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Abstract: Recent works have investigated the problem of the conflict redistribution in
the fusion rules of evidence theories. As a consequence of these works, many new rules
have been proposed. Now, there is not a clear theoretical criterion for a choice of a rule
instead another. The present chapter proposes a new theoretically grounded rule, based
on a new concept of sensor independence. This new rule avoids the conflict redistribution,
by an adaptive combination of the beliefs. Both the logical grounds and the algorithmic
implementation are considered.

1 Introduction

Recent works have underlined the limitations of the historical rule of Dempster and Shafer
for fusing the information[4, 9]. The difficulty comes essentially from the conflict generation
which is inherent to the rule definition. By the way, a sequential use of the rules would result
in an accumulation of the conflict, if there were not a process for removing it. Many solutions
have been proposed for managing this conflict. The following methods are noteworthy:

• Constraining, relaxing or adapting the models in order to avoid the conflict,

• Weakening the conflicting information with the time,

• Redistributing the conflict within the rules.

Model adaptations are of different natures. Close to Dempster-Shafer theory, Appriou[1] sug-
gests to reduce the possible contradictions by a convenient setting of the problem hypotheses.
Smets[11] removes the nullity constraint on the belief of the empty proposition (TBM); this
way, the conflict is no more a problem. Dezert and Smarandache[5, 10] defined evidences
on models with weakened negations (free DSmT and similar models). By weakening or sup-
pressing the negation, the conflict actually disappears. The TBM of Smets and the DSmT
of Dezert and Smarandache are both theoretically grounded. TBM is axiomatically derived,
while free DSmT is constructed logically[3]. Moreover, although the DSmT keeps the nullity
constraint for the empty proposition, it is possible to interpret the TBM by means of a con-
strained DSm model.

Avoiding the conflict by adapted models is not satisfactory however. Indeed, there are many
cases where such models appear quite artificial and not well suited to represent the real
world. Weakening the information is not satisfactory either; in many cases, the choice of a
weakening criterion is rather subjective. Experimentations[8] have shown better results by
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means of rules with conflict redistributions adapted to the problem.1 Florea, Jousselme and
al[7] proposed recently a new family of rules which are adaptive with the conflict level. In
this case, there is an important idea: the redistribution policy is now changing automatically
as a function of the conflict.

Many new rules have been proposed. However, there is not a clear theoretical criterion for
a choice of a rule instead another. Now, these new rules, and particularly the adaptive rule
of Florea and Jousselme, have uncovered a new fact: there is not a simple and permanent
definition of the fusion rule for any fusion problem. More precisely, the structure of the
fusion rule may depend on the structure of the problem. In this chapter, we are proposing
a methodology for computing fusion rules, being given a problem setting. This methodology
is logically grounded and based on a new concept of sensor independence. As a result, the
rules are obtained from a constrained convex optimization. These computed rules cannot be
derived mathematically in general.

The next section introduces evidence theories and its various viewpoint. As a general frame-
work for these theories, the notions of hyperpower sets and of pre-Boolean algebras are briefly
reminded. Section 3 settles a new methodology for deriving the fusion rule. This methodol-
ogy is based on an entropic notion of sensor independence. Then, section 4 discusses about
the implementations and the properties of the new rules. Typical examples are considered.
Section 5 is more theoretical and exposes the logical fundaments of our methodology. At
last, section 6 concludes.

2 Viewpoints in evidence theories

In this section, we are discussing about theories for combining evidences expressed by belief
functions. Since pre-Boolean algebra is a common framework for all these theories, in par-
ticular as a generalization of sets and hyperpower sets, we are now introducing briefly this
notion.

2.1 Pre-Boolean algebra

The theory of Dezert and Smarandache is based on the fundamental notion of pre-Boolean
algebra, or hyperpower sets. These algebra will describe the logical modeling of the knowl-
edge. This chapter is not dedicated to a thorough exposition of the theory of pre-Boolean
algebra. The reader should refer to the chapter ?? of this book for a precise theoretical defi-
nition. Now, the present section will introduce these notions qualitatively, and some typical
examples will be provided.

2.1.1 General principle

Subsequently, the conjunction and disjunction are denoted ∧ and ∨. The negation, when
used, is denoted ¬. The empty set is denoted ⊥ while the tautology, or full ignorance, is
denoted ⊤. Notice that these notations are not the most classical in the domain of evidence
theories. Typically, ∩,∪,Θ \ ·, ∅,Θ are used instead of ∧,∨,¬,⊥,⊤. However, ∧,∨,¬,⊥,⊤
are notations widely used in logics and Boolean algebra. Since the connexions are important
between these theories, we will use the logical notations in general.

