
HAL Id: hal-00088776
https://hal.science/hal-00088776v1

Preprint submitted on 4 Aug 2006 (v1), last revised 15 Dec 2006 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Automata for Analyzing and Querying Compressed
Documents

Barbara Fila, Siva Anantharaman

To cite this version:
Barbara Fila, Siva Anantharaman. Automata for Analyzing and Querying Compressed Documents.
2006. �hal-00088776v1�

https://hal.science/hal-00088776v1
https://hal.archives-ouvertes.fr

Automata for
Analyzing and Querying
Compressed Documents

Barbara FILA, LIFO, Orléans (Fr.)
Siva ANANTHARAMAN, LIFO, Orléans (Fr.)

Rapport No 2006-03

Automata for Analyzing and Querying

Compressed Documents

Barbara Fila, Siva Anantharaman

LIFO - Université d’Orléans (France),
e-mail: {fila, siva}@univ-orleans.fr

Abstract. In a first part of this work, tree/dag automata are defined as
extensions of (unranked) tree automata which can run indifferently on
trees or dags; they can thus serve as tools for analyzing or querying any
semi-structured document, whether or not given in a compressed format.
In a second part of the work, we present a method for evaluating posi-
tive unary queries, expressed in terms of Core XPath axes, on any dag
t representing an XML document possibly given in a compressed form;
the evaluation is done directly on t, without unfolding it into a tree. To
each Core XPath query of a certain basic type, we associate a word au-
tomaton; these automata run on the graph of dependency between the
non-terminals of the minimal straightline regular tree grammar associ-
ated to the given dag t, or along complete sibling chains in this grammar.
Any given positive Core XPath query can be decomposed into queries of
the basic type, and the answer to the query, on the dag t, can then be
expressed as a sub-dag of t whose nodes are suitably labeled under the
runs of such automata.

Keywords: Tree automata, Tree grammars, Dags, XML, Core XPath.

1 Introduction

Several algorithms have been optimized in the past, by using structures over
dags instead of over trees. Tree automata are widely used for querying XML
documents (e.g., [8, 9, 15, 16]); on the other hand, the notion of a compressed
XML document has been introduced in [2, 7, 12], and a possible advantage of
using dag structures for the manipulation of such documents has been brought
out in [12]. It is legitimate then to investigate the possibility of using automata
over dags instead of over trees, for querying compressed XML documents.

Dag automata (DA) were first introduced and studied in [5]; a DA was defined
there as a natural extension of tree automaton, i.e. as a bottom-up tree automa-
ton running on dags; and the language of a DA was defined as the set of dags
that get accepted under (bottom-up) runs, defined in the usual sense; the empti-
ness problem for DAs was shown there to be NP-complete, and the membership
problem proved to be in NP; but the problem of stability under complementation
of the class of dag automata –closely linked with that of determinization– was
left open. These two issues have since been settled negatively in [1]: the reason
is that the set of all terms (trees) represented by the set of dags accepted by a
non-deterministic DA is not necessarily a regular tree language; a consequence is
that the class of tree languages recognized by DAs (as sets of accepted dags) is a
strict superclass of the class of regular tree languages. It is well-known however,
that answers to MSO-definable queries on (semi-)structured trees form regular
tree languages ([18]); it is thus necessary to define the languages of DAs in a
manner different from that of [5, 1], if they are to serve as tools for analyzing
and querying a document, independently of whether it is given in a (partially or
fully) compressed format, or as a tree. Our first aim in this work is therefore to
redefine the notion of the language of a DA suitably, with such an objective.

2

For achieving that, we first present (in Section 2) the notion of a compressed
document as a tree/dag (trdag, for short), designating a directed acyclic graph
that may be partially or fully compressed. The terminology trdag has been
chosen to distinguish it from that of tdag employed in [1]; this latter term will
be employed in this paper when referring to a fully compressed dag. A Tree/Dag
automaton (TDA, for short) is then defined as an automaton which runs on
trdags. The essential differences with the DAs of [1] are the following: (i) our
TDAs can be unranked, and (ii) although the transition rules of a TDA look
quite like those of the DAs in [1], or those of TAs, a run of a TDA on any given
trdag t will carry with it not only assignments of states to the nodes of t, but
also to the edges of t; runs will be so defined that a TDA accepts any given
trdag t if and only if it accepts the tree t̂ obtained by uncompressing t, as a tree
automaton running on the tree t̂, in the usual sense.

In the second part of the paper, we present an approach based on word
automata for evaluating queries on trdags that represent XML documents in
a partially or fully compressed format; the terms ‘trdag’ and ‘document’ will
therefore be considered synonymous in the sequel. Any given trdag t is first seen
as equivalent to a minimal straightline regular tree grammar Lt, that one can
naturally associate with t, cf. e.g., [3, 4]. From the grammar Lt, we construct
the graph of dependency Dt between its non-terminals, and also the chiblings
(linear graphs formed of complete chains of sibling non-terminals) of Lt. The
word automata that we build below will run on Dt or the chiblings of Lt, rather
than on the document t itself.

We shall only consider positive unary queries expressed in terms of Core
XPath axes. (The view we adopt allows us to define the various axes of Core
XPath on compressed documents, in a manner which does not modify their
semantics on trees.) For evaluating any such query on any document (trdag) t,
we proceed as follows. We first break up the given query into basic sub-queries
of the form Q= //*[axis::σ] where axis is a Core XPath axis of a certain
type. To each such basic query Q, we associate a word automaton AQ. The
automaton AQ runs on the graph Dt when axis is non-sibling, and on the
chiblings of Lt when axis is a sibling axis. An essential point in our method is
that the runs of AQ are guided by some well-defined semantics for the nodes
traversed, indicating whether the current node answers Q, or is on a path leading
to some other node answering Q. The automaton, though not deterministic, is
made effectively unambiguous by defining a suitable priority relation between its
transitions, based on the semantics. A basic query Q can then be evaluated in
one single top-down pass of AQ, under such an unambiguous run. An arbitrary
positive unary Core XPath query can be evaluated on t by combining the answers
to its various basic sub-queries, and its answer set is expressed as a sub-trdag
of t, whose nodes get labeled in conformity with the semantics. It is important
to note that the evaluation is performed on the given trdag t; as such, on two
different trdags corresponding to two different compressions of a same XML tree,
the answers obtained may not be the same, in general.

The paper is structured as follows: Section 2 presents the notions of trdags,
and of Tree/Dag automata. In Section 3, we construct from any trdag t its
normalized straightline regular tree grammar Lt, as well as the dependency graph
Dt and the chiblings of Lt; these will be seen as rooted labeled acyclic graphs
(rlags, for short); the basic notions of Core XPath are also recalled. Section 4
is devoted to the construction of the word automata for any basic Core XPath
query, based on the semantics, and an illustrative example. In Section 5 we
prove that the runs of these automata, uniquely and effectively determined under
a maximal priority condition, generate the answers to the queries. Section 6
shows how a non basic (composite, or imbricated) Core XPath query can be
evaluated in a stepwise fashion. In the appendices, we show how to translate the

3

‘usual’ Core XPath queries into one in ‘standard’ form, on which our approach
is applicable; we also present a polynomial time algorithm for constructing the
maximal priority run for any basic query automaton over any given document
(trdag), with a complexity bound of degree 3 on the number of nodes of the trdag;
a complete illustrative example, on a composite imbricated query, is given.

2 Tree/Dag Automata

Definition 1 A tree/dag (trdag for short) over a not necessarily ranked alphabet
Σ is a rooted dag (directed acyclic graph) t = (Nodes(t), Edges(t)), where, for
any node u ∈ Nodes(t):

- u has a name namet(u) = name(u) ∈ Σ;
- the edges going out of any node are ordered;
- and if name(u) is ranked, then the number of outgoing edges at u

is the rank of name(u).

Given any node u on a trdag t, the notion of the sub-trdag of t rooted at u is
defined as usual, and denoted as t|u. If v is any node, γ(v) = u1 . . . un will denote
the string of all its not necessarily distinct children nodes; for every 1 ≤ i ≤ n,
the i-th outgoing edge from v to its i-th child node ui ∈ γ(v) will be denoted as

e(v, i); we shall also write then v
i

−→ ui; the set of all outgoing (resp. incoming)
edges at any node v will be denoted as Outv (resp. Inv); and for any node u other
than the root node of t, we set: Parents(u) = {v ∈ Nodes(t) | u is a child of v}.

