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Automata for Analyzing and Querying
Compressed Documents

Barbara Fila, Siva Anantharaman

LIFO - Université d’Orléans (France),
e-mail: {fila, siva}@univ-orleans.fr

Abstract. In a first part of this work, tree/dag automata are defined as
extensions of (unranked) tree automata which can run indifferently on
trees or dags; they can thus serve as tools for analyzing or querying any
semi-structured document, whether or not given in a compressed format.
In a second part of the work, we present a method for evaluating posi-
tive unary queries, expressed in terms of Core XPath axes, on any dag
t representing an XML document possibly given in a compressed form;
the evaluation is done directly on ¢, without unfolding it into a tree. To
each Core XPath query of a certain basic type, we associate a word au-
tomaton; these automata run on the graph of dependency between the
non-terminals of the minimal straightline regular tree grammar associ-
ated to the given dag t, or along complete sibling chains in this grammar.
Any given positive Core XPath query can be decomposed into queries of
the basic type, and the answer to the query, on the dag t, can then be
expressed as a sub-dag of ¢ whose nodes are suitably labeled under the
runs of such automata.

Keywords: Tree automata, Tree grammars, Dags, XML, Core XPath.

1 Introduction

Several algorithms have been optimized in the past, by using structures over
dags instead of over trees. Tree automata are widely used for querying XML
documents (e.g., [8,9,15,16]); on the other hand, the notion of a compressed
XML document has been introduced in [2,7,12], and a possible advantage of
using dag structures for the manipulation of such documents has been brought
out in [12]. Tt is legitimate then to investigate the possibility of using automata
over dags instead of over trees, for querying compressed XML documents.

Dag automata (DA) were first introduced and studied in [5]; a DA was defined
there as a natural extension of tree automaton, i.e. as a bottom-up tree automa-
ton running on dags; and the language of a DA was defined as the set of dags
that get accepted under (bottom-up) runs, defined in the usual sense; the empti-
ness problem for DAs was shown there to be NP-complete, and the membership
problem proved to be in NP; but the problem of stability under complementation
of the class of dag automata —closely linked with that of determinization— was
left open. These two issues have since been settled negatively in [1]: the reason
is that the set of all terms (trees) represented by the set of dags accepted by a
non-deterministic DA is not necessarily a regular tree language; a consequence is
that the class of tree languages recognized by DAs (as sets of accepted dags) is a
strict superclass of the class of regular tree languages. It is well-known however,
that answers to MSO-definable queries on (semi-)structured trees form regular
tree languages ([18]); it is thus necessary to define the languages of DAs in a
manner different from that of [5,1], if they are to serve as tools for analyzing
and querying a document, independently of whether it is given in a (partially or
fully) compressed format, or as a tree. Our first aim in this work is therefore to
redefine the notion of the language of a DA suitably, with such an objective.



For achieving that, we first present (in Section 2) the notion of a compressed
document as a tree/dag (trdag, for short), designating a directed acyclic graph
that may be partially or fully compressed. The terminology trdag has been
chosen to distinguish it from that of tdag employed in [1]; this latter term will
be employed in this paper when referring to a fully compressed dag. A Tree/Dag
automaton (TDA, for short) is then defined as an automaton which runs on
trdags. The essential differences with the DAs of [1] are the following: (i) our
TDAs can be unranked, and (ii) although the transition rules of a TDA look
quite like those of the DAs in [1], or those of TAs, a run of a TDA on any given
trdag t will carry with it not only assignments of states to the nodes of ¢, but
also to the edges of t; runs will be so defined that a TDA accepts any given
trdag ¢ if and only if it accepts the tree ¢ obtained by uncompressing ¢, as a tree
automaton running on the tree ¢, in the usual sense.

In the second part of the paper, we present an approach based on word
automata for evaluating queries on trdags that represent XML documents in
a partially or fully compressed format; the terms ‘trdag’ and ‘document’ will
therefore be considered synonymous in the sequel. Any given trdag ¢ is first seen
as equivalent to a minimal straightline regular tree grammar £;, that one can
naturally associate with ¢, cf. e.g., [3,4]. From the grammar L;, we construct
the graph of dependency D; between its non-terminals, and also the chiblings
(linear graphs formed of complete chains of sibling non-terminals) of £;. The
word automata that we build below will run on D; or the chiblings of £;, rather
than on the document ¢t itself.

We shall only consider positive unary queries expressed in terms of Core
XPath axes. (The view we adopt allows us to define the various axes of Core
XPath on compressed documents, in a manner which does not modify their
semantics on trees.) For evaluating any such query on any document (trdag) ¢,
we proceed as follows. We first break up the given query into basic sub-queries
of the form ()= //*[axis::o] where axis is a Core XPath axis of a certain
type. To each such basic query @), we associate a word automaton Ag. The
automaton Ag runs on the graph D; when axis is non-sibling, and on the
chiblings of £; when axis is a sibling axis. An essential point in our method is
that the runs of Ag are guided by some well-defined semantics for the nodes
traversed, indicating whether the current node answers @), or is on a path leading
to some other node answering (). The automaton is not deterministic, but its
runs are made effectively unambiguous by defining a suitable priority relation
between the transitions, based on the semantics. A basic query ) can then be
evaluated in one single top-down pass of A g, under such an unambiguous run. An
arbitrary positive unary Core XPath query can be evaluated on ¢ by combining
the answers to its various basic sub-queries, and its answer set is expressed as
a sub-trdag of ¢, whose nodes get labeled in conformity with the semantics. It
is important to note that the evaluation is performed on the given trdag t; as
such, on two different trdags corresponding to two different compressions of a
same XML tree, the answers obtained may not be the same, in general.

The paper is structured as follows: Section 2 presents the notions of trdags,
and of Tree/Dag automata. In Section 3, we construct from any trdag ¢ its
normalized straightline regular tree grammar L;, as well as the dependency graph
Dy and the chiblings of L;; these will be seen as rooted labeled acyclic graphs
(rlags, for short); the basic notions of Core XPath are also recalled. Section 4
is devoted to the construction of the word automata for any basic Core XPath
query, based on the semantics, and an illustrative example. In Section 5 we prove
that the runs of these automata, uniquely and effectively determined under a
maximal priority condition, generate the answers to the queries. Section 6 shows
how a non basic (composite, or imbricated) Core XPath query can be evaluated



in a stepwise fashion. In Section 7, we show how to refine our approach, so as
to derive from the answer for any given Core XPath query @ on a trdag t, the
answer set for the same query @ on the tree-equivalent # of ¢ (without resorting to
any uncompressing operation). In the appendices, we show how to translate the
‘usual’ Core XPath queries into one in ‘standard’ form on which our approach is
applicable; this translation is done in linear time on the size of the given query;
we also present an algorithm for constructing the maximal priority run, for any
basic query automaton over any given document (trdag), with a complexity
bound of O(m), where m is the number of edges of the rlag D; associated to the
trdag. (Note: the number m of edges on D; can be exponentially smaller than
the number of edges on the trdag t. When t is a tree, D; is isomorphic to t, so the
complexity of our algorithm reduces to O(n), where n is the number of nodes on
the tree t.) A complete illustrative example, on a composite imbricated query, is
given in the last appendix.

2 Tree/Dag Automata

Definition 1 A tree/dag (trdag for short) over a not necessarily ranked alphabet
XY is a rooted dag (directed acyclic graph) t = (Nodes(t), Edges(t)), where, for
any node u € Nodes(t):
- u has a name name;(u) = name(u) € X;
- the edges going out of any node are ordered;
- and if name(u) is ranked, then the number of outgoing edges at u
is the rank of name(u).

(It is assumed that any trdag tis connected, and has a unique root node.)
Given any node u on a trdag ¢, the notion of the sub-trdag of ¢ rooted at u is
defined as usual, and denoted as t|,. If v is any node, y(v) = uy . . . u,, will denote
the string of all its not necessarily distinct children nodes; for every 1 <i <mn,
the i-th outgoing edge from v to its i-th child node u; € y(v) will be denoted as

e(v,1); we shall also write then v —— w;; the set of all outgoing (resp. incoming)
edges at any node v will be denoted as Out, (), or Out, (resp. In,(t), or In,);
and for any node u, we set: Parents(u) = {v € Nodes(t) | u is a child of v}.

A trdag ¢ is said to be a tree iff In,(t) is empty if v is root, and In,(t)
is singleton otherwise. On any trdag ¢, we define the set Pos(t) as the set of
all the positions pos:(u) of all its nodes u, these being defined recursively, as
follows: if w is the root node on t, then pos;(u) = €, otherwise, pos;(u) = {a.i |
a € posi(v),v is a parent of w,u is an i-th child of v}. The set Pos(t) consists

of (some of the) words over natural integers. To any edge e : u — v on a trdag
t, is naturally associated the subset posi(e) = posi(u).i of Pos(t).