Definition. A pre-Boolean algebra could be seen as a subset of a Boolean algebra which
is stable for the conjunction and the disjunction. As a consequence, a pre-Boolean algebra
together with the two operators, conjunction and disjunction, is an algebraic structure.

This algebraic structure has the same properties than a Boolean algebra, except that it does

1In fact, Dempster-Shafer rule is also a rule with redistribution of the conflict. But in this case, the
redistribution is uniform.
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not implement explicitly the notion of negation. In particular, the following properties are
provided by the pre-Boolean algebra for the binary operators:

Commutativity. φ ∧ ψ = ψ ∧ φ and φ ∨ ψ = ψ ∨ φ ,

Associativity. φ ∧ (ψ ∧ η) = (φ ∧ ψ) ∧ η and φ ∨ (ψ ∨ η) = (φ ∨ ψ) ∨ η ,

Distributivity. φ ∧ (ψ ∨ η) = (φ ∧ ψ) ∨ (φ ∧ η) and φ ∨ (ψ ∧ η) = (φ ∨ ψ) ∧ (φ ∨ η) ,

Idempotence. φ ∧ φ = φ and φ ∨ φ = φ ,

Neutral sup/sub-elements. φ ∧ (φ ∨ ψ) = φ and φ ∨ (φ ∧ ψ) = φ ,

for any φ, ψ, η in the pre-Boolean algebra.

2.1.2 Example

Free pre-Boolean algebra. Let a, b, c be three atomic propositions. Consider the free
Boolean algebra B(a, b, c) generated by a, b, c :

B(a, b, c) =
{∨

(α,β,γ)∈A

(
α ∧ β ∧ γ

)/
A ⊂ {a,¬a} × {b,¬b} × {c,¬c}

}
.

It is well known that B(a, b, c) contains 223

= 256 elements.

The free pre-Boolean algebra generated by the propositions a, b, c is the smaller subset of
B(a, b, c) containing a, b, c and stable for ∧ and ∨. This set, denoted < a, b, c >, is defined
extensionally by:

< a, b, c >= {⊥, a ∧ b ∧ c, a ∧ b, a ∧ c, b ∧ c, a ∧ (b ∨ c), b ∧ (a ∨ c), c ∧ (a ∨ b), a, b, c,

(a ∧ b) ∨ (a ∧ c) ∨ (b ∧ c), (a ∧ b) ∨ c, (a ∧ c) ∨ b, (b ∧ c) ∨ a, a ∨ b, a ∨ c, b ∨ c, a ∨ b ∨ c,⊤}

It is easily verified that a conjunctive or disjunctive combination of propositions of < a, b, c >
is still a proposition of < a, b, c >. For example:

(
a ∧ (b ∨ c)

)
∨ b =

(
(a ∧ b) ∨ (a ∧ c)

)
∨ b = (a ∧ c) ∨ b .

Moreover, < a, b, c > is obviously the smallest set, which is stable for ∧ and ∨. In particular,
it is noticed that ⊥,⊤ ∈< a, b, c > since ⊥ =

∨
α∈∅ α and ⊤ =

∧
α∈∅ α .

The free pre-Boolean algebra < a, b, c > is also called hyperpower set generated by a, b, c .
It is also denoted DΘ, where Θ = {a, b, c} . Notice that the tautology ⊤ is often excluded
from the definition of the hyperpower set[10] . By the way, Dambreville excluded both ⊥
and ⊤ from a previous definition [3]. These differences have a quite limited impact, when
considering the free DSmT. Whatever, it is generally assumed that a∨ b∨ c = ⊤ ; but this is
an additional hypothesis.

A Boolean algebra is a constrained pre-Boolean algebra. A Boolean algebra is a
subset of itself and is stable for ∧ and ∨. Thus, it is a pre-Boolean algebra. Now, we will see
on an example that a set could be seen as an hyperpower set which has been constrained by
logical constraints. Since a Boolean algebra could be considered as a set, this result implies
more generally that a Boolean algebra could be obtained by constraining a free pre-Boolean
algebra.

Denote Θ = {a, b, c} . Consider the Boolean algebra P(Θ) related to the set operators
∩,∪,Θ \ · and neutral elements ∅,Θ. This Boolean algebra is extensionally defined by:

P(Θ) =
{
∅, a, b, c, {a, b}, {a, c}, {b, c},Θ

}
.
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Now, consider the hyperpower set < a, b, c > and apply to it the constraints:

Γ =
{
a ∧ b = b ∧ c = a ∧ c = ⊥ , a ∨ b ∨ c = ⊤

}
.