A trdag t will be said to be a tree iff for every node u on t other than the root,
Parents(u) is a singleton. For any trdag t, we define the set Pos(t) as the set
of all the positions post(u) of all its nodes u, these being defined recursively, as
follows: if u is the root node on t, then post(u) = ǫ, otherwise, post(u) = {α.i |
α ∈ post(v), v is a parent of u, u is an i-th child of v}. The elements of Pos(t)
are words over natural integers,

The function namet is extended naturally to the positions in Pos(t) as fol-
lows: for every u ∈ Nodes(t) and α ∈ post(u), we set namet(α) = namet(u).
Given a trdag t, we define its tree-equivalent as a tree t̂ such that: Pos(t̂) =
Pos(t), and for every α ∈ Pos(t) we have namet(α) = namet̂(α). A trdag is
said to be a tdag, or fully compressed, iff for any two different nodes u, u′ on t,
the two sub-dags t|u and t|u′ have non-isomorphic tree-equivalents; otherwise,
the trdag is said to be partially compressed. For example, the tree to the left
of Figure 1 is the tree-equivalent of the partially compressed trdag to the right,
and also to the fully compressed tdag to the middle.

 Compressed

 Tree
Compressed
 Partially

f

a a b a

f

a a abb

f

 Fully

Fig. 1. tree, tdag, and trdag

We define now the notion of a Tree/Dag automaton, first over a ranked
alphabet Σ, to facilitate understanding. The definition is then easily extended
to the unranked case.

4

Definition 2 A Tree/Dag automaton (TDA, for short) over a ranked alphabet
Σ is a tuple (Σ, Q, F, ∆), where Q is a finite non-empty set of states, F ⊆ Q
is the set of final (or accepting) states, and ∆ is a set of transition rules of the
form: f(q1, ..., qk) → q, where f ∈ Σ is of rank k, and q1, . . . , qk, q ∈ Q.

It will be convenient to write the transition rules of a TDA in a different (but
equivalent) form: a transition of the form f(q1, . . . , qk) → q is also written as
(f, q1 . . . qk) → q, where q1 . . . qk is seen as a word in Q∗, of length = rank(f) in
the ranked case. The notion of a TDA is then extended easily to the unranked
case, where the signature symbols naming the nodes are not assumed to be of
fixed rank: it suffices to define the transitions to be of the form (f, ω) → q, where
ω ∈ Q∗; we may assume wlog that ω is a ‘∗’-regular expression on Q not involving
‘+’, by replacing a rule (f, ω + ω′) → q, by the two rules (f, ω) → q, (f, ω′) → q.

A TDA is said to be bottom-up deterministic iff whenever there are two
transition rules of the form (f, ω) → q, (f, ω′) → q′, with q 6= q′, we have
necessarily ω∩ω′ = ∅; otherwise it is said to be non-deterministic. We also agree
to denote the transitions of the form (f, ∅) → q simply as f → q, and refer to
them as initial transitions.

For defining the notion of runs of TDAs on a trdag in a bottom-up style,
we need some preliminaries. Let A be a TDA with state set Q and transition
set ∆. Suppose t is a trdag and assume given a map M : Edges(t) → Q. If u
is any node on t with u1 . . . un as the string of all its (not necessarily distinct)
children, the string M(e(u, 1)) . . .M(e(u, n)), formed of states assigned by M to
the outgoing edges at u, will be denoted as M(Outu). We then define, recursively
in a bottom-up style, a binary relation at u on the states of Q, with respect to
(w.r.t. or wrt, for short) the given map M ; this relation, denoted as ⊳M

u = ⊳u, is
defined as follows:

Definition 3 Let A, t, M be as above, and u any given node on the trdag t.

• If u is a leaf with name(u) = a , then q ⊳u q′ iff whenever a → q ∈ ∆ we
also have a → q′ ∈ ∆;

• otherwise q ⊳u q′ iff:
(i) (name(u), M(Outu)) → q is an instance of a transition rule in ∆; i.e.,

∆ has a rule (name(u), ω) → q such that M(Outu) is in ω;
(ii) there exists a map σq′ : Q → Q, such that:

- σq′ (q) = q′, and the rule (name(u), σq′(M(Outu))) → q′ is also an
instance of a transition rule in ∆;

- for any edge e : u
i

−→ u′ ∈ Outu, we have: M(e) ⊳u′ σq′ (M(e)).

Definition 4 Let A = (Σ, Q, F, ∆) be any given TDA, and t any given trdag.
A run of A on t is a pair (r, M), where r : Nodes(t) → Q and M : Edges(t) → Q
are maps such that the following conditions hold, at any node u on t:

(1) if name(u) = f , then the rule (f, M(Outu)) → r(u) is an instance of a
transition rule in ∆;

(2) there is an incoming edge e ∈ Inu with M(e) = r(u); and for every
e′ ∈ Inu such that M(e′) = q′ 6= q = r(u), we have q ⊳M

u q′

A run (r, M) is accepting on a trdag t iff r(ǫ) ∈ F , i.e, r maps the root-node
of t to an accepting state. A trdag t is accepted by a TDA iff there is an accepting
run on t. The language of a TDA is the set of all trdags that it accepts.

Remark 1. i) Note that if t is a tree, then Inu is singleton at every non-root
node u on t, so a run (r, M) of any TDA on t can be identified with its first
component r; we get then the usual notion of runs of tree automata on trees.

Example 1. Over the unranked signature {a, f, g} consider a TDA A, with the
following transitions:

5

a → p, b → q′, b → p, b → q,
(a, p) → q, (a, q) → p,
(g, q Q∗) → q, (g, p q) → p,
(f, q p q) → qfin, (f, p Q∗) → qfin,

with Q = {p, q, q′, qfin}, and qfin as the unique accepting state. An accepting
bottom-up run of A on a tdag is depicted on the left of Figure 2, and on its
right, the “same” run as seen on the tree equivalent of the tdag.

q

q

p q

p

q

p

p q

f

g

fin
q

a

b

q

f

ba b a b

b b

gg

q

p q

p

p

q pq

fin

q

Fig. 2. A bottom-up accepting run of the TDA of Example 1 on a trdag, and the same
seen on its tree equivalent.

A few comments on the above run may be of help: we start with assigning
state q to the leaf node b, under r; the assignments of state q under M to all the
incoming edges at this node b poses no problem; we can then assign state p to
node a, and subsequently also p to the node g, under r, via the transition rule
(g, pq) → p; we then assign p under M to the first incoming edge at g; assigning
state q under M to the second incoming edge at g is valid since we have: q ⊳a p
and p ⊳b q; reaching qfin at the root-node is trivial via the last transition rule.
(Note that we could have as well assigned p under M to the second incoming
edge at g, with no conditions to check, then reach qfin.)

Remark 1 (contd.) ii) Unlike the DAs of [5] or [1], the following bottom-up
non-deterministic TDA: a → q1, a → q2, f(q1, q2) → qa, with q0, q1, qa as states
where qa is accepting, has a non-empty language: as a TDA it accepts f(a, a).

For a deterministic TDA, we have the following result (as expected):

Proposition 1 Let A be a bottom-up deterministic TDA, and t any given trdag;
then there is at most one run of A on t.

Proof. Let Q be the set of states of A, and M : Edges(t) → Q any given
map assigning states to the edges on t. We shall show by induction that the
hypothesis of determinism on A implies that, at any node u on t, the binary
relation ⊳M

u = ⊳u defined above (Definition 3), w.r.t. the map M , is the identity
relation on the set Q. The proposition will then follow from conditions (1) and
(2) on runs, cf. Definition 4 (we will get, in particular, that for every incoming
edge e at u, M(e) must be the same as r(u); so the run can be identified with
its first component r).

The induction will be on a non-negative integer du –that we define at any
node u of t, and refer to as its height on t– as the maximal number of arcs on t
from u to the leaf nodes. If du = 0, then u is a leaf node; that ⊳u is the identity
relation on Q in this case is immediate, from the determinism of A, and the
definition of ⊳u. So, assume that du > 0, and let v1 . . . vn be the string of all the

6

children nodes of u on t. By the inductive hypothesis, for every i, 1 ≤ i ≤ n, the
relation ⊳vi

is identity; it follows then, from the conditions (i) and (ii) of the
relation ⊳u, that this latter must also be the identity relation on Q. ⊓⊔

We may now formulate the principal result of the first part of this paper:

Proposition 2 i) A TDA accepts a trdag t if and only if it accepts the tree
equivalent of t.

ii) The emptiness problem for a TDA is decidable in time P w.r.t. its number
of states.

iii) The uniform membership problem for a TDA is decidable in time NP
(resp. time P) w.r.t. its number of states, and the number of edges (resp. and
the number of positions) on the given trdag.