The function name; is extended naturally to the positions in Pos(t) as fol-
lows: for every u € Nodes(t) and a € posi(u), we set name(a) = name(u).
Given a trdag t, we define its tree-equivalent as a tree £ such that: Pos(f) =
Pos(t), and for every a € Pos(t) we have name;(a) = name;(e). It is imme-
diate that ¢ is uniquely determined, up to a tree isomorphism; it can actually
be constructed canonically (cf. [7]), by taking for nodes the set Pos(t), and for
directed edges the set {(a,a.i) | a,a.i € Pos(t)}, each node o being named
with name;(a). There is then a natural, name preserving, surjective map from
Nodes(t) onto Nodes(t); it will be referred to in the sequel as the compression
map, and denoted as c.

A trdag is said to be a tdag, or fully compressed, iff for any two different nodes
u,u’ on t, the two sub-dags t|,, and t|,, have non-isomorphic tree-equivalents;
otherwise, the trdag is said to be partially compressed when it is not a tree. For
example, the tree to the left of Figure 1 is the tree-equivalent of the partially



compressed trdag to the right, and also to the fully compressed tdag to the
middle.

AN RO

Fully Partially

Tree Compr essed Compr essed

Fig. 1. tree, tdag, and trdag

We define now the notion of a Tree/Dag automaton, first over a ranked
alphabet X' to facilitate understanding. The definition is then easily extended
to the unranked case.

Definition 2 A Tree/Dag automaton (TDA, for short) over a ranked alphabet
Y is a tuple (X,Q, F,A), where Q is a finite non-empty set of states, F' C @
is the set of final (or accepting) states, and A is a set of transition rules of the
form: f(q1,...,qx) — q, where f € X is of rank k, and ¢1,...,q,q € Q.

It will be convenient to write the transition rules of a TDA in a different (but
equivalent) form: a transition of the form f(q1,...,qx) — ¢ is also written as
(fyq1...qr) — q, where ¢y ... g is seen as a word in Q*, of length = rank(f) in
the ranked case. The notion of a TDA is then extended easily to the unranked
case, i.e., where the signature symbols naming the nodes are not assumed to be
of fixed rank: it suffices to define the transitions to be of the form (f,w) — g,
where w is a regular expression on the alphabet set Q.

A TDA is said to be bottom-up deterministic iff whenever there are two
transition rules of the form (f,w) — ¢, (f,w’) — ¢, with ¢ # ¢/, we have
necessarily wNw’ = (); otherwise it is said to be non-deterministic. We also agree
to denote the transitions of the form (f,0) — ¢ simply as f — ¢, and refer to
them as initial transitions.

For defining the notion of runs of TDAs on a trdag in a bottom-up style, we
need some preliminaries. Let A be a TDA with state set @ and transition set
A. Suppose t is a trdag and assume given a map M : Edges(t) — Q. If u is any
node on ¢ with us ... u, as the string of all its (not necessarily distinct) children,
the string M (e(u, 1)) ... M(e(u,n)) € Q*, formed of states assigned by M to the
outgoing edges at u, will be denoted as M (Out,). We then define, recursively
in a bottom-up style, a binary relation at u on the states of @, with respect to
(w.r.t. or wrt, for short) the given map M; this relation, denoted as <M = <, is
defined as follows:

Definition 3 Let A,t, M be as above, and u any given node on the trdag t.

o Ifu is a leaf with name(u) = a , then q <, ¢' iff whenever a — g € A we
also have a — ¢’ € A;
e otherwise q <, q' iff:
(i) (name(u), M (Out,)) — q is an instance of a transition rule in A; i.e.,
A has a rule (name(u),w) — q such that M (Out,) is in w;
(ii) there exists a map oy : Q — Q, such that:



- 0g(q) = ¢, and the rule (name(u), oy (M(Outy))) — ¢’ is also an
instance of a transition rule in A;
- for any edge e : u — u’ € Out,,, we have: M(e) <, o, (M(e)).

Definition 4 Let A = (X, Q, F, A) be any given TDA, and t any given trdag.
A run of A ont is apair (r, M), where r: Nodes(t) — Q and M : Edges(t) — Q
are maps such that the following conditions hold, at any node u on t:

(1) if name(u) = f, then the rule (f, M(Out,)) — r(u) is an instance of a
transition rule in A;

(2) there is an incoming edge e € In, with M(e) = r(u); and for every
e’ € In, such that M(e') = ¢’ # q = r(u), we have ¢ <M ¢

A run (r, M) is accepting on a trdag t iff r(e) € F, i.e, r maps the root-node
of t to an accepting state. A trdag t is accepted by a TDA iff there is an accepting
run on t. The language of a TDA is the set of all trdags that it accepts.

Remark 1. i) Note that if ¢ is a tree, then In, is singleton at every non-root
node u on t, so a run (r, M) of any TDA on t can be identified with its first
component r; we get then the usual notion of runs of tree automata on trees.
Example 1. Over the unranked signature {a, f, g} consider a TDA A, with the
following transitions:

a—p, b—q, b—p b—g,

(a,p) > aq, (a,q)—p, (a,q)—q,

(9, 9Q%) = a, (9, pa) —p,

(fa QPQ) — {fin, (fv pQ*) — qfin,

with Q = {p,¢, ¢, ¢rin}, and gyi, as the unique accepting state. An accepting
bottom-up run of A on a tdag is depicted on the left of Figure 2, and on its
right, the “same” run as seen on the tree equivalent of the tdag.

f Oﬁn

(N NS
. q a/pg \ /9\
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pPa a P
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Fig. 2. A bottom-up accepting run of the TDA of Example 1 on a trdag, and the same
seen on its tree equivalent.

A few comments on the above run may be of help: we start with assigning
state ¢ to the leaf node b, under r; the assignments of state ¢ under M to all the
incoming edges at this node b poses no problem; we can then assign state p to
node a, and subsequently also p to the node g, under r, via the transition rule
(9,pq) — p; we then assign p under M to the first incoming edge at g; to assign
state ¢ under M to the second incoming edge at g, we just need to check that:

-foramap o : Q — @ such that o(p) = ¢, 0(q) = p, the rule (g, 0(p)o(q)) — ¢

is an instance of a transition rule of the TDA;



- for the outgoing edge g — a, labeled with p by M, we have p <4, q = o(p);

- for the outgoing edge g — b, labeled with ¢ by M, we do have ¢ <, p = o(q);
reaching ¢y, at the root-node is trivial via the last transition rule. (Note that
we could have as well assigned p under M to the second incoming edge at g,
with no conditions to check, then reach ¢f;n.)

Remark 1 (contd.). ii) Unlike the DAs of [5] or [1], the following bottom-up
non-deterministic TDA: a — ¢1, a — ¢2, f(q1,92) — ¢a, With qo, q1, ¢, as states
where ¢, is accepting, has a non-empty language: as a TDA it accepts f(a,a).

For a deterministic TDA, we have the following result (as expected):

Proposition 1 Let A be a bottom-up deterministic TDA, and t any given trdag;
then there is at most one run of A on t.

Proof. Let @ be the set of states of A, and M : Edges(t) — @ any given
map assigning states to the edges on t. We shall show by induction that the
hypothesis of determinism on A implies that, at any node w on t, the binary
relation <M = <, defined above (Definition 3), w.r.t. the map M, is the identity
relation on the set Q). The proposition will then follow from conditions (1) and
(2) on runs, cf. Definition 4; we will get, in particular, that for every incoming
edge e at u, M(e) must be the same as r(u); so the run can be identified with
its first component r (as on a tree).

The induction will be on a non-negative integer d,, that we define at any
node u of t — and refer to as its height on t— as the maximal number of arcs
on t from u to the leaf nodes. If d, = 0, then u is a leaf node; that <, is the
identity relation on @ in this case is immediate, from the determinism of A, and
the definition of «,,. So, assume that d,, > 0, and let v; ... v, be the string of all
the children nodes of u on ¢. By the inductive hypothesis, for every i,1 < i <mn,
the relation <, is the identity relation on Q; it follows then, from the conditions
(7) and (i7) on the relation <, (Definition 3), that this latter must also be the
identity relation on Q. a

We may now formulate the principal result of the first part of this paper:

Proposition 2 A TDA accepts a trdag t if and only if it accepts the tree equiv-
alent of t.

Proof. Let t be the tree equivalent of the trdag ¢, and ¢ the natural surjective
compression map from Nodes(t) onto Nodes(t).

For proving the ‘only if” part of the assertion, one uses the following reason-
ing, coupled with induction on the height function at the nodes of ¢ (defined in
the proof of the previous proposition): Let (r, M) be an accepting run of the
given TDA on the trdag t; consider a node s on the tree equivalent £, of which
the node u on t is the image under the compression map c; let r(u) = ¢ under the
given run of the TDA on ¢; then, for every state ¢’ of the TDA such that g <} ¢/,
one can construct a partial run of the TDA —seen as a usual tree automaton—
on the tree ¢, climbing up from a leaf below s on ¢ to the node s, and assigning
the state ¢’ to this node (for an illustrative example, see the tree to the right of
Figure 2).

