w) = L aj(x)6(w -wj(x)) ; L aj(x) = l.

j=l j=l

In this case, we get, and
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In (7) we introduced yj(x) defined by,

L 6µ(x) . " 6µ(x) Yj(x) = - ( - ) aj(x), with � y j(x) = - ( - ) . µR X j=l µR X (5) (7) 
(8)

Remark that equation (7) can be obtained if one assumes that µ(x, w) can be approximated by a rational function of iw, PL(x, iw) µ(x, w) >:::

: µL(x, w) = Q ( . ) ' L x, iw (9) 
with P L and Q L being polynomials of degree L in iw. T hen, (7) can be re-interpreted as an expansion of (9) into partial fractions [ 5]. Thus approx imating the viscoacoustic modulus by a rational function is equivalent to approximating the relaxation spectrum by a discrete one. For computational reasons, it is natural to seek for rational approximations of the viscoacoustic modulus, which give good results using a small number of terms. We follow the approach of Emmerich and Korn [ 5] which consists in taking the relax ation frequencies W j equidistant on a logarithmic scale and then estimate the Yj 's which minimize the difference between the approximated quality factor and the exact one. Given thatµ is uniquely defined by Q, if one has a good approximation of the quality factor, this implies a good approximation for the viscoacoustic modulus. Results comparing this approximation method with the Pade approximation method [ 4] and the method proposed in [ 2] will be shown in the conference.

2 The mixed velocity-pressure formulation

Considering (4) in frequency domain and incorporating (7) leads to, L ( )(" ) p(x, w) =µR (x)divu(x, w)+µR (x) L . Yj x i� ) divu(x, w). (10) . ZW + w1• X J =l We propose now the introduction of new variables T/j defined by, (iw + Wj(x)) T/j(x, w) = µR (x)yj(x)divv(x, w), j = 1, ... , L, where v is the velocity, defined as the time derivative of the displacement u.

The previous equation can be written in time domain, OTJj (X, t)

. . at + Wj(X)TJj(X , t) = µ R(x)yj (x)d1vv(x , t), J = 1, ... 'L.

Using the definition of T/ j and multiplying (10) by (iw) we get L (iw)p(x, w) = µR (x)divv(x, w) + L(iw)T/j(x, w). j=l

Our final system of equations in the time-domain is,

{ {.J�� -\lp = f, in Dx]O, T[ , & p '°' L & rlj - d " n ] [ &t -Dj=l 8t -µ R ivv, in JtX O, T, OrJj d " w • n ] [ 8t + wjT/j = µRYj ivv, vJ in HX O, T. (11)
Equivalently, one can chose to eliminate the pressure and obtain a second order in time equation for the displacement by introducing adequate new variables [ 5]. We prefer, however, the first order velocity-pressure formula tion for the following reasons:

For the time discretization of (14) we use a second order centered finite dif ferences scheme :

In our simulations, we assume that the problem is posed in the whole space and to solve it numerically, we couple system (16) with the perfectly matched absorbing layer model (PML).

Numerical Aspects

The numerical scheme (16) becomes explicit in time when an adequate quadrature formula is used to approximate the matrix Mv, the other mass matrices (Mp, My and Mw) being diagonal, since the space M h is composed by discontinuous functions. Stability analysis based on energy techniques shows that the scheme is stable under the following CFL condition (in homogeneous media) , Ll:' µ:II B f B ,11 ( 1+ t, Yi) <'. L with llBI' Bhll ::'.:'. h 4 2 in lD and llBI' Bhll ::'.:'. �2 in 2D. The numerical scheme has been tested in lD by comparing the results to the analytic solution. The 2D implementation is still in progress. Numerical results will be presented in the conference.

-It can be coupled with the fictitious domain method for taking into ac count diffraction by objects of complicated geometry. -A perfectly matched layer model (PML) can be written for this system. This permits us to simulate efficiently wave propagation in unbounded domains. -This system is easier to implement in heterogeneous media, since it does not necessitate approximation of spatial derivatives of the physical pa rameters.

An equivalent first order velocity-pressure system was proposed in [ 7] where the authors used staggered finite differences schemes for the discretization.

Our aim being to couple this system with the fictitious domain method, we propose instead the use of a mixed-finite element method on regular grids.

Discretization

A mixed formulation associated to equations (11) is given by,

flt ( gv, w) + b(w,p) = (f, w), l::/ w EX, ft ( µ� p, q)-L�=l ft ( µ 1 R T/ j, q) -b(v,q) = 0, l::/ q EM, li(-1

-n• q) + (-5':'.Ln. q) -b(v q) -0 l::I J . l::/ q EM, dt µ RYj 'I) ' µ RYJ 'l)l ' -' '

H being the L-dimensional vector with components T/j and b(w, q) = Jn qdivw dx, l::/ (w , q) EX x M.

(12) (13)

The functional spaces X and M are H(div; D) and L 2 (D) respectively. We introduce now some finite element spaces Xh C X, Mh c M of dimensions N1 and N 2 respectively. The semi-discretization in space of problem (12) is, Find (Vh, Ph, Hh) E L 2 (0, T; IR N ' ) x L 2 (0, T; IR N 2) x L 2 (0, T; ( IR N 2)L) s.t.:

where Bl denotes the transpose of Bh. In practice we only consider regu lar domains in IR d , d = 1, 2, that can be discretized with a uniform mesh T,, composed by segments or squares of size h, depending on the dimension of the problem. The finite element spaces we use are presented in [1] . We implemented for d = 1, 2 the lowest order elements, which are