Proof. Let t̂ be the tree equivalent of the trdag t. (It is immediate that t̂ is
uniquely determined, up to a tree isomorphism.) The ordered bisimulation re-
lation between the sets of nodes of t and t̂ can actually be seen as a natural
surjective map from Nodes(t̂) onto Nodes(t) that can be defined recursively, in
a bottom-up style; in what follows, this map will be referred to as the compres-
sion map, and denote it as c.

Property i): For proving the ‘only if’ part, one uses the following reasoning,
coupled with induction on the height function at the nodes of t (defined in the
proof of the previous proposition): Let (r, M) be an accepting run of the given
TDA on the trdag t; consider a node s on the tree equivalent t̂, of which the
node u on t is the image under the compression map c; let r(u) = q under the
given run of the TDA on t; then, for every state q′ of the TDA such that q ⊳M

u q′,
one can construct a partial run of the TDA –seen as a usual tree automaton– on
the tree t̂, climbing up from a leaf below s on t̂, to the node s (for an illustrative
example, see the tree to the right of Figure 2).

For proving the ‘if’ part of Property i), we start with a given accepting run
r̂ of the given TDA, as a bottom-up tree automaton running in the usual sense
on the tree t̂; from this run r̂, we shall construct a run (r, M) of the TDA on the
trdag t as follows: Consider any given node u on t, and let {s1, . . . , sk} be the
set c−1(u) of all nodes on t̂ such that u is the image of each of them under the
compression map c : Nodes(t̂) → Nodes(t); the set Inu, of incoming edges at u
on the trdag t, contains then exactly k edges, say e1, . . . , ek in some (arbitrarily
chosen) order; we then set, for any i, 1 ≤ i ≤ k, M(ei) = r̂(si); and set r(u)
as any (arbitrarily chosen) state among the r̂(si), i, 1 ≤ i ≤ k. It is then easily
checked that the pair of maps (r, M) gives an accepting run of the TDA on the
trdag t.

Properties ii) and iii) follow, in the ranked case, from the proof of i) and the
results of TATA ([6]), Chapter 1; in the unranked case, one can either employ a
reasoning based on reduction to the ranked case as in [10], or appeal directly to
the results of [13]. (Note: the number of positions on a trdag is the same as the
size of its tree equivalent.) ⊓⊔

3 Querying Compressed Documents: Preliminaries

Given a trdag t, one can naturally construct a regular tree grammar associated
with t, which is straightline (cf. [4]), in the sense that there are no cycles on
the dependency relations between its non-terminals, and each non-terminal pro-
duces exactly one sub-trdag of t. Such a grammar will be denoted as Lt, if it is
normalized in the following sense:

(i) for every non-terminal Ai of Lt, there is exactly one production of the
form Ai → f(Aj1 , . . . , Ajk

), where i < jr for every 1 ≤ r ≤ k; we shall then set
Sons(Ai) = {Aj1 , . . . , Ajk

}, and symbLt
(Ai) = f ;

7

(ii) the number of non-terminals is the number of nodes on t.
Such a normalized grammar Lt is uniquely defined up to a renaming of the non-
terminals. For instance, for the trdag t to the left of Figure 3 we get the following
normalized grammar:

A1 → f(A2, A3, A4, A5, A2), A2 → c, A3 → a(A5), A4 → b, A5 → b.

Such a grammar is easily constructed from t, for instance by using a standard
algorithm which computes the ‘depth’ of any node (as the maximal distance
from the root), to number the non-terminals so as to satisfy condition (i) above.

F

tD

A2(c,_) (,_)aA3 b,)_(4A

A5 b,)_(

A1)_f(,

t :

b

ba

f

c

A2(c,_)

A2(c,_)

(,_)aA3

b,)_(4A

A5 b,)_(

:1F

A5 b,)_(

A1)_f(,

0:F

:3

:

Fig. 3. trdag t, associated rlag Dt, and chiblings of Lt

The dependency graph of the normalized grammar Lt associated with t, and
denoted as Dt, consists of nodes named with the non-terminals Ai, 1 ≤ i ≤ n,
and one single directed arc from any node Ai to a node Aj whenever Aj is a son
of Ai. The root of Dt is by definition the node named A1. The notion of Sons
of the nodes on Dt is derived in the obvious way from that defined above on Lt.

Furthermore, to any production Ai → f(Aj1 , . . . , Ajk
) of Lt, we associate a

rooted linear graph composed of k nodes respectively named Aj1 , . . . , Ajk
, with

root at Aj1 and such that for all l ∈ {2, . . . , k} the node named Ajl
is the son

of the node named Ajl−1
. This graph will be called the chibling of Lt associated

with the (unique) Ai-production; it is denoted as Fi. We also define a further
chibling denoted F0, as the linear graph with a single node named A1, where A1

is the axiom of Lt.
In the sequel, we designate by G either Dt or any of the chiblings F of Lt.

We complete any of these acyclic graphs G into a rooted labeled acyclic graph
(rlag, for short), by attaching to each node u on G, with name(u) = Ai, a label
denoted label(u), and defined as label(u) = (symbLt

(Ai),−); cf. Figure 3.

3.1 Positive Core XPath Queries on trdags

In this paper we restrict our study to positive Core XPath queries on trdags.
Recall that Core XPath is the navigational segment of XPath, and is based on
the following axes of XPath (cf. [10, 19]): self, child, parent, ancestor,

descendant, following-sibling, preceding-sibling. A location expression
is defined as a predicate of the form [axis::b], where axis is one of the above
axes, and b is a symbol of Σ. Given any trdag t over Σ, a context node u on
t and b ∈ Σ, the semantics for axis is defined by evaluating this predicate at
u. The semantics for the axes self, child, descendant are easily defined, ex-
actly as on trees (cf. [19]). For defining the semantics of the remaining axes, we
first recall that Parents(u) = {v ∈ Nodes(t) | u is a child of v}.

Definition 5 Given a context node u on a trdag t, and b ∈ Σ:
i) [parent::b] evaluates to true at u, if and only if there exists a

b-named node in Parents(u);

8

ii) [ancestor::b] evaluates to true at u, iff either [parent::b] evaluates
to true at u, or there exists a node v ∈ Parents(u) such that [ancestor::b]

evaluates to true at v;

iii) [following-sibling::b] evaluates to true at u, iff there exists a
b-named node u′, and a node v on t such that γ(v) is of the form ...u...u′...;

iv) [preceding-sibling::b] evaluates to true at u, iff there exists a
b-named node u′, and a node v on t such that γ(v) is of the form ...u′...u....

For the ‘composite’ axes descendant-or-self and ancestor-or-self, the
semantics are then deduced in an obvious manner. We shall also need posi-
tion predicates of the form [position()= i]; their semantics is that the expres-
sion [child::b [position()= i]] evaluates to true at a context node u, iff:
[child::b] evaluates to true at u, and u is an i-th child of some parent.

Positive Core XPath query expressions are usually defined in the literature
(cf. e.g., [7]), as those generated by the following grammar:

A ::= self | child | descendant | parent | ancestor |
preceding-sibling | following-sibling

Scan ::= A::σ | position()= i | Scan and Scan | Scan or Scan

Ecan ::= A::∗[Scan] | Ecan[Ecan]

Qcan ::= /Scan | /Ecan | Qcan/Qcan

We shall refer to the query expressions generated by this grammar as canon-
ical; they can be shown to be of the type /C1/C2/ . . . /Cn, where each Ci is
of the form A::σ[Xcan], or of the form A::σ[Xcan] conn A’::σ′[X ′

can], with
conn ∈ {and, or}, and Xcan, X ′

can ∈ {Scan, Ecan, true}; we agree here to identify
A::σ[true] with A::σ.