Proving the ‘if” part of the assertion is a little more complex. We start with a
given accepting run p of the given TDA, as a bottom-up tree automaton running
in the usual sense on the tree ¢; from this run p, we shall construct a run (r, M)
of the TDA on the trdag ¢, by an inductive, top-down traversal of the tdag ¢; for
this top-down traversal, we will be using an integer valued function defined at
any node u of t —and referred to as its depth on t— as the maximal number of arcs
on t from the root node on ¢ to the node u. We shall also use the fact that the



nodes of £ are in natural bijection with the set Pos(t) of positions on . The top-
down construction of the run (r, M) is done by the following pseudo-algorithm,
where d stands for the mazimal depth on ¢ at its leaf nodes.

BEGIN

/* define first r at the root node on ¢,
and M on its outgoing edges */

r(er) = pleg)s

For every outgoing edge e;,1<j <k,
at ¢, set M(e;) = ple.j);

i=1; /* Now go down */

while (i <d) do {

For every node u at depth i do {
choose e € In,(t), and a € posi(e)
such that M(e) = p(a);
set r(u) = M(e);

For every e; € Out,(t),1 <j<m
outgoing from u, set M(e;) =

}

i=i+1; }
END.

It is not difficult to check then, that by construction, the pair of maps (r, M)
gives an accepting run of the TDA on the trdag ¢. a

We illustrate here the reasoning employed in the proof of the ‘if” part of the
above proposition, with the tdag t of Example 1. We start with the run p on its
tree-equivalent £, as depicted to the right of Figure 2. At start, to the root node
on t (at depth 0) is assigned the state ¢yin, and to its three outgoing edges, are
assigned the three states p, ¢, ¢ respectively; at g, which is the only node on ¢ at
depth 1, we choose the first incoming edge (of position 1, and labeled with p by
M), and set r(u) = p(1) = p; the two outgoing edges at g on ¢ have as positions
the sets {11,21}, {12, 22} respectively; to these two outgoing edges at g on t,
we assign the states that p assigns to the two sons of the node ¢ at position 1
on t, namely p, ¢ respectively (this means in essence that we have ’selected’ the
positions 11 and 12 on the two outgoing edges at g on t); next, we go to depth 2
on t, where a is the unique node, to which we then have to assign the state p(11)
that M has already assigned to its incoming edge; the rest of the reasoning is
obvious, so left out.

Remark 2. i) Let ¢ # t' be two given trdags such that Pos(t') = Pos(t), and
there is a name preserving surjective map ¢’ from Nodes(t') onto Nodes(t). We
can then define ¢ to be a compression, or compressed form, of ¢'; and refer to ¢/
as an uncompressed equivalent of ¢, and to the surjective map ¢’ on Nodes(t)
as a compression map. It is easily checked that ¢ and ¢’ have then the same
tree-equivalent; and it follows from Proposition 2 above that any given TDA A
accepts t if and only if it accepts . It is legitimate then, to define the language
of a TDA as the set of all tdags that it accepts (or trees that it accepts), or as
the set of all trdags accepted, up to tree-equivalence.

ii) Unranked trees are often studied in the literature by transforming them
into ranked binary trees, using the well-known “first-child, next-sibling” encoding
for the transformation (done in linear time wrt the number of nodes of the given
tree). However, such an encoding is meaningless on trdags, since a node can stand
for several distinct nodes of its tree-equivalent, and the notions of first-child and
next-sibling can be meaningful on trdags only when referring to the position
sets of the nodes. What the above proposition says is that tree automata can
run on trdags without any need for transforming the trdag into a (ranked) tree,



or transforming the automaton itself in some way. In particular, the unranked
query automata, e.g., as defined in [8], can be used for querying semi-structured
documents that are given in the form of trdags. However, we shall propose, in the
sections to come. an entirely different approach for query evaluation on trdags.

3 Querying Compressed Documents: Preliminaries

Given a trdag t, one can naturally construct a regular tree grammar associated
with ¢, which is straightline (cf. [4]), in the sense that there are no cycles on
the dependency relations between its non-terminals, and each non-terminal pro-
duces exactly one sub-trdag of ¢. Such a grammar will be denoted as L;, if it is
normalized in the following sense:

(i) for every non-terminal A; of Ly, there is exactly one production of the
form A; — f(A;,,...,A4,,), where ¢ < j, for every 1 < r < k; we shall then set
Sons(A;) ={A4;,,..., A}, and symbg, (4;) = f;

(ii) the number of non-terminals is the number of nodes on ¢.

Such a normalized grammar L; is uniquely defined up to a renaming of the non-
terminals. For instance, for the trdag t to the left of Figure 3 we get the following
normalized grammar:

A1 — f(A27A3, A4, 145,142)7 A2 — C, A3 — G(A5), A4 — b7 A5 — b
Such a grammar is easily constructed from ¢, for instance by using a standard
algorithm which computes the ‘depth’ of any node (as the maximal distance
from the root), to number the non-terminals so as to satisfy condition (i) above.

t: D, : Fyi:
f A (F-) Ao (c-)

| F,:
- / A@m) A (D)

c a b AcH) As@@-) Ao Aﬁ(b,—)

V F5:
As (b) >

b !
As (b,) A (C-)

Fig. 3. trdag t, associated rlag D, and chiblings of L,

The dependency graph of the normalized grammar £, associated with ¢, and
denoted as Dy, consists of nodes named with the non-terminals A4;,1 < i < n,
and one single directed arc from any node A; to a node A; whenever A; is a son
of A;. The root of D, is by definition the node named A;. The notion of Sons
of the nodes on Dy is derived in the obvious way from that defined above on L;.

Furthermore, to any production A; — f(4;,,...,A4;,) of L;, we associate a
rooted linear graph composed of k nodes respectively named A; ,..., A, , with
root at A;, and such that for all [ € {2,...,k} the node named Aj;, is the son
of the node named Aj, ,. This graph will be called the chibling of L; associated
with the (unique) A;-production; it is denoted as F;. We also define a further
chibling denoted Fy, as the linear graph with a single node named A;, where A
is the axiom of L;.

In the sequel, we designate by G either D; or any of the chiblings F of L;.
We complete any of these acyclic graphs G into a rooted labeled acyclic graph
(rlag, for short), by attaching to each node u on G, with name(u) = A;, a label
denoted label(u), and defined as label(u) = (symbg, (A;), —); cf. Figure 3.



3.1 Positive Core XPath Queries on trdags

In this paper we restrict our study to positive Core XPath queries on trdags.
Recall that Core XPath is the navigational segment of XPath, and is based on
the following axes of XPath (cf. [10,19]): self, child, parent, ancestor,
descendant, following-sibling, preceding-sibling. A location expression
is defined as a predicate of the form [axis::b], where axis is one of the above
axes, and b is a symbol of Y. Given any trdag ¢ over X, a context node u on
t and b € X, the semantics for axis is defined by evaluating this predicate at
u. The semantics for the axes self, child, descendant are easily defined, ex-
actly as on trees (cf. [19]). For defining the semantics of the remaining axes, we
first recall that Parents(u) = {v € Nodes(t) | u is a child of v}.

Definition 5 Given a context node u on a trdagt, and b € X:

1) [parent::b] evaluates to true at w, if and only if there exists a
b-named node in Parents(u);

ii) [ancestor::b] evaluates to true at u, iff either [parent::b]l evaluates
to true at u, or there exists a node v € Parents(u) such that [ancestor: :b]
evaluates to true at v;

111) [following-sibling::b] evaluates to true at w, iff there exists a
b-named node v', and a node v on t such that v(v) is of the form ...u...u'...;

iv) [preceding-sibling::b] evaluates to true at u, iff there exists a
b-named node u’, and a node v on t such that v(v) is of the form .. ...u....

For the ‘composite’ axes descendant-or-self and ancestor-or-self, the
semantics are then deduced in an obvious manner. We shall also need posi-
tion predicates of the form [position ()= i]; their semantics is that the expres-
sion [child::b [position()= i]] evaluates to true at a context node u, iff:
[child: :b] evaluates to true at u, and w is an i-th child of some parent.

Positive Core XPath query expressions are usually defined in the literature
(cf. e.g., [7]), as those generated by the following grammar:

A ::= self | child | descendant | parent | ancestor |
preceding-sibling | following-sibling
Scan = A::0 | position()=1 | Scan and Scan | Scan 0T Secan

Ecan = Ak [Scan] | Ecan [Ecan]
Qcan 2= /Scan | /Ecan | Qcan/Qcan

We shall refer to the query expressions generated by this grammar as canon-
ical; they can be shown to be of the type /C1/Cy/.../Cy, where each C; is
of the form A: :0 [ Xcqn], or of the form A: :0[X¢an] conn A’::0'[X] ], with
conn € {and,or}, and Xcan, X’0,, € {Secan, Eean, true}; we agree here to identify
A::o[true] with A::0.