It is then derived:




a ∧ b ∧ c = a ∧ (b ∨ c) = b ∧ (a ∨ c) = c ∧ (a ∨ b) = (a ∧ b) ∨ (a ∧ c) ∨ (b ∧ c) = ⊥ ,
(a ∧ b) ∨ c = c , (a ∧ c) ∨ b = b , (b ∧ c) ∨ a = a ,
a ∨ b ∨ c = ⊤ .

Denoting < a, b, c >Γ the resulting constrained pre-Boolean algebra, it comes:

< a, b, c >Γ= {⊥, a, b, c, a∨ b, a ∨ c, b ∨ c,⊤} .

Then, < a, b, c >Γ contains exactly the same number of elements than P(Θ). More precisely,
by the Boolean properties of ∧ and ∨, it is clear that < a, b, c >Γ and P(Θ) are isomorph
as pre-Boolean algebra. While < a, b, c >Γ does not define the negation explicitly, this
isomorphism shows that the negation is implicitly defined in < a, b, c >Γ . In fact, the
negation of < a, b, c >Γ has been built by the constraints. This is an important property of
pre-Boolean algebra:

The constraints put on a free pre-Boolean algebra partially characterize the nega-
tion operator.

As a consequence, there is a partial definition of the negation in a pre-Boolean algebra. This
negation is entirely undefined in an hyperpower set and is entirely defined in a set. But there
are many intermediate cases.

Example of constrained pre-Boolean algebra. Let Θ = {a, b, c} be a set of atomic
propositions and Γ = {a∧ b = a∧ c} be a set of constraints. By propagating the constraints,
it is obtained:

a ∧ b = a ∧ c = (a ∧ b) ∨ (a ∧ c) = (a ∧ b) ∧ (a ∧ c) = a ∧ b ∧ c .

Consequently:

a ∧ (b ∨ c) = a ∧ b ∧ c , (a ∧ b) ∨ c = c , (a ∧ c) ∨ b = b .

b ∧ (a ∨ c) = c ∧ (a ∨ b) = (a ∧ b) ∨ (a ∧ c) ∨ (b ∧ c) = b ∧ c .

At last, the constrained pre-Boolean algebra is extensionally defined by:

< a, b, c >Γ= {⊥, a ∧ b ∧ c, b ∧ c, a, b, c, (b ∧ c) ∨ a, a ∨ b, a ∨ c, b ∨ c, a ∨ b ∨ c,⊤}

This configuration is modeled in figure 1. This model ensures that the propagation of the
constraints is complete in the definition of < a, b, c >Γ.

2.1.3 Notations

Let Θ be a set of atomic propositions. The free pre-Boolean algebra generated by Θ is
denoted < Θ > .

Now, let Γ be a set of constraints over the propositions of < Θ >. The pre-Boolean algebra
generated by Θ and constrained by Γ is denoted< Θ >Γ . Of course, it comes< Θ >∅=< Θ >
(the pre-Boolean algebra generated by Θ and constrained by an empty Γ is an hyperpower
set).

A proposition φ is a subproposition of proposition ψ if and only if φ ∧ ψ = φ ; subsequently,
the property φ ∧ ψ = φ is also denoted φ ⊂ ψ .
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Figure 1: Pre-Boolean algebra < a, b, c >Γ; (⊥ and ⊤ are omitted)

2.2 Belief

It is now given a pre-Boolean algebra < Θ >Γ as a logical framework for the knowledge repre-
sentation. The theories of evidence also implement a belief on each logical proposition. This
belief contains both an imprecision and an uncertainty information. The following sections
consider two main styles for implementing the belief. In the DSmT and DST (Dempster
Shafer Theory) [9], the belief over the empty proposition is always zero. In the TBM (Trans-
ferable Belief Model) [11], the belief over the empty proposition may be non zero. These
viewpoints are related to two slightly different logical interpretations, as stated in section 5.

2.2.1 DSmT and DST

DSmT defines the notion of belief in a same way than DST. The only difference is that DST
works on a set, while DSmT works on any pre-Boolean algebra. Fundamental differences will
also arise, when defining the fusion of the information (section 2.3).

Basic Belief Assignment. A basic belief assignment (bba) to the pre-Boolean algebra
< Θ >Γ is a real valued function defined over < Θ >Γ such that:

∑

φ∈<Θ>Γ

m(φ) = 1 , m(⊥) = 0 and m ≥ 0 .

Typically,m represents the knowledge of an expert or of a sensor. By hypothesizingm(⊥) = 0,
the DSmT assumes the coherence of the information.

The bba is a belief density, describing the information intrinsic to the propositions. The full
belief of a proposition is thus the compilation of the bba of its sub-propositions.