Any such positive Core XPath query expression can be translated into one
that is in “standard form”, i.e., where the format of the sub-queries is of the type
‘axis::b’; we formalize this idea now. We shall refer to the axes self, child,

descendant, parent, ancestor, preceding-sibling, following-sibling

as basic. A basic Core XPath query is a query of the form //*[axis::σ], where
axis is a basic axis. More generally, the queries we propose to evaluate on trdags
are defined formally as the expressions Qstd generated by the following grammar,
where σ stands for any node name on the documents, or for ∗ (meaning ‘any’):

A ::= self | child | descendant | parent | ancestor |
preceding-sibling | following-sibling

S ::= A::σ | position()= i | S and S | S or S | Root

E ::= A::∗[S] | E[E]

Qstd ::= //* | //*[S] | //*[E]

Core XPath queries Qstd of the format generated by this grammar are said
to be in standard form; to be able to handle any positive Core XPath query with
such a grammar, we have introduced a special predicate called Root, deemed
true only at the root node of the trdag considered.

By the evaluation of a given query expression Q on any trdag t, we mean
the assignment: t 7→ the set of all context nodes on t where the expression Q
evaluates to true (following the conventions of Definition 2); this latter set is also
called the answer for Q on t. Two given queries Q1, Q2 are said to be equivalent
iff, on any trdag t, the answer sets for Q1 and Q2 are the same. Any positive
Core XPath query Qcan can be translated into an equivalent one in standard
form; e.g., /c[following-sibling::g]/d is equivalent to //*[self::d and
parent::*[Root and self::c [following-sibling::g]]] in standard form.
An inductive procedure performing such a translation in the general case (of lin-
ear complexity w.r.t. the number of location steps in Qcan) is given in Appendix
I. The following proposition results from Definition 5.

9

Proposition 3 (1) For any set of nodes X on a trdag t, and any axis A, we
have: A(X) =⋃

x∈X, α∈post(x)
α = i1...ik

{/child::∗[position()= i1]/.../child::∗[position()= ik]/A::∗}

(2) For any trdag t, and any node with name b on t, we have:
(i) //*[preceding::b] =⋃

u

{descendant-or-self(following-sibling(

//*[self::u and (descendant::b or self::b)]))}

(ii) //*[following::b] =⋃

u

{descendant-or-self(preceding-sibling(

//*[self::u and (descendant::b or self::b)]))}

Finally, following [2], for any set S of nodes on t, the sets of nodes following(S)
and preceding(S) can now be defined formally, as follows:

following(S) =
descendant-or-self(following-sibling(ancestor-or-self(S))),

preceding(S) =
descendant-or-self(preceding-sibling(ancestor-or-self(S))).

Note: Unlike on a tree, the ancestor, descendant, following, self and
preceding axes do not partition the set of nodes on a trdag t, in general.

4 Automata for the Basic Core XPath Queries

4.1 The Semantics of the Approach

We first consider basic Core XPath queries. Composite or imbricated queries will
subsequently be evaluated in a stepwise fashion; see Section 6.

To any basic query Q = //*[axis::σ], we shall associate a word automaton
(actually a transducer), referred to as AQ. It will run top-down, on the rlag Dt

if axis is non-sibling, and on each of the chiblings F of Lt otherwise. In either
case, a run will attach, to any node traversed, a pair of the form (l, x), where
the component l of the pair has the intended semantics of selection or not, by Q,
of the corresponding node on t, and the component x will be a 1 or 0, with the
intended semantics that x = 1 iff the corresponding node on t has a descendant
answering Q. At the end of the run, label(u), at any node u of Dt, will be replaced
by a new label derived from the ll-pairs attached to u by the run.

To formalize these ideas, we introduce a set of new symbols L = {s, η,⊤,⊤′}
referred to as llabels (the term ‘llabel’ is used so as to avoid confusion with the
term label). We define ll-pairs as elements of the set L×{0, 1}, and the states of
AQ as elements of the set {init}∪ (L×{0, 1}). For any Q, the automaton AQ is
over the alphabet Σ ∪ {s, η}, has init as its initial state, and has no final state.
The set ∆Q of transitions of AQ will consist of rules of the form (q, τ) → q′

where q ∈ {init} ∪ (L × {0, 1}), q′ ∈ (L × {0, 1}), and τ ∈ Σ ∪ {s, η}.
For any rlag G, we define a function llab : Nodes(G) → Σ ∪ {s, η}, by setting

llab(u) = π1(label(u)), the first component of label(u). The automaton AQ as-
sociated to a basic query Q =//*[axis::σ] will run top-down on the rlag G,
where G is Dt if axis is a basic non-sibling axis, and G is any chibling F of Lt if
axis is a basic sibling axis. A run of AQ on G is a map r : Nodes(G) → L×{0, 1},
such that, for every u ∈ Nodes(G), the following holds:

- if u is rootG , then the rule (init, llab(u)) → r(u) is in ∆Q;
- otherwise, for every v ∈ γ(u) the rules (r(u), llab(v)) → r(v) are all in ∆Q.

(Note: when axis is non-sibling, this amounts to requiring that, for any node v,
the state r(v) must be in conformity with the states r(u) for every parent node
u of v, with respect to the rules in ∆Q.)

10

From the run of the automaton AQ and from the states it attaches to the
nodes of Dt, we will deduce, at every node u of t, a well-determined ll-pair as
(a new) label at u, via the natural bijection between Nodes(t) and Nodes(Dt).
The ll-pairs thus attached to the nodes of t will have the following semantics
(where x stands for the name of the node u on t, corresponding to the ‘current’
node on Dt):

- (⊤′, 1) : x = σ, current node on t is selected by (i.e., is an answer for) Q;
- (⊤, 1) : x = σ, current node is not selected, but has a selected descendant;
- (⊤, 0) : x = σ, current node is not selected, and has no selected descendant;
- (s, 1) : x 6= σ, current node is selected;
- (η, 1) : x 6= σ, current node is not selected, but has a selected descendant;
- (η, 0) : x 6= σ, current node is not selected, and has no selected descendant.

Only the nodes on Dt, to which the run of AQ associates the labels (s, 1)
or (⊤′, 1), correspond to the nodes of t that will get selected by the query Q.
The ll-pairs with boolean component 1 will label the nodes of Dt corresponding
to the nodes of t which are on a path to an answer for the query Q; thus the
automata AQ will have no transitions from any state with boolean component
0 to a state with boolean component 1. Moreover, with a view to define runs
of such automata which are unique (or unambiguous in a sense that will be
presently made clear), we define the following priority relations between the ll-
pairs:

(η, 0) > (η, 1) > (s, 1), and (⊤, 0) > (⊤, 1) > (⊤′, 1).

A run of the automaton AQ will label any node u on G with an ll-pair either
from the group {(⊤, 0), (⊤, 1), (⊤′, 1)} or from the group {(η, 0), (η, 1), (s, 1)};
and this group is determined by llab(u).

For ease of presentation, we agree to set η′ := s, and often denote either of
the above two groups of ll-pairs under the uniform notation {(l, 0), (l, 1), (l′, 1)},
where l ∈ {η,⊤}, with the ordering (l, 0) > (l, 1) > (l′, 1).

We shall construct a run r of AQ on G that will be uniquely determined by
the following maximal priority condition:

(MP): at any node v on G, r(v) is the maximal ll-pair (l , x) for the ordering >
in the group {(l, 0), (l, 1), (l′, 1)} determined by llab(v), such that AQ contains
a transition rule of the form (r(u), llab(v)) → (l , x), for every parent u of v.

Such a run will assign a label with boolean component 1 only to the nodes
corresponding to those of the minimal sub-trdag t containing the root of t and
all the answers to Q on t.

4.2 Re-labeling of Dt by the Runs of AQ

We first consider a non-sibling basic query Q on a given document t, and a given
run r of the automaton AQ on the Dt; at the end of the run, the nodes on Dt will
get re-labeled with new ll-pairs, computed as below for every u ∈ Nodes(Dt):

labr(u) = (s, 1) iff r(u) ∈ {(s, 1), (⊤′, 1)},
labr(u) = (η, 1) iff r(u) ∈ {(η, 1), (⊤, 1)},
labr(u) = (η, 0) iff r(u) ∈ {(η, 0), (⊤, 0)}.

The rlag obtained in this manner from Dt, following the run r and the associated
re-labeling function labr, will be denoted as r(Dt).