Any such positive Core XPath query expression can be translated into one
that is in “standard form”, i.e., where the format of the sub-queries is of the type
‘axis: :b’; we formalize this idea now. We shall refer to the axes self, child,
descendant, parent, ancestor, preceding-sibling, following-sibling
as basic. A basic Core XPath query is a query of the form //*[axis::o], where
axis is a basic axis. More generally, the queries we propose to evaluate on trdags
are defined formally as the expressions Q44 generated by the following grammar,
where o stands for any node name on the documents, or for x (meaning ‘any’):

A ::= self | child | descendant | parent | ancestor |
preceding-sibling | following-sibling

S u=A::0 | position()=1i | S and S | S or S | Root

E :=A::x[S] | ELE]

Qsta == //x | //*[S]1 | //*[E]

Core XPath queries Q4q of the format generated by this grammar are said
to be in standard form; to be able to handle any positive Core XPath query with
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such a grammar, we have introduced a special predicate called Root, deemed
true only at the root node of the trdag considered.

By the evaluation of a given query expression () on any trdag t, we mean
the assignment: ¢ — the set of all context nodes on ¢t where the expression )
evaluates to true (following the conventions of Definition 2); this latter set is also
called the answer for @ on t. Two given queries ()1, Q2 are said to be equivalent
iff, on any trdag t, the answer sets for ()1 and (2 are the same. Any positive
Core XPath query Q.q, can be translated into an equivalent one in standard
form; e.g., /c[following-sibling::g]l/d is equivalent to //*[self::d and
parent: :*[Root and self::c [following-sibling::¢g]]] in standard form.
An inductive procedure performing such a translation in the general case (of lin-
ear complexity w.r.t. the number of location steps in Q.qn) is given in Appendix
I. The following proposition results from Definition 5.

Proposition 3 (1) For any set of nodes X on a trdag t, and any axis A, we
have: A(X) =
U {/child: :x[position()=1411/.../child: :x [position O =11 /A: :x}

z€X, a€posy(x)
a=ijy...ip

(2) For any trdag t, and any node with name b on t, we have:
(i) //*[preceding: :b] =
U{descendant—or—self (following-sibling(

u

//*[self::u and (descendant::b or self::b)]1))}
(i) //*[following: :b] =
U{descendant—or—self (preceding-sibling(

u

//*[self::u and (descendant::b or self::b)]1))}

Finally, following [2], for any set S of nodes on ¢, the sets of nodes following(S)
and preceding(S) can now be defined formally, as follows:
following(S) =
descendant-or-self (following-sibling(ancestor-or-self(S))),
preceding(S) =
descendant-or-self (preceding-sibling(ancestor-or-self(S))).

Note: Unlike on a tree, the ancestor, descendant, following, self and
preceding axes do not partition the set of nodes on a trdag ¢, in general.

4 Automata for the Basic Core XPath Queries
4.1 The Semantics of the Approach

We first consider basic Core XPath queries. Composite or imbricated queries will
subsequently be evaluated in a stepwise fashion; see Section 6.

To any basic query Q = //*[axis: :0], we shall associate a word automaton
(actually a transducer), referred to as Ag. It will run top-down, on the rlag D;
if axis is non-sibling, and on each of the chiblings F of £; otherwise. In either
case, a run will attach, to any node traversed, a pair of the form (¢ z), where
the component  of the pair has the intended semantics of selection or not, by @,
of the corresponding node on ¢, and the component x will be a 1 or 0, with the
intended semantics that = 1 iff the corresponding node on ¢t has a descendant
answering (). At the end of the run, label(u), at any node u of Dy, will be replaced
by a new label derived from the ll-pairs attached to u by the run.

To formalize these ideas, we introduce a set of new symbols L = {s,n, T, T’}
referred to as llabels (the term ‘llabel’ is used so as to avoid confusion with the
term label). We define ll-pairs as elements of the set L x {0,1}, and the states of
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A as elements of the set {init} U (L x {0,1}). For any @, the automaton A is
over the alphabet X' U {s,n}, has init as its initial state, and has no final state.

The set Ag of transitions of Ag will consist of rules of the form (¢,7) — ¢
where ¢ € {init} U (L x {0,1}), ¢’ € (L x {0,1}), and 7 € X U {s,n}.

For any rlag G, we define a function llab: Nodes(G) — X' U {s,n}, by setting
llab(u) = m (label(u)), the first component of label(w). The automaton Ag as-
sociated to a basic query Q =//*[axis::o] will run top-down on the rlag G,
where G is D, if axis is a basic non-sibling axis, and G is any chibling F of L, if
axis is a basic sibling axis. A run of Ag on G is amap r: Nodes(G) — Lx{0,1},
such that, for every u € Nodes(G), the following holds:

- if w is rootg, then the rule (init, llab(u)) — r(u) is in Ag;

- otherwise, for every v € y(u) the rules (r(u),llab(v)) — r(v) are all in Ag.
(Note: when axis is non-sibling, this amounts to requiring that, for any node v,
the state r(v) must be in conformity with the states r(u) for every parent node
u of v, with respect to the rules in Ag.)

From the run of the automaton Ag and from the states it attaches to the
nodes of D;, we will deduce, at every node u of ¢, a well-determined 1l-pair as
(a new) label at w, via the natural bijection between Nodes(t) and Nodes(D;).
The ll-pairs thus attached to the nodes of ¢ will have the following semantics
(where x stands for the name of the node w on t, corresponding to the ‘current’
node on Dy):

-(T’,1) : x = o, current node on ¢ is selected by (i.e., is an answer for) Q;
1) : & = o, current node is not selected, but has a selected descendant;
,0) : © = o, current node is not selected, and has no selected descendant;
: x # o, current node is selected;

Only the nodes on Dy, to which the run of Ay associates the labels (s, 1)
or (T’,1), correspond to the nodes of ¢ that will get selected by the query Q.
The ll-pairs with boolean component 1 will label the nodes of D; corresponding
to the nodes of ¢ which are on a path to an answer for the query @; thus the
automata Ag will have no transitions from any state with boolean component
0 to a state with boolean component 1. Moreover, with a view to define runs
of such automata which are unique (or unambiguous in a sense that will be
presently made clear), we define the following priority relations between the 11-
pairs:

(n7,0) > (n,1) > (s,1), and (T,0)> (T,1) > (T, 1).

A run of the automaton A will label any node v on G with an ll-pair either
from the group {(T,0),(T,1),(T’,1)} or from the group {(n,0),(n,1),(s,1)};
and this group is determined by llab(u).

For ease of presentation, we agree to set ' := s, and often denote either of
the above two groups of ll-pairs under the uniform notation {(Z,0), (I,1), (', 1)},
where | € {n, T}, with the ordering (1,0) > (I,1) > (I, 1).

We shall construct a run r of Ag on G that will be uniquely determined by
the following maximal priority condition:

(MP): at any node v on G, r(v) is the maximal ll-pair (¢, z) for the ordering >
in the group {(Z,0), (I,1), (I’,1)} determined by llab(v), such that Ag contains
a transition rule of the form (r(u),llab(v)) — (¢, ), for every parent u of v.

Such a run will assign a label with boolean component 1 only to the nodes
corresponding to those of the minimal sub-trdag ¢ containing the root of ¢ and
all the answers to @ on ¢.
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4.2 Re-labeling of D; by the Runs of Ag

We first consider a non-sibling basic query @ on a given document ¢, and a given
run r of the automaton A g on the D;; at the end of the run, the nodes on D; will
get re-labeled with new ll-pairs, computed as below for every u € Nodes(D;):
lab,(u) = (s,1) iff r(u) € {(s,1),(T", 1)},
lab,(u) = (n,1) iff r(u) € {(n,1), (T, 1)},
lab,(u) = (n,0) iff r(u) € {(n,0),(T,0)}.
The rlag obtained in this manner from Dy, following the run r and the associated
re-labeling function lab,, will be denoted as r(D;).

For a basic query @ over a sibling axis, the situation is a little more complex,
because several different nodes on one chibling of £; can have the same name
(non-terminal), or several different chiblings can have nodes named by the same
non-terminal, or both. Thus, to any node of D;, named with a non-terminal A,
will correspond in general a set of ll-pairs, assigned by the various runs of Ag
to the A-named nodes on the various chiblings of £;. We therefore proceed as
follows: for every complete set 7 of runs of Ag, formed of one run rx on each
chibling F, we will define 7(D;) as the re-labeled rlag derived from D;, under 7.
With that purpose we associate to 7 and any u € Nodes(D;), a set of ll-pairs:

ls(u) = U {rr() | v € Nodes(F), and name(v) = name(u)}.
rFET

We then derive, atfeach node of D; a unique ll-pair in conformity with the
semantics of our approach, by using the following function:

Mr(u) =s <= lx(u)N{(s,1), (T, 1)} #0,

Are(u) =n <= Us(u) N{(s,1),(T,1)} = 0.
From D; and this function Az, we next derive an rlag Ax(D;) by re-labeling
each node u on D; with the pair (A#(u), —). And finally we define ¥(D;) as the
rlag obtained from A#(D;), by running on it the automaton for the basic non-
sibling query //*[self::s], as indicated at the beginning of this subsection.
In practical terms, such a run amounts in essence to setting, as the second
component of label (u) at any node u, the boolean 1 iff u is on a path to some node
with llab s, and 0 otherwise. All these details are illustrated with an example in
the following subsection.

4.3 The Automata

We first present the automata for the basic queries //*[self::o] and for
//*[following-sibling::0], and give an illustrative example using the for-
mer for o = s, and the latter for 0 = b. The automata for the other basic queries
are given after the example.

e Automata: for //*[self::0] and for //*[following-sibling::0]

Figure 4 below illustrates the evaluation of @ = //*[following-sibling: :b],
on the trdag t of Figure 3. We first use the automaton for the basic query
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//*[following-sibling::0] with ¢ = b, and then the automaton for
//*[self::0] with ¢ = s. The sub-trdag of ¢, formed of nodes correspond-

ing to those of 7(D;) with labels having boolean component 1, contains all the
answers to Q on t.

I, on Fl : X, r; r; on Dt:
ACH) (s,1)
| I, on Fy: (m,0) A (f-)
As@-) (s,1) A (£ (,0)
v
Aj(b'_) (U] . AcH) As@d) Ao
I; on F3: (5,1)  (s,1 1)
AV\T/ (b,_) (T, 0) A5 (b,_) (T, 0) (T],O)
AQ(CI_) (T],O)
(1,0) A (b-)
Ag (D) : Font Pfocli~ ] onh ;"’q’at) : e earo)
A 0,-) m,1) A 0-) A 1)
Ao(sm) Ag(s) As(sr) Ac(sm) As(s) A(sH) A(si) Ags1)) Aulsn)
oy T T
As ) (m,0) As () As (1,0
Fig. 4.

e Automaton for the query //*[parent: :o]
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e Automaton for the query //+*[ancestor: :0]
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e Automaton for the query //*[descendant:: 0]

A few words on some of the automata by way of explanation. First, the
reason why the automaton for self does not have the states (T,0),(T,1), (s, 1):
for (T,0),(T,1), by the semantics of subsection 4.1 we must have x = o, where
x is the name of the current node on ¢, but then the query //*[self::o]
should select the current node, so one cannot be at such a state; as for (s,1),
the reasoning is just the opposite. Next, the reason why the automaton for
descendant does not have the states (n,1),(T,1): if the semantics attribute
one of these pairs to any node u, that would mean the node u has a selected
descendant u’; which means that v’ has some o-descendant node, which would
then be a o-descendant for u too, so @ should select u.

5 Maximal Priority Runs of Basic Query Automata

Note that the following properties, required by our semantics of subsection 4.1,
hold on the automata Ay constructed above, for any basic Core XPath query
Q = //*[axis::0]:

i) There are no transitions from any state with boolean component 0 to a state
with boolean component 1;

ii) The o-transitions have all their target states in {(T,0),(T,1),(T’,1)}; and
for any v # o, the target states of y-transitions are all in {(n,0), (n,1), (s,1)}.

Theorem 1 Let QQ be any basic Core XPath query, t any given trdag, and let G
denote either the rlag Dy, or any given chibling F of L. Assume given a labeling
function L from Nodes(G) into the set of ll-pairs, which is correct with respect
to Q, i.e., in conformity with the semantics of subsection 4.1. Then there is a
run r of the automaton Ag on G, such that :

i) v is compatible with E; i.e., r(u) = L(u) for every node u on G;

i) v satisfies the mazimal priority condition (MP ) of subsection 4.1.

Proof. We first construct, by induction, a ‘complete’ run (i.e., defined at all the
nodes of G) satisfying property i). For that, we shall employ reasonings that will
be specific to the axis of the basic query . We give here the details only for the
axis parent; they are similar for the other axes.

Q = //*[parent: :0]: (The axis considered is non-sibling so G = D; here.) At
the root u node of Dy, we set r(u) = L(u); we have to show that there is a
transition rule in Ag of the form (init, llab(u)) — L(u). Obviously, for the axis
parent, the root node u cannot correspond to a node on ¢ selected by @, so the
only ll-pairs possible for L(u) are (1,0),(l,1), with I € {n, T}; for each of these
choices, we do have a transition rule of the needed form, on Ag.

Consider then a node v on D; such that, at each of its ancestor nodes u on
Dy, the part of the run r of Ag has been constructed such that r(u) = L(u);
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assume that the run cannot be extended at the node by setting 7(v) = L(v). This
means that there exists a parent node w of v, such that (L(w), llab(v)) — L(v) is
not a transition rule of Ag; we shall then derive a contradiction. We only have
to consider the cases where the boolean component of L(w) is greater than or
equal to that of L(v). The possible couples L(w), L(v) are then respectively:
L(w) : (T,0) [ (T,1) | (T,1) [ (T/,1) | (T",1)
L@): (,0) (T, 1) | 1) | (T.1) | (n.1)

In all cases, we have llab(w) = o because of the semantics, so the node (on ¢
corresponding to the node) v has a o-parent, so must be selected; thus the above
choices for L(v) are not in conformity with the semantics; contradiction.

We now prove that the complete run r thus constructed, satisfies property ii).
For this part of the proof, the reasoning does not need to be specific for each Q;
S0, write () more generally, as //*[axis: :0] for some given o. Suppose the run
r does not satisfy the maximal priority condition at some node v on G; assume,
for instance, that the run r made the choice, say of the ll-pair (I, 1), although the
maximal labeling of the node v, in a manner compatible with the ll-pairs of all
its parents, was the ll-pair (1, 0). Since L is assumed correct, and r is compatible
with L, the maximal possible labeling (I,0) would mean that the node (on ¢
corresponding to the node) v has no descendant selected by Q; whereas, the
choice that r is assumed to have made at v, namely the ll-pair (I,1), has the
opposite semantics whether or not llab(v) = o; in other words, the labeling L
would not be correct with respect to @Q; contradiction. The other possibilities for
the ‘bad’ labelings under r also get eliminated in a similar manner. a

Theorem 2 Let Q,t, Dy, F,G be as above. Let r be a (complete) run of the
automaton Ag on G, which satisfies the maximal priority condition (MP) of
subsection 4.1. Then the labeling function £ on Nodes(G), defined as E(u) = r(u)
for any node u, is correct with respect to the semantics of subsection 4.1.

Proof. Let us suppose that the labeling L. deduced from r is not correct with
respect to Q; we shall then derive a contradiction. The reasoning will be by case
analysis, which will be specific to the axis of the basic query @ considered. We
give the details here for ) = //*[descendant: :o]. The axis is non-sibling, so
we have G = D; here. The sets Nodes(t), Nodes(D;) are in a natural bijection,
so for any node u on D; we shall also denote by u the corresponding node on ¢,
in our reasonings below.

We saw that the automaton Ag for the descendant axis does not have the
states (n,1), (T, 1). Consider then a node u on D; such that: for all ancestor nodes
w of u, the llabel r(w) is in conformity with the semantics, but the ll-pair r(u) is
not in conformity. Now, Ag has only 5 states: (init), (T',1),(s,1),(T,0), (n,0),
of which only the last four can llabel the nodes. So the possible ‘bad’ choices
that r is assumed to have made at our node u, are as follows:

(a) r(u) = (T’,1), but the node u is not an answer to the query @. Here
name(u) must be o, so the choice of r ought to have been (T,0);

(b) r(u) = (s,1), but the node u is not an answer to the query Q. Here
name(u) # o, so the choice of r ought to have been (7, 0);

(¢) r(u) = (n,0), but the node u is an answer to the query . Here
name(u) # o, so the choice of r ought to have been (s, 1);

(d) r(u) = (T,0), but the node w is an answer to the query ). Here
name(u) must be o, so the choice of r ought to have been (T, 1).

In all the four cases, we have to show:

i) that the “ought-to-have-been” choice ll-pair is reachable from all the
parent nodes of u;

ii) and that, with such a new and ‘correct’ choice made at u, r can be
completed from u, into a run on the entire dag D;.
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The reasoning will be similar for cases (a), (b), and for the cases (c), (d).
Here are the details for case (a): That u is not an answer to @ means that u has
no o-descendant node, so for all nodes v below u on Dy, we have llab(v) # o.
Therefore, assertions i) and ii) above follow from the following observations on
the automaton for Q= //*[descendant::0]:

i) 4f r could reach the state (T’,1) at node u (via a o-transition) from any
parent node of u, then (T,0) is also reachable thus at u, from any of them;

ii) if, from the state (T, 1), r could reach all the nodes on D; below u (with
state (n,0)), via transitions over vy # o, then it can do exactly the same now,
with the ‘correct’ choice ll-pair (T,0) at .