For a basic query Q over a sibling axis, the situation is a little more complex,
because several different nodes on one chibling of Lt can have the same name
(non-terminal), or several different chiblings can have nodes named by the same
non-terminal, or both. Thus, to any node of Dt, named with a non-terminal A,
will correspond in general a set of ll-pairs, assigned by the various runs of AQ

to the A-named nodes on the various chiblings of Lt. We therefore proceed as
follows: for every complete set r̂ of runs of AQ, formed of one run rF on each

11

chibling F , we will define r̂(Dt) as the re-labeled rlag derived from Dt, under r̂.
With that purpose we associate to r̂ and any u ∈ Nodes(Dt), a set of ll-pairs:

llbr(u) =
⋃

rF∈ br

{rF (v) | v ∈ Nodes(F), and name(v) = name(u)}.

We then derive, at each node of Dt a unique ll-pair in conformity with the
semantics of our approach, by using the following function:

λbr(u) = s ⇐⇒ llbr(u) ∩ {(s, 1), (⊤′, 1)} 6= ∅,
λbr(u) = η ⇐⇒ llbr(u) ∩ {(s, 1), (⊤′, 1)} = ∅.

From Dt and this function λbr, we next derive an rlag λbr(Dt) by re-labeling
each node u on Dt with the pair (λbr(u),−). And finally we define r̂(Dt) as the
rlag obtained from λbr(Dt), by running on it the automaton for the basic non-
sibling query //*[self::s], as indicated at the beginning of this subsection.
In practical terms, such a run amounts in essence to setting, as the second
component of label(u) at any node u, the boolean 1 iff u is on a path to some node
with llab s, and 0 otherwise. All these details are illustrated with an example in
the following subsection.

4.3 The Automata

We first present the automata for the basic queries //*[self::σ] and for
//*[following-sibling::σ], and give an illustrative example using the for-
mer for σ = s, and the latter for σ = b. The automata for the other basic queries
are given after the example.

• Automata: for //*[self::σ] and for //*[following-sibling::σ]

σ

init

η ,1

’T,1=σγ

=σγ

=σγ

=σγ
=σγ

=σγ

=σγ

η ,0

init

η ,0

s,1

T,0

’T,1

=⁄γ σ

=⁄γ σ

=⁄γ σ =⁄γ σ

=⁄γ σ
=⁄γ σ

σ σ
σ

σ
σ

σ

σ

σ

Figure 4 below illustrates the evaluation of Q = //*[following-sibling::b],
on the trdag t of Figure 3. We first use the automaton for the basic query
//*[following-sibling::σ] with σ = b, and then the automaton for
//*[self::σ] with σ = s. The sub-trdag of t, formed of nodes correspond-
ing to those of r̂(Dt) with labels having boolean component 1, contains all the
answers to Q on t.

12

s 2 A3

A5

4A

)(

(,)(,)

,)(η

A1

)(

,η 1

1s s 1 ,

0

s1

A1

A3A2

A5

4A

)(,_η

(,_)s(,_)s

,)_(η

,)_(s

Dt)λr (:

(,)η 1

,)η 0(

A1

A3A2

A5

4A
T ’,1)(T ’,1)(T ’,1)(

r
(D

t
):for //*[self : : s] on

run of the automaton
λ rlag : r(D

t
)

final re−labeled

A2(c,_) (,_)aA3 b,)_(4A

A5 b,)_(

A1)_f(,

s,()1
η ,()0

s,()1

T,()0

,)η 0(

T ’,1)(

r 3r 10r ,, on Dt :

A2(c,_)

s,()1

η ,()0

T,()0

s,()1

A2(c,_)

(,_)aA3

b,)_(4A

A5 b,)_(

T ’,1)(

,)η 0(A1)_f(,

T,()0A5 b,)_(

0r 0Fon :

r 3 3Fon :

r 1 1Fon :

)(,_η

(,_)s(,_)s

,)_(η

,)_(A

Fig. 4.

• Automaton for the query //*[parent::σ]

σ
init

T,1

s,1

η ,0

T,0

=⁄γ σ
=⁄γ σ

η ,1

’T,1

=⁄γ σ

=⁄γ σ
=⁄γ σ

=⁄γ σ

=⁄γ σ

=⁄γ σ =⁄γ σ

=⁄γ σ

σ

σ

σ

σ
σ σ

σ

σ

σ

σ

• Automaton for the query //*[ancestor::σ]

σ

,0

init s,1

’T,1η ,1

T,0

=σγ

=σγ

=σγ =σγ

T,1

=σγ

=σγ

=σγ

=σγ
=σγ

σ
σ

σ

σ
σ

σ

σ

σ

η

13

• Automaton for the query //*[child::σ]

σ

,1

T,0

T,1

’T,1

init

η ,1

η ,0

=⁄γ σ

=⁄γ σ

=⁄γ σ

=⁄γ σ

=⁄γ σ =⁄γ σ

=⁄γ σ=⁄γ σ=⁄γ σ

=⁄γ σ
=⁄γ σ

=⁄γ σ

=⁄γ σ
=⁄γ σ

=⁄γ σ

σ
σ

σ σ

σ

σ

σ

σ

s

• Automaton for the query //*[preceding-sibling::σ]

σ

init

η ,1

T,1

=⁄γ σ

’T,1

s,1

=⁄γ σ
=⁄γ σ

T,0

=⁄γ σ
η ,0

=⁄γ σ

=⁄γ σ =⁄γ σ

σ

σ

σ

σ

σ

σ

• Automaton for the query //*[descendant::σ]

σ

init

’T,1

η ,0

s,1
=σγ

=σγ

=σγ
=σγ

=σγ

=σγ

=σγ

T,0
=σγ

σ

σ

σσ

σ

A few words on some of the automata by way of explanation. First, the
reason why the automaton for self does not have the states (⊤, 0), (⊤, 1), (s, 1):
for (⊤, 0), (⊤, 1), by the semantics of subsection 4.1 we must have x = σ, where
x is the name of the current node on t, but then the query //*[self::σ]
should select the current node, so one cannot be at such a state; as for (s, 1),
the reasoning is just the opposite. Next, the reason why the automaton for
descendant does not have the states (η, 1), (⊤, 1): if the semantics attribute
one of these pairs to any node u, that would mean the node u has a selected
descendant u′; which means that u′ has some σ-descendant node, which would
then be a σ-descendant for u too, so Q should select u.

14

5 Maximal Priority Runs of Basic Query Automata

Note that the following properties, required by our semantics of subsection 4.1,
hold on the automata AQ constructed above, for any basic Core XPath query
Q = //*[axis::σ]:

i) There are no transitions from any state with boolean component 0 to a state
with boolean component 1;
ii) The σ-transitions have all their target states in {(⊤, 0), (⊤, 1), (⊤′, 1)}; and
for any γ 6= σ, the target states of γ-transitions are all in {(η, 0), (η, 1), (s, 1)}.

Theorem 1 Let Q be any basic Core XPath query, t any given trdag, and let G
denote either the rlag Dt, or any given chibling F of Lt. Assume given a labeling
function L from Nodes(G) into the set of ll-pairs, which is correct with respect
to Q, i.e., in conformity with the semantics of subsection 4.1. Then there is a
run r of the automaton AQ on G, such that :

i) r is compatible with L; i.e., r(u) = L(u) for every node u on G;
ii) r satisfies the maximal priority condition (MP) of subsection 4.1.

Proof. We first construct, by induction, a ‘complete’ run (i.e., defined at all the
nodes of G) satisfying property i). For that, we shall employ reasonings that will
be specific to the axis of the basic query Q. We give here the details only for the
axis parent; they are similar for the other axes.

Q = //*[parent::σ]: (The axis considered is non-sibling so G = Dt here.) At
the root u node of Dt, we set r(u) = L(u); we have to show that there is a
transition rule in AQ of the form (init, llab(u)) → L(u). Obviously, for the axis
parent, the root node u cannot correspond to a node on t selected by Q, so the
only ll-pairs possible for L(u) are (l, 0), (l, 1), with l ∈ {η,⊤}; for each of these
choices, we do have a transition rule of the needed form, on AQ.

Consider then a node v on Dt such that, at each of its ancestor nodes u on
Dt, the part of the run r of AQ has been constructed such that r(u) = L(u);
assume that the run cannot be extended at the node by setting r(v) = L(v). This
means that there exists a parent node w of v, such that (L(w), llab(v)) → L(v) is
not a transition rule of AQ; we shall then derive a contradiction. We only have
to consider the cases where the boolean component of L(w) is greater than or
equal to that of L(v). The possible couples L(w), L(v) are then respectively:

 L(w) : (⊤, 0) | (⊤, 1) | (⊤, 1) | (⊤′, 1) | (⊤′, 1)
 L(v) : (η, 0) | (⊤, 1) | (η, 1) | (⊤, 1) | (η, 1)

In all cases, we have llab(w) = σ because of the semantics, so the node (on t
corresponding to the node) v has a σ-parent, so must be selected; thus the above
choices for L(v) are not in conformity with the semantics; contradiction.