As for case (¢): Node wu is an answer to @ here, so u has a o-descendant; let v
be a o-node below u on Dy; the ll-pair r(v) that r assigns to v must then be either
(T',1) or (T,0); this implies that r passed from the state (1,0) — supposedly
assigned by r to u — to (T',1) or (T,0) somewhere between u and v; which
is impossible, as is easily seen on the automaton Aq for the axis descendant
considered. The reasoning for case (d) is even easier: from state (T,0), no state
with an outgoing o-transition is reachable. a

6 Evaluating Composite Queries

A composite query is a query in standard form, but is not basic. We propose
to evaluate such a query incrementally. For this, it suffices to consider queries
that are of the form //*[A::x conn A’::2'], where conn € {and,or}, or of
the form //*[A;::*[As::0]]. For those of the former type, we observe first
that the components in a disjunction (resp. conjunction) under a ‘*’ can be
evaluated separately. Indeed, the answer for Q = //*[A::x conn A’::x'] can
be obtained as union (resp. intersection) of the answers for the two “component”
queries //*[A::2], and //*[A’::2'], when conn is an or (resp. an and). We
apply the method described earlier, separately for Q1 = //*[A::x] and for Q>
= //*[A’::2'], thus getting two respective evaluating runs r1,72. Any node u
of the dag D; will then be re-labeled, by the composite query @, with ll-pairs
computed by a function AND when conn = and (resp. OR when conn = or), in
conformity with the semantics presented in the Section 4.1:
AND(u) = (s,1) iff r(u) = (I',1) = ro(u);
AND(u) = (n,0) iff ri(u)=(1,0) or ro(u) = (I,0);
AND(u) (n,1) otherwise.
OR(u) = (5,1) iff r1(u) = (1',1) or ra(u) = (I',1);
OR(u) = (n,0) iff r1(u) = (1,0) = ra(u);
OR(u) = (n, 1) otherwise.

Figure 5 below illustrates the above reasoning, for the evaluation of the com-

posite query @ = //*[self::b and parent::al], on the trdag ¢ of Figure 3:
We next consider the queries of the form @ = //*[Aj::*[As::0]], with

imbricated predicates. For their evaluation, we first consider a maximal priority
run evaluating o (resp. a set of runs 73) of the automaton associated to the inner
query //*[Ag::0], on D; (resp. the set of all chiblings of £;). This run (resp.
set of runs) will output the rlag r9(D;) (resp. 72(Dy)), as described in Section
4.2. Evaluating the imbricated query @ on the dag t is then done by running the
automaton for the basic outer query //*[A1::s] on ro(Dy) (resp. 72(Dy)).

Finally, the answer for a query of the type @Q = //*[child: : x [position ()=
k1], is the subset of the nodes answering //* [child: :x], which correspond to
a k-th node on some chibling.
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Fig. 5.

7 Deriving the Answer on the Tree-Equivalent

Given a Core XPath query @ and its answer set on a trdag ¢, we show here how
to derive the answer for the same query @ on the tree-equivalent ¢ of ¢; this is
of importance, since the “standard model” for an XML document (even when
given in a compressed form) is generally considered as the tree representation of
the document.

We observe, to start with, that the answer set for @ on ¢ is in general a
superset of the answer set for @ on the tree-equivalent ¢. This can be so for the
following two reasons:

(i) If a certain node u on ¢ is selected by @, not all of the nodes v’ on #,
that are ‘lifts” of  under the compression map ¢ on Nodes(t), may answer the
query @ on the tree ¢, even when Q is a basic query. For instance, consider
the basic query //* [parent: :a]; on the fully compressed tdag f(a(c), b(c)), the
(unique) node named c is an answer; it has two c-named nodes as lifts on the
tree-equivalent £, of which only one is an answer for the query.

(ii) A node u on a trdag t may answer a composite query @, but none among
the lifts of u on ¢ may answer the same query @Q on the tree ¢. For instance, the
unique c-named node on the compressed tdag f(a(c),b(c)) answers the query
//*[parent::a and parent::b], but there is no node on the tree-equivalent
answering this query.

Actually, such situations arise only for queries involving the upward axes
parent, ancestor, which define relations that are less trivial on trdags than
on trees. We can formulate this observation more precisely, as follows:

Lemma 1. Let A be one of the axes self,child, descendent, Q) the basic query
//*[A::2], t any given trdag, t its tree-equivalent, u any given node on t, and
u' € ¢~ Y(u) any node lift of u on t. Then:

e wrt the mazimal priority runs of the automaton for the axis A, respectively
on Dy and Dy, the nodes u on t, and u' on t, get labeled by the same ll-pair;

e in particular, the node u answers @) on t if and only if the node v’ answers
the same query Q on the tree t.

Proof. Follows by observing that the semantics of Section 4.1 have been defined
in a manner which is top-down, and that the compression map ¢ : Nodes(f) —
Nodes(t) maps the set Nodes(t|,), of nodes below ' on #, onto the set of nodes
of the sub-trdag t|,,. O

The above lemma is a first step towards the objective of this section. As a
second step, we propose to distinguish, on the automata for the two basic queries
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//*[parent::0], //*[ancestor::c], two special types of transitions, besides
the usual ones.

(i) Type forget: The transitions that will not be firable on a tree; such tran-
sitions will be represented by dotted arcs on the automaton.

The transitions concerned are the ones from (n,1) to (T',1) and to (s, 1)
on the automata for parent and descendant, as well as the one from (s,1) to
(T’,1) on the parent automaton. A word of explanation might help here: for
instance, in order that the transition from state (n,1) to state (T, 1) be firable
on the parent automaton, we have to reach a node corresponding to a o-named
node on the trdag, which must then also have as (unique) parent on the tree
—i.e., the node from which the transition is to be fired— a o-named node; this
parent node cannot correspond then to a node labeled with (7, 1). The reasoning
is similar, although not identical, for the ancestor automaton.

In recovering the answer for a given (basic) query @) on the tree equivalent
t, the role played by the dotted arc transitions is as follows: if the current node
on f corresponds to a position a on Dy that is reached (by the automaton for Q)
via a dotted transition, then the position o does not answer @Q on ¢. The idea
then is that such a position « can then be “forgotten” along a given run, while
looking for nodes answering (). Nevertheless, such a position cannot be forgotten
forever, in general: consider for instance, the basic query //*[ancestor::o] on
a trdag ¢ containing (among others) two nodes u, v such that v is a child of u,
u with a g-ancestor, and the name at « is o; then the run of the automaton for
this query must attribute the label (T’,1) to u, and (s,1) to v; and in such a
case, all the positions of v that extend the positions of u on ¢t have to be kept
as answers, even if some of the transitions of the automaton have been “dotted”
on the way from the root of D; to the parent node u. This remark leads us to
distinguish a second type of transitions:

(ii) Type restore: Transitions that restore all the positions currently visited
at a node, including the ones containing prefixes “forgotten” earlier under the
given run; such transitions will be represented by thick arcs on the automaton.

The automata thus revised for the two upward axes, are as follows:

e Automaton for the query //*[parent: :0] -revised
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e Automaton for the query //*[ancestor::o] -revised

Our next step towards the objective of this section is to complete a maximal
priority run r of the automaton for @, by associating to any node u on Dy, a
partition of Pos;(u) by two subsets, respectively denoted as L and LT: if r(u) is
(s,1) or (T’,1) then the set L! will contain all the positions at the node u that
answer @ on the tree equivalent ¢ of ¢t. The rules for computing these sets will be
given presently. Two observations are essential in building these rules properly,
and optimally:

(i) The set of positions at any node u, on the given trdag ¢, can be computed
symbolically and dynamically, under any top-down traversal of Dy; suffices to
attach distinct “position symbols” X, X’,--- to the various arcs on Dy; if X is
such a symbol attached to an arc on D; going from a non-terminal A of the
grammar L; to a non-terminal B of L;, then X is meant to stand for the set
of integers {j1, -+, jm}, giving the positions where B appears on the rhs of the
unique A-production of L£;. Thus, for any node u on ¢, any of its positions is
symbolically represented by a word over the position symbols.

(ii) The basic query considered @) can be the outer query in a non basic
imbricated query Qo. Here, the partition of Pos;(u) —say as L, U L, that
results from the inner query @’ immediately below @ in Qq, should be taken
into account. For that purpose, note that at the end of the run 7’ for the inner
query @', every node u of D, gets re-labeled as lab, (u), this latter being either
an (s,—), or an (n,—), cf. Section 4.2; the basic outer query @ is then of the
form //*[A::s] (cf. Section 6). Accounting for the partition L, U L, of Pos;(u)
arising from the inner run 7/, is then done as follows:

e lab,(u) is (n, —): associate to u one llabel-position-set pair (n, Pos:(u));

e lab,(u) is (s, —): associate to u two llabel-position-set pairs: (s, L), (1, Ly).
(Note: such a vision does not amount to unfolding the trdag into its tree-
equivalent; indeed, the number transitions consider between any two nodes of
Dy, for the automaton of the outer query, is at most 4.)

The rules for computing the position sets L” and L’ at any given node u on
t, under a top-down traversal of ¢ by a run r of the automaton for the current
query, are then formulated as follows, where w is any parent node of v on ¢, «
is a word over the position symbols standing for a position of w on ¢, X is the
position symbol on the arc from w to w on Dy; all the position sets are seen here

as unary predicates:

L, () — Li(a.X)
L7 (a) —— LI'(a.X)
usual,restore
L' (o) —— LI (a.X)

- forget _
L) —— Li(a.X)
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Fig. 6. trdag t,tree-equivalent ¢, and corresponding rlag D,

Each rule is to be applied for the type of transition specified, used by the run
for moving from w to u. (The semantics of these rules follow the considerations
developed above.)

We now consider the issue of retrieving the answer on the tree-equivalent of
t, from the answer on ¢, for a query ) which is a conjunction or disjunction of
two sub-queries @1, Q2. In addition to the functions AND and OR of Section
6, we need to formulate the conditions for computing the partitions of position
sets at every node on t. Let r1, 72 denote the runs evaluating the two respective
sub-queries on t; for any node u on t, let us denote by LANP LAND (resp.
by LOE LOR) the partition of Pos,(u) after the evaluation of Q; A Qo (resp.
Q1V Qg) these partitions are to be computed as indicated by the self-evident
conditions below (notation same as above):

LAND(0.X) = L7 (a.X) N L7 (a.X)
LAND (0. X) = Ly (a.X) U L2 (. X)
LOR(a.X) = L7 (a.X)UL™(a.X)
LOR(a.X) = L/ (a.X)NLi(a.X)

Example 2. We evaluate the query () =//*[ancestor::b [parent::c]] on
the trdag t presented to the left of Figure 6. The standard form of this query
is @ =//*[ancestor: :x[self::b and parent::c]], and its answer consists of
all the nodes having an ancestor b with parent c¢. The aim here is to obtain the
‘same’ answer for @ on ¢t and on its tree-equivalent ¢ presented in the middle of
Figure 6. To find such an answer, it is necessary to use the revised automata for
the parent and ancestor axes. We will illustrate the evaluation of () on the rlag
D, presented to the right of Figure 6. Note that each node u of Dy is represented
by the name of corresponding node on ¢, and the set of positions of the nodes
on t that are lifts of this node; so we set: X = {1,3}, Y = {2}, Z = {1}, L =
{2}, T={1}, K ={2}.

First, look at Figure 7 where we have presented the evaluation of () using the
non-revised automata. We obtain then an answer on ¢ selecting nodes a and g
(which are the nodes having an ancestor b with parent ¢ on t); but, if we unfold
this answer, we obtain the tree with as selected nodes: a at positions 11,211, 31,
and g at positions 12,212,22,32. Obviously this set of nodes is not the answer
for Q on ¢: indeed, only the nodes a at position 211 and ¢ at position 212 have
ancestor b (position 21) with parent ¢ (position 2) on the tree 7.

The Figure 8 presents the evaluation of @ on D; using the revised automata.
First we evaluate in parallel the inner queries //* [self: :b] and //* [parent: :c].
Now, to any node u on Dy, the run r of the revised automaton associate not only
a state, but also the sets of positions L7 and L7, computed using the rules given
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Fig. 7. Evaluation of ) on t using the non-revised automata

above (note that if the axis is different from parent and ancestor we have
L" = Posi(u) and L7 = ()). Next, using function AN D, we find the answer for
conjunction, and we associate to every node u the corresponding sets LANVP and
LAND Then, to every node with label s we associate two labels: s with set LAND
and n with set LAVP. This way we have obtained a relabeled rlag laban p (D),
and on this rlag we evaluate the outer query //*[ancestor::s]. The final an-
swer consists of the set L7, containing the nodes u such that r(u) = s. Using
the revised automata, we thus obtain the answer for @Q on ¢ restricted to a set of
positions; this corresponds exactly to the answer set for Q on the tree-equivalent
tof t.

Example 3. We evaluate here the query ) =//*[parent::a] on the fully
compressed trdag t presented to the left of Figure 9. The aim here is to clarify
the meaning of transitions restore. As before, the Figure 9 shows that the runs
of the non-revised automaton do not give the same answers for @) on trdag ¢ and
on its tree-equivalent.

Figure 10 presents the evaluation of () on this ¢ by using the revised automa-
ton. This time the maximal priority run has associated to the node a (having
parent a), the selecting state (T’,1) and the sets L = {11} and L = {21}. This
means that only position 11 is selected; indeed, the position 21 cannot be se-
lected because its parent node at the position 2 doesn’t have the symbol a. At
the next step, the run has followed the restore transition from (T’,1) to (s, 1).
(Note: the run of the automaton for //+[parent: :a] can associate the states
(T',1) and (T,1) only to the nodes with symbol a, so every child position of
such nodes has to be selected. For this reason, every outgoing transition from
(T',1) and (T, 1) is of the type restore.) Using this transition, we select all the
positions at the leaf c.

Remark 3. The algorithm given in [7], for the evaluation of (Core) XPath
queries on a compressed dag t, actually takes a given position on t as a parameter;
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this explains that their method works indifferently on the unfolded tree £, or on
the dag ¢ (cf. Algorithm 4.1, and Theorem 10, [7]). The method we have presented
is more general, in that it returns all the positions on ¢ (or ¢) answering the query.

8 Conclusion

Our concern in this paper has been two-fold. The first part addressed the problem
of running any bottom-up (unranked) tree automaton indifferently on a tree or
on any of the dags obtained from the tree by full or partial compression; this gave
rise to the notions of Tree/Dags (trdags) and of Tree/Dag automata. The second
part of the paper addressed the issue of retrieving information from a trdag
representing an XML document possibly given in a compressed form. (Note:
Information retrieval from compressed structures, without having to uncompress
them, is a field of active research; cf. e.g., [17,11].) Limiting our concern here to
the evaluation of queries formulated in terms of XPath axes, and more precisely
to positive Core XPath queries, we have presented a method for evaluating
them on any trdag t, without having to uncompress ¢, by breaking up the given
query into sub-queries of a basic type; with each basic query, an automaton is
associated such that an unambiguous maximal priority run of this automaton
can evaluate the query. An algorithm constructing the maximal priority runs is
given in Appendix II; it has just been implemented. It is of complexity O(n?)
on any trdag t, where n is the number of nodes of t; it reduces to O(n?) if t is a
tree, the relation Parents becoming trivial. (Note: our method of evaluation a
priori gives the answers for the given query @ on the given trdag ¢, but we have
shown how one can derive the answer set for ) on the tree-equivalent of ¢.)

An advantage of the approach presented in this paper seems to be that the
basic sub-queries “composing” a given query can be evaluated in parallel, in
several cases; a detailed analysis of this issue could be a direction for future
work. We also expect to be able to extend our approach to the evaluation of more
general XPath queries, such as those involving the data values, by adapting its
underlying mechanism based on labeling.
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Appendix I: From Canonical Forms to Standard Forms

We stick to the notations of Section 3.1. Given any canonical XPath expression
Qcan, we compute, inductively, an equivalent standard XPath expression denoted
as Std(Qcan); as earlier, connstands for either of the boolean connectives and, or.

To start with, we define:

Std([truel) = self::x

Std( [Scan]) :Scan

Std([A::0[Scan]]l) = A::x[self::0 and Std([Scenl)]

Std([A::0o[Ar::01[.. . [Ak::0x]...11]1) = A::x[self::0 and
Ai::x[self::0q1 and... Ap_q1::x[self::0,_1 and Ap::0r] ...]1]

We also define, for every basic axis relation, an inverse relation, as follows:

self~! = self

child™! = parent

paren‘c_1 = child

ancestor ! = descendant

descendant ' = ancestor
following-sibling ! = preceding-sibling
preceding-sibling~! = following-sibling

For any query @ = // * [X] in standard form, we set exp(Q) = X. For any
canonical XPath query Q = /C1/C3/ ... /Cyp, the standard form Std(Q) of Q is
then generated by the following recursive construction:

Case of length 1: Q = /C;
Std(/child: :0[Xcanl) = //#[(Root and self::0) and Std([Xcanl)]

Std(/child: :x [ Xcanl) = //*[Root and Std([Xcenl)]
Std(/descendant: :0[Xounl) = //x[self::0 and Std([X.anl)]
Std(/descendant : :x[Xoqnl) = //%[Std([Xcan])]

(

Std(/axis::0[Xeqn] conn axis’::o’[X,,]1=

//*Lexp(Std(/axis: :0[Xcanl)) conn exp(Std(/axis’::0'[X],,]1))]

Case of length n>1: Q = /C1/Cs/ ... /C,

Std(/C1/.../Cp—1/A::0[Xcanl) =

//x[(self::0 and Std([Xeanl)) and A=1::x[exp(Std(/Cyi/.../Cp_1))]]

Std(/Cv/.../Cp_1/A::0[Xcan] conn A’::0'[X]),. 1) =

//%[((self::0 and Std([Xcanl)) conn (self::o’ and Std([X[,,])))
and A=1: ik Lexp(Std(/Cy/.../Cp_1))1]

This translation procedure is of complexity linear with respect to the total num-
ber of location steps (i.e. of the form axis::o) that appear in Q.
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Appendix II: Constructing the Maximal Priority Run

Given a trdag ¢, and a basic non-sibling query @ we give here the algorithm
constructing the maximal priority run of the automaton Ag on Dy. (It is trivial
for the sibling queries.) Let D; be the dependency rlag of £; and n the number
of its nodes. We construct then a directed acyclic graph G = (V,E), representing
the maximal priority run of Ag on D;. The vertices of G will be of the form
Aia,1 <i<n, where A; is a node on D; (i.e., a non-terminal of £;), and « is
an ll-pair, that will eventually satisfy r(A;) = « under the maximal priority run
r (on D;) of the automaton Ag.