We now prove that the complete run r thus constructed, satisfies property ii).
For this part of the proof, the reasoning does not need to be specific for each Q;
so, write Q more generally, as //*[axis::σ] for some given σ. Suppose the run
r does not satisfy the maximal priority condition at some node v on G; assume,
for instance, that the run r made the choice, say of the ll-pair (l, 1), although the
maximal labeling of the node v, in a manner compatible with the ll-pairs of all
its parents, was the ll-pair (l, 0). Since L is assumed correct, and r is compatible
with L, the maximal possible labeling (l, 0) would mean that the node (on t
corresponding to the node) v has no descendant selected by Q; whereas, the
choice that r is assumed to have made at v, namely the ll-pair (l, 1), has the
opposite semantics whether or not llab(v) = σ; in other words, the labeling L
would not be correct with respect to Q; contradiction. The other possibilities for
the ‘bad’ labelings under r also get eliminated in a similar manner. ⊓⊔

Theorem 2 Let Q, t,Dt,F ,G be as above. Let r be a (complete) run of the
automaton AQ on G, which satisfies the maximal priority condition (MP) of

15

subsection 4.1. Then the labeling function L on Nodes(G), defined as L(u) = r(u)
for any node u, is correct with respect to the semantics of subsection 4.1.

Proof. Let us suppose that the labeling L deduced from r is not correct with
respect to Q; we shall then derive a contradiction. The reasoning will be by case
analysis, which will be specific to the axis of the basic query Q considered. We
give the details here for Q = //*[descendant::σ]. The axis is non-sibling, so
we have G = Dt here. The sets Nodes(t), Nodes(Dt) are in a natural bijection,
so for any node u on Dt we shall also denote by u the corresponding node on t,
in our reasonings below.

We saw that the automaton AQ for the descendant axis does not have the
states (η, 1), (⊤, 1). Consider then a node u on Dt such that: for all ancestor nodes
w of u, the llabel r(w) is in conformity with the semantics, but the ll-pair r(u) is
not in conformity. Now, AQ has only 5 states: (init), (⊤′, 1), (s, 1), (⊤, 0), (η, 0),
of which only the last four can llabel the nodes. So the possible ‘bad’ choices
that r is assumed to have made at our node u, are as follows:

(a) r(u) = (⊤′, 1), but the node u is not an answer to the query Q. Here
name(u) must be σ, so the choice of r ought to have been (⊤, 0);

(b) r(u) = (s, 1), but the node u is not an answer to the query Q. Here
name(u) 6= σ, so the choice of r ought to have been (η, 0);

(c) r(u) = (η, 0), but the node u is an answer to the query Q. Here
name(u) 6= σ, so the choice of r ought to have been (s, 1);

(d) r(u) = (⊤, 0), but the node u is an answer to the query Q. Here
name(u) must be σ, so the choice of r ought to have been (⊤′, 1).

In all the four cases, we have to show:
i) that the “ought-to-have-been” choice ll-pair is reachable from all the

parent nodes of u;
ii) and that, with such a new and ‘correct’ choice made at u, r can be

completed from u, into a run on the entire dag Dt.
The reasoning will be similar for cases (a), (b), and for the cases (c), (d).

Here are the details for case (a): That u is not an answer to Q means that u has
no σ-descendant node, so for all nodes v below u on Dt, we have llab(v) 6= σ.
Therefore, assertions i) and ii) above follow from the following observations on
the automaton for Q= //*[descendant::σ]:

i) if r could reach the state (⊤′, 1) at node u (via a σ-transition) from any
parent node of u, then (⊤, 0) is also reachable thus at u, from any of them;

ii) if, from the state (⊤′, 1), r could reach all the nodes on Dt below u (with
state (η, 0)), via transitions over γ 6= σ, then it can do exactly the same now,
with the ‘correct’ choice ll-pair (⊤, 0) at u.

As for case (c): Node u is an answer to Q here, so u has a σ-descendant; let v
be a σ-node below u on Dt; the ll-pair r(v) that r assigns to v must then be either
(⊤′, 1) or (⊤, 0); this implies that r passed from the state (η, 0) – supposedly
assigned by r to u – to (⊤′, 1) or (⊤, 0) somewhere between u and v; which
is impossible, as is easily seen on the automaton AQ for the axis descendant

considered. The reasoning for case (d) is even easier: from state (⊤, 0), no state
with an outgoing σ-transition is reachable. ⊓⊔

6 Evaluating Composite Queries

A composite query is a query in standard form, but is not basic. We propose
to evaluate such a query incrementally. For this, it suffices to consider queries
that are of the form //*[A::x conn A’::x′], where conn ∈ {and, or}, or of
the form //*[A1::*[A2::σ]]. For those of the former type, we observe first
that the components in a disjunction (resp. conjunction) under a ‘*’ can be
evaluated separately. Indeed, the answer for Q = //*[A::x conn A’::x′] can

16

be obtained as union (resp. intersection) of the answers for the two “component”
queries //*[A::x], and //*[A’::x′], when conn is an or (resp. an and). We
apply the method described earlier, separately for Q1 = //*[A::x] and for Q2

= //*[A’::x′], thus getting two respective evaluating runs r1, r2. Any node u
of the dag Dt will then be re-labeled, by the composite query Q, with ll-pairs
computed by a function AND when conn = and (resp. OR when conn = or), in
conformity with the semantics presented in the Section 4.1:

AND(u) = (s, 1) iff r1(u) = (l′, 1) = r2(u);
AND(u) = (η, 0) iff r1(u) = (l, 0) or r2(u) = (l, 0);
AND(u) = (η, 1) otherwise.
OR(u) = (s, 1) iff r1(u) = (l′, 1) or r2(u) = (l′, 1);
OR(u) = (η, 0) iff r1(u) = (l, 0) = r2(u);
OR(u) = (η, 1) otherwise.

Figure 5 below illustrates the above reasoning, for the evaluation of the com-
posite query Q = //*[self::b and parent::a], on the trdag t of Figure 3:

//*[parent : : a]

1)(η,1

A2(,)0η A3(,1η) 4A ,)(0η

A5 ,)(1s

Dt()AND

A2(c,_) (,_)aA3 b,)_(4A

A5 b,)_(

A1)_f(,

η ,0() η(,1)

η(,1)

T ’,1)(

T ’,1)(

//*[self : : b]

A2(c,_) (,_)aA3 b,)_(4A

A5 b,)_(

A1)_f(,η(,1)

η ,0() T,(1) T,(0)

s,1()

A

Fig. 5.

We next consider the queries of the form Q = //*[A1::*[A2::σ]], with
imbricated predicates. For their evaluation, we first consider a maximal priority
run evaluating r2 (resp. a set of runs r̂2) of the automaton associated to the inner
query //*[A2::σ], on Dt (resp. the set of all chiblings of Lt). This run (resp.
set of runs) will output the rlag r2(Dt) (resp. r̂2(Dt)), as described in Section
4.2. Evaluating the imbricated query Q on the dag t is then done by running the
automaton for the basic outer query //*[A1::s] on r2(Dt) (resp. r̂2(Dt)).

Finally, the answer for a query of the type Q = //*[child::*[position()=
k]], is the subset of the nodes answering //*[child::*], which correspond to
a k-th node on some chibling.

7 Conclusion

Our concern in this paper has been two-fold. The first part addressed the problem
of running any bottom-up (unranked) tree automaton indifferently on a tree or
on any of the dags obtained from the tree by full or partial compression; this gave
rise to the notions of Tree/Dags (trdags) and of Tree/Dag automata. The second
part of the paper addressed the issue of retrieving information from a trdag
representing an XML document possibly given in a compressed form. (Note:
Information retrieval from compressed structures, without having to uncompress
them, is a field of active research; cf. e.g., [17, 11].) Limiting our concern here to
the evaluation of queries formulated in terms of XPath axes, and more precisely
to positive Core XPath queries, we have presented a method for evaluating them
on any trdag t, without having to uncompress t, by breaking up the given query

17

into sub-queries of a basic type; with each basic query, an automaton is associated
such that an unambiguous maximal priority run of this automaton can evaluate
the query. An algorithm constructing these maximal priority runs is given in
Appendix II; it has just been implemented (in Java). It is of complexity O(n3)
where n is the number of nodes of the given trdag t; the bound O(n3) is due
to the relation Parents –less trivial on a trdag than on a tree; the complexity
reduces to O(n2) on trees.