The algorithm can be divided into four steps as described below, where we
denote by llab(A;) the first component of the label of the A;-named node on Ds.
The overall cost of the algorithm is O(m), where m is the number of edges of
the rlag D;. In particular, if ¢ is a tree D; is isomorphic to ¢, so our algorithm
will then be linear on the number of nodes of the tree ¢; thus, the complexity of
our approach compares well with that of other query evaluation approaches.

For uniformity of presentation, we shall add a ‘fictive root’ node Agy to Dy,
and an edge (Ap, A1) joining it to the real root node A; on D;. By state, we
shall mean any ll-pair corresponding to a state of the automaton Ag; the greek
letters a, 3,7, . .. will designate such ll-pairs.

Step 1): The initial form of the graph G:

1) The set of “potential” edges: Add an edge (4; o, A4, 3) in G iff there is an
edge (A;, A;) on Dy; initialize, by marking all the edges as incorrect, with the
boolean label 0.

ii) The set of “Ag-compatible” edges: Mark an edge (A; «, 4;,3) with boolean

label 1 iff the automaton Ag has a transition rule (o, llab(4;)) — 5.

Step 2): Mark (a first list of) edges as incorrect with 0, under a top-down traver-
sal of the graph G:

For any vertex A; g:

-ifthereisani € {1,...,n},i < j, such that the 3 potential edges (A4; «, A4, 3)
are all marked with 0 (for the three possible a € States determined by llab(A4;)),
then mark all the edges incoming and outgoing at A; g, with 0.

-ifthereisak € {1,...,n}, k > j, such that the 3 potential edges (4; g, Ax.)
are all marked with 0 (for the three possible v € States determined by llab(Ag)),
then mark all the edges incoming and outgoing at A; g, with 0.

Step 3): Complete the marking of incorrect edges with 0, by repeating the op-
eration of Step 2) by back-propagation (when necessary), under a bottom-up
traversal of the graph G.

Step 4): Deduce the maximal priority run r:

The maximal priority run r is constructed inductively, as follows. We first set
r(Ap) = init; for any j,1 < j < n, assume having defined r(4;) for all 0 < i < j;
then define 7(A;) = B where (8 is the >-maximal priority state determined by
llab(A;) such that:

- for every 0 < i < j for which D, has an edge (A;, A;), there is a 1-marked
edge (A;r(a,), Ajp) on G.

The algorithm works with the following INPUT:
{A;,1 <i<n} = set of non-terminals of £;; E = set of edges of Dy;
n = number of nodes on D;; m = number of edges on Dy;
A = set of transitions of automaton Ag
States = set of ll-pairs corresponding to the states of the automaton Ag
States(llab(A;)) = set of (< 3) states determined by the symbol llab(A;)
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BEGIN:
/* 1(i): Potential edges on G */
For all (A;,A;) € E do
For all a € States(llab(A;)) and § € States(llab(A;)) do
set (Aia, Aj ) :=0;
/* 1(ii): Edges compatible with A */
For all (4;,A;) € E do
For all a € States(llab(4;)) and 8 € States(llab(A; )) do
If (o, llab(A4;)) — B € A then set (A;qa, Ajp) =
/* 2: Top— Down pruning */
For j from 0 to n do
For all 8 € States(llab(A;)) do
If (i) exists (A4;, A;) € E such that
for all a € States(llab(A )) we have (A;q,A4;3) =0,
or (ii) exists (A;, Ax) € E such that
for all v € States(llab(Ay)) we have (A3, Agy) =0
then { set (—, A4;3) :=0; set (4;3,—) :=0;
/** Here (—, A; ) and (A4; g, —) respectively stand
for any incoming and outgoing edge at A; g **/
}
/* 3: Bottom-Up pruning */
For j from n downto 0 do
For all 8 € States(llab(A;)) do
If (i) exists (A;, A;) € E such that
for all a € States(llab(A )) we have (Aj o, A4;3) =0,
or (ii) exists (A;, Ax) € E such that
for all v € States(llab(Ay)) we have (A3, Agy) =0
then { set (—, A4;3) :=0; set (4;3,—):=0;}
/* 4: Constructing the maximal priority run r */
r(0) =init;  j:=1;
While 7 < n do

{
0 := state of maximal priority in States(llab(A;));
(#) If for all (A;, Aj) € E we have (4; (), Ajs) = 1
then set r(j) := ;
else
{0 ——; GOTO (#);
/** § ——: next >-maximal state in States(llab(A;)) **/
}
Ji=J+1L
}

END.

That the complexity of this algorithm is O(m) is due to the following facts. The
Constructlon of Step 1 is 0bV1ously O(m); as for the other steps, it suffices to

note that: ZParents Z#{ (Ai,Aj) e E} =m =
Jj=1 j=1
Zchzldren Z#{ (A;, Aj) € E}.
i=1

29



Appendix III: A Complete Example

1) We evaluate the query @ = /descendant: :*[descendant: :b [parent::a]]
on the partially compressed document ¢, given to the left of Figure 11. Note that
we want to select every node having some descendant b with parent a. To start
with, we first translate @ into standard form, as:

@ = //*[descendant: :*[self::b and parent::al]

t: Lt: Dt:
f ARy Ao A P A) A (i)
/ Po—c
c a b Ag——a(A) PocH) Al Ao
Ay—=b
As—Db
b

As (b-)

Fig. 11. Document ¢, its normalized Grammar £, and the Dependency rlag D

Figure 12 represents, to the left, the rlag D; labeled by the automaton for
the query //#*[self: :b]; to the middle, the same rlag labeled by the automaton
for the query //*[parent: :al; and to the right, the rlag Dj re-labeled for the
conjunction, as explained in Section 6.

//*[self : : b] //*[parent : : a] Dy
A, Ar D A (,2)

ANo AnD ACD  A00 ACD AN A 00 A Ao

As 0.1) As 6.1 As6.,1)

Fig. 12.

Figure 13 shows, to the left, the rlag obtained by re-labeling D; with the
run of the automaton for the query //*[descendant: :s]; and to the right, the
(minimal) sub-rlag of D; formed of nodes marked now by ll-pairs with boolean
component 1, and the corresponding answer for the query @ on the document ¢.
This final sub-rlag of D; is obtained by cutting out the nodes where the ll-pairs
attached have boolean component 0.

2) On the same document ¢ as above, we consider now the following standard
form query: @' = //*[child::b or following-sibling::b]
To the left of Figure 14 is the rlag D; labeled by the run of the automaton

for //*[child: :b]; and to the right, the labeling of the 3 chiblings of D;, by the
run of the automaton for //*[following-sibling: :b].
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//*[descendant : :s] answer :

A6 A 6.1 f

v P i
Ao .0 Ass) A0 A0 A A0 C a |

vV

As (1,0 As (1,0 b

Fig. 13.

//*[child::b] //*[following—sibling::b]
Fi:
A 6.1 Ao(Cm) (s,1) Fy:
Ag(@—) (s,1) A (f-) (n,0)
v
Aom,0) Az ) A(,0) As(b-) (T'1)
v F;:
Aj (b,_) (T,0) A5 (b,—) (T,0)
As (T,0) Ax(c-) (m,0)

Fig. 14.

The two rlags D;, D) of Figure 15 are then obtained by applying the re-
labeling functions respectively lab, and As (of subsection 4.2) for these respective

runs. The rlag D}’ to the right is obtained by the run of automaton for //x
[self::s] on Dy.
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Dt
A 6D

Acm,0 A3 A (.0

As 0,0

D} OR

Al (S,l)

DY
AL 0,0

Ao(s,d) A6 Aa(so

As .9

Fig. 15.

/

Dy’
Al (nvl)

D’
Aj_ (‘1:1)

/

Aoy AT AT D)

As (n,0)

answer
A 6.1

an

A0 A A0  ArD ACD ACD  AcD AD A

As 0,0

As (n,0)

Fig. 16.

vV

As (n,0)

The Figure 16 presents the final answer for our query obtained by applying
the function OR from section 6.
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