One apparent advantage of the approach presented here is that the various
basic sub-queries “composing” a given query can be evaluated in parallel, in
several cases; a detailed analysis of this issue could be a possible direction for
future work. A second possible direction would be to see if the Core XPath query
evaluation algorithms of [10] can be adapted to dags, in a manner compatible
with our approach. We also expect to be able to extend our approach to the
evaluation of more general XPath queries, such as those involving the data values,
by suitably adapting its underlying mechanism based on labeling.

References

1. S. Anantharaman, P. Narendran, M. Rusinowitch, Closure Properties and Decision
Problems of Dag Automata, In Information Processing Letters, 94(5):231–240, 2005.

2. P. Buneman, M. Grohe, C. Koch, Path queries on compressed XML. In Proc. of
the 29th Conf. on VLDB, 2003, pp. 141–152, Ed. Morgan Kaufmann.

3. G. Busatto, M. Lohrey, S. Maneth, Grammar-Based Tree Compression. EPFL
Technical Report IC/2004/80, http://icwww.epfl.ch/publications.

4. G. Busatto, M. Lohrey, S. Maneth, Efficient Memory Representation of XML
Documents. In Proc. DBPL’05 (to appear), LNCS 3774, Springer-Verlag, 2005.

5. W. Charatonik, Automata on DAG Representations of Finite Trees, Technical
Report MPI-I-99-2-001, Max-Planck-Institut für Informatik, Saarbrücken, Germany.

6. H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, S. Tison, M. Tom-
masi, Tree Automata Techniques and Applications, http://www.grappa.univ-

lille3.fr/tata/

7. M. Frick, M. Grohe, C. Koch, Query Evaluation of Compressed Trees, In Proc. of
LICS’03, IEEE, pp. 188–197.

8. G. Gottlob, C. Koch, Monadic Queries over Tree-Structured Data, In Proc. of
LICS’02, IEEE,

9. G. Gottlob, C. Koch, Monadic Datalog and the Expressive Power of Languages for
Web Information Extraction, In Journal of the ACM, 51(1):12–28, 2004.

10. G. Gottlob, C. Koch, R. Pichler, L. Segoufin, The complexity of XPath query
evaluation and XML typing In Journal of the ACM 52(2):284-335, 2005.

11. M. Lohrey, Word problems and membership problems on compressed words In
SIAM Journal of Computing, 35(5):1210-1240, 2006.

12. M. Marx, XPath and Modal Logics for Finite DAGs. In Proc. of TABLEAUX’03,
pp. 150–164, LNAI 2796, 2003.

13. W. Martens, F. Neven, On the complexity of typechecking top-down XML trans-
formations, In Theoretical Computer Sc., 336(1): 153–180, 2005.

14. M. Murata, A. Tozawa, M. Kudo, XML Access Control Using Static Analysis, In
Proc. of the 10th ACM Conf. on Computer and Communications Security (CCS’03),
pp.73–84, ACM, 2003.

15. F. Neven, Automata Theory for XML Researchers, In SIGMOD Record 31(3),
September 2002.

16. F. Neven, T. Schwentick, Query automata over finite trees, In Theoretical Com-
puter Science, 275(1–2):633–674, 2002.

17. W. Rytter, Compressed and fully compressed pattern matching in one and two
dimensions, In Proceedings of the IEEE, 88(11):1769–1778, 2000.

18. J.W. Thatcher, J.B. Wright, Generalized finite automata theory with an application
to a decision problem of second-order logic, In Math. Syst. Theory, 2(1):57–81, 1968.

19. Worl Wide Web Consortium, XML Path Language (XPath Recommendation),
http://www.w3c.org/TR/xpath/

18

Appendix I: From Canonical Forms to Standard Forms

We stick to the notations of Section 3.1. Given any canonical XPath expression
Qcan, we compute, inductively, an equivalent standard XPath expression denoted
as Std(Qcan); as earlier, conn stands for either of the boolean connectives and, or.

To start with, we define:

Std([true]) = self::∗
Std([Scan]) = Scan

Std([A::σ[Scan]]) = A::∗[self::σ and Std([Scan])]
Std([A::σ[A1::σ1[...[Ak::σk]. . .]]]) = A::∗[self::σ and

A1::∗[self::σ1 and. . . Ak−1::∗[self::σk−1 and Ak::σk] . . .]]

We also define, for every basic axis relation, an inverse relation, as follows:

self−1 = self

child−1 = parent

parent−1 = child

ancestor−1 = descendant

descendant−1 = ancestor

following-sibling−1 = preceding-sibling

preceding-sibling−1 = following-sibling

For any query Q = // ∗ [X] in standard form, we set exp(Q) = X . For any
canonical XPath query Q = /C1/C2/ . . . /Cn, the standard form Std(Q) of Q is
then generated by the following recursive construction:

Case of length 1: Q = /C1

Std(/child::σ[Xcan]) = //∗[(Root and self::σ) and Std([Xcan])]
Std(/child::∗[Xcan]) = //∗[Root and Std([Xcan])]
Std(/descendant::σ[Xcan]) = //∗[self::σ and Std([Xcan])]
Std(/descendant::∗[Xcan]) = //∗[Std([Xcan])]
Std(/axis::σ[Xcan] conn axis’::σ′[X ′

can]=
//∗[exp(Std(/axis::σ[Xcan])) conn exp(Std(/axis’::σ′[X ′

can]))]

Case of length n>1: Q = /C1/C2/ . . . /Cn

Std(/C1/. . . /Cn−1/A::σ[Xcan]) =
//∗[(self::σ and Std([Xcan])) and A−1::∗[exp(Std(/C1/. . . /Cn−1))]]
Std(/C1/. . . /Cn−1/A::σ[Xcan] conn A’::σ′[X ′

can]) =
//∗[((self::σ and Std([Xcan])) conn (self::σ′ and Std([X ′

can])))
and A−1::∗[exp(Std(/C1/. . ./Cn−1))]]

This translation procedure is of complexity linear with respect to the total num-
ber of location steps (i.e. of the form axis::σ) that appear in Q.

19

Appendix II: Constructing the Maximal Priority Run

Given a trdag t, and a basic non-sibling query Q we give here the algorithm
constructing the maximal priority run of the automaton AQ on Dt. (It is trivial
for the sibling queries.) Let n be the number of nodes on Dt; The idea is to con-
struct a directed acyclic graph G = (V,E), representing all possible (complete)
runs of AQ on Dt, and at the same time choose the one of maximal priority.
The set V of vertices of G are elements of the form Ai,(l,x), 1 ≤ i ≤ n, where Ai

is a non-terminal of Lt, and (l, x) is an ll-pair such that (l, x) is in States(AQ)
such that there exists a (complete) maximal priority run r of AQ on Dt with
r(Ai) = (l, x). The algorithm has four steps as described below (where llab(Ai)
is the first component of the current label at the node on Dt named Ai).

Step i): For every non-terminal Ai of Lt, 1 ≤ i ≤ n compute the set Parents(Ai)
of its parent non-terminals. To render the presentation uniform, we shall intro-
duce a ‘fictive’ symbol A0, and set Parents(A1) = {A0}.

The cost of this step is O(n3): For every Ai we have to check if Ai is in
Sons(Aj) for j ∈ {1, . . . , i − 1}. The maximal size of Sons(Aj) can be (n − j),

thus, for Ai we have
∑i−1

j=1(n− j) = (i− 1)n−
∑i−1

j=1 j ∈ O(i(n− i)). In total we

get:
∑n

i=1 i(n − i) ≤ n
∑n

i=1 i ∈ O(n3).

Stpe ii): Construct the set of vertices and the arcs of the graph G = (V,E) .

For every i ∈ {1, . . . , n} we have at most three different (l, x) determined by
llab(Ai), so constructing the vertices costs O(3n) = O(n).

Next, a pair (Aj,(l′,x′), Ai,(l,x)) will be an arc in E iff Aj,(l′,x′), Ai,(l,x) are in V,
and the rule ((l′, x′), llab(Ai)) → (l, x) is a transition of AQ. So, for every given
vertex Aj,(l′,x′) ∈ V, we construct the set Target(Aj,(l′,x′)) of indices of all non-
terminals Ai, reachable (with some label), from Aj,(l′,x) on G. The cost of this
construction is in O(n2): indeed, for every vertex Aj,(l′,x′) and for every Ai,(l,x) ∈
V such that Aj ∈ Parents(Ai), we have to check if the former is reachable from
the latter; that gives us 3#(Parents(Ai)) transitions of AQ to check, so, on the
whole, we get: 3

∑n

i=1 3#(Parents(Ai)) = 9
∑n

i=1(i − 1) ∈ O(n2).

Step iii): Eliminate the incomplete runs.

Consider any two given i, j ∈ {1, . . . , n}, and suppose Aj,(l′,x′) is a vertex such
that j ∈ Parents(Ai) but i /∈ Target(Aj,(l′′,x′′)); this means Ai is not reachable
from the former vertex if we associate the label (l′, x′) to Aj ; and this implies
that the vertex Aj,(l′,x′) is incorrect; we remove from G all incorrect vertices,
and all the incoming arcs at such vertices (by a bottom-up traversal of G).

Finding all the incoming arcs at a given Ai,(l,x), costs 3#Parents(Ai) =
3(i−1) checks; so, the total cost of this step amounts to 3

∑n

i=1 3(i−1) ∈ O(n2).

Step iv): Choose the maximal priority run.

Begin by setting r(A0) = init; then, for every Ai, i ∈ {1, . . . , n}, associate
a pair (l, x) such that: Ai,(l,x) ∈ V and (l, x) is of maximal priority between
all possible pairs (l′, x′) such that Ai,(l′,x′) ∈ V. The cost of this last step is in∑n

i=1 3(i − 1) ∈ O(n2).

The total cost of the algorithm is therefore O(n3).

20

Given:

The dependency dag Dt, n = its number of nodes;
Ai, 1 ≤ i ≤ n: the non-terminals of Lt naming the nodes of Dt;
AQ the automaton for the basic query Q,
States = the set of states of AQ, ∆ = the set of transition rules of AQ.

BEGIN :
/* Step i): Construct the relation Parents */

Parents(A1) := {A0}; for all i ∈ {2, . . . , n} Parents(Ai) := ∅;
For i ∈ {2, . . . , n} do

For j ∈ {1, . . . , i − 1} do

If Ai ∈ Sons(Aj) Parents(Ai) := Parents(Ai) ∪ {Aj};
od; od;

/* Step ii): Construct the vertices V, the arcs E, and the Target sets */
V := {A0,init} ∪ {Ai,(l,x) | 1 ≤ i ≤ n, l defined by llab(Ai), (l, x) ∈ States}
E := ∅; For all Ai,(l,x) ∈ V Target(Ai,(l,x)) := ∅;
For all Ai,(l,x) ∈ V, with i ≥ 1

For all Aj ∈ Parents(Ai)
If Aj,(l′,x′) ∈ V and ((l′, x′), llab(Ai)) → (l, x) ∈ ∆ {
E := E ∪ {(Aj,(l′,x′), Ai,(l,x))};
Target(Aj,(l′,x′)) := Target(Aj,(l′,x′)) ∪ {i};

}

/* Step iii): Eliminate the incomplete runs, via a bottom-up search */
i := n;
(#) For all Ai,(l,x), Ai,(l′,x′) ∈ V

If Target(Ai,(l,x)) Target(Ai,(l′,x′)) {
V := V \ {Ai,(l,x)};
For all Ak,(l′,x′) ∈ V such that (Ak,(l′,x′), Ai,(l,x)) ∈ E {
E := E \ {(Ak,(l′,x′), Ai,(l,x))};
If E ∩ {(Ak,(l′,x′), Ai,(l,y)) | (l, y) defined by llab(Ai)} = ∅

Target(Ak,(l′,x′)) := Target(Ak,(l′,x′)) \ {i};
}

}
i := i − 1;
If i ≥ 1 GOTO (#);

/* Step iv): Construct now the maximal priority run, top-down */
r(A0) := init; i := 1;

($) r(Ai) := max{(l, x) | Ai,(l,x) ∈ V};
If i < n, {i := i + 1; GOTO ($)};
Else RETURN {r(A1), . . . , r(An)};

END.

21

Appendix III: A Complete Example

1) We evaluate the query Q = /descendant::∗[descendant::b [parent::a]]
on the partially compressed document t, given to the left of Figure 6. Note that
we want to select every node having some descendant b with parent a. To start
with, we first translate Q into standard form, as:

Q = //*[descendant::*[self::b and parent::a]]

a

:

b

bac

f

A5

(,_)aA3A2 (c,_)

b,)_(

A1)_f(,

b,)_(4A

:tDLt :

A1

A2

A3

4A

A5

A5

A2 A3 4A A5 A2, , , ,)(

c

(

b

b

)

f

t

Fig. 6. Document t, its normalized Grammar Lt, and the Dependency rlag Dt

Figure 7 represents, to the left, the rlag Dt labeled by the automaton for the
query //*[self::b]; to the middle, the same rlag labeled by the automaton
for the query //*[parent::a]; and to the right, the rlag D′

t re-labeled for the
conjunction, as explained in Section 6.

//*[parent : : a]

,0()

’T,1()

A1

A5

η(,1) A1

A5

η(,1)

s,1()

A3A2 η ,0() ’T,1()4A A2 η ,0() A3 T,(1) T,(0)4Aη(,1)

A5

η(,1)A3A2 η ,0()

s,1()

A1 η(,1)

4A

Dt’//*[self : : b]

η

Fig. 7.

Figure 8 shows, to the left, the rlag obtained by re-labeling D′
t with the

run of the automaton for the query //*[descendant::s]; and to the right, the
(minimal) sub-rlag of Dt formed of nodes marked now by ll-pairs with boolean
component 1, and the corresponding answer for the query Q on the document t.
This final sub-rlag of Dt is obtained by cutting out the nodes where the ll-pairs
attached have boolean component 0.

2) On the same document t as above, we consider now the following standard
form query: Q′ = //*[child::b or following-sibling::b]

To the left of Figure 9 is the rlag Dt labeled by the run of the automaton for
//*[child::b]; and to the right, the labeling of the 3 chiblings of Dt, by the
run of the automaton for //*[following-sibling::b].

The two rlags D′
t,D

′′
t of Figure 10 below, are then obtained by applying

the re-labeling functions respectively labr and λr̂ (of subsection 4.2) for these

22

//*[descendant : :s]

1

A5 T,(0)

s,1()

η ,0()A2 A3 s,1() 4A η ,0()

A1

A5 T,(0)

s,1()

η ,0()A2 A3 s,1() 4A η ,0()

answer:

b

b

c a

fA

Fig. 8.

//*[following−sibling::b]

5 b,)_(

:3F

T,()0

A1)_f(,

0:F

,)(η 0

A1

A5 T,(0)

s,1()

A3 s,1()η ,0()A2 T,(0)4A

//*[child::b]

A2(c,_)

A2(c,_)

(,_)aA3

b,)_(4A

A5 b,)_(

:1F
s,()1

(T ’1)

T,()0

s,()1

η ,()0

A

Fig. 9.

respective runs. The rlag D′′′
t to the right is obtained by the run of automaton

for //∗ [self::s] on D′′
t .

’

1

A5

s,1()

A3 s,1()η ,0()A2 4A

η ,0()

η ,0()

t’D

A1

A5

A2 4AA3

,1()η

’T,1()
’T,1()

’T,1()

η ,0()

A1

A5

A3A2 4A

,()

,() s,() ,()

η ,()

−

−η

s s −−

−

Dt’’ Dt’’

A

Fig. 10.

23

The Figure 11 presents the final answer for our query obtained by applying
the function OR from section 6.

D

1

A5

A2 4AA3

η ,0()

s,1()

s,1()s,1()s,1()

answer

A1

A5

A2 4AA3

,1()η

’T,1()
’T,1()

’T,1()

η ,0()

Dt’’’

A1

A5

s,1()

A3 s,1()η ,0()A2 4A

η ,0()

η ,0()

ORt’

A

Fig. 11.

24