Belief function. The belief function Bel related to a bba m is defined by:

∀φ ∈< Θ >Γ, Bel(φ) =
∑

ψ∈<Θ>Γ:ψ⊂φ

m(ψ) . (1)

It is generally considered that Bel
(∨

θ∈Θ θ
)

= 1 , which means that Θ matches all possible
information.
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2.2.2 TBM and TBM-like bba

Like the DST, the TBM works on a set. However, in the TBM interpretation the belief put
on the empty set is not necessarily zeroed. It is also possible to mix this hypothesis with a
pre-Boolean modeling, as follows.

TBM-like Basic Belief Assignment. A basic belief assignment to the pre-Boolean al-
gebra < Θ >Γ is a real valued function defined over < Θ >Γ such that:

∑

φ∈<Θ>Γ

m(φ) = 1 and m ≥ 0 .

By removing the hypothesis m(⊥) = 0, the coherence of the information is canceled. The
coherence and non-coherence hypotheses have a logical interpretation, as explained in sec-
tion 5.

In fact, it is also possible to simulate the TBM (and TBM-like models) by means of the
DSmT (with the coherence hypothesis). The idea is to simulate the empty set of TBM by
the pre-Boolean proposition

∧
θ∈Θ θ . This result, although simple, is outside the scope of

this chapter and will not be developed further. To end with this subsection, it is noticed that
Smets proposes a slightly different definition of the belief function by excluding the belief of
the empty set. Smets belief function will be denoted and defined by:

BelS(φ) =
∑

ψ∈<Θ>Γ:⊥6=ψ⊂φ

m(ψ) .

This truncated belief function is not used subsequently, since we work essentially on bba and
on the full belief function Bel as defined in (1).

2.3 Fusion rules

The main contribution of evidence theories consists in their fusion rules. It is assumed then
that two or more sources of information are providing a viewpoint about the universe. These
viewpoints are described by specific bbas for each sensor. The question then is to make a
unique representation of the information, i.e. a unique bba, from these several bbas. Several
rules for fusing such information have been elaborated.

There are essentially two kinds of rules. The first kind avoids any conflict redistribution.
The theorists generally agree then on a unique fusion rule, the conjunctive rule (without
redistribution). Two models avoid the conflict redistribution: the transferable belief model
of Smets and the free DSmT. In both theories, a strong constraint is put on the model. TBM
puts non zero weights on the empty set, while free DSmT removes the negation from the
model. In many cases however, these hypotheses are too restrictive.

When the conflict is taken into account and is redistributed, many possible rules have been
proposed. No model restriction is needed anymore, but it is difficult to decide for a definitive
fusion rule.

The following sections introduce shortly these various concept of rules.

2.3.1 Fusion rule in free DSmT and similar models.

Free DSmT is defined on an hyperpower set. A fundamental property of an hyperpower
set is that the empty proposition cannot be generated from non empty propositions. More
generally, a pre-Boolean algebra < Θ >Γ, where the constraints in Γ do not generate ⊥, will
also satisfy such property:

φ, ψ ∈< Θ > \{⊥} =⇒ φ ∧ ψ ∈< Θ > \{⊥} . (2)
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This property will be called an insulation property.

Assume now a pre-Boolean algebra < Θ >Γ satisfying (2). Then, two bbas m1 and m2 over
< Θ >Γ will be fused into a bba m1 ⊕m2 as follows:

∀φ ∈< Θ >Γ , m1 ⊕m2(φ) =
∑

ψ∧η=φ

m1(ψ)m2(η) . (3)

This definition is compatible with the constraint m1 ⊕m2(⊥) = 0 of DSmT, since it comes
by the insulation property:

m1(ψ) 6= 0 and m2(η) 6= 0 implies ψ ∧ η ∈< Θ > \{⊥} .

The insulation property is often a too strong hypothesis for many problems. The TBM
viewpoint will not request such structure constraints. But as a consequence, the coherence
property of the bba will be removed.

2.3.2 Fusion rule for TBM-like bbas

In the TBM paradigm, two bbas m1 and m2 over < Θ >Γ will be fused into a bba m1 ⊕m2

as follows:
∀φ ∈< Θ >Γ , m1 ⊕m2(φ) =

∑

ψ∧η=φ

m1(ψ)m2(η) . (4)

There is no particular restriction on the choice of < Θ >Γ in this case. It is for example
possible that the model contains two non empty propositions ψ and η such that ψ ∧ η = ⊥ .
Assuming that the initial bbas m1 and m2 are such that m1(ψ) > 0 and m2(η) > 0, it comes
from the definition that m1 ⊕ m2(⊥) > 0 . But the rule is still compatible with the TBM
paradigm, since then the coherence constraint m1 ⊕ m2(⊥) = 0 is removed. By the way,
removing this constraint is not satisfactory in many cases. In particular, it is well known
that the weight of the contradiction may increase up to 1 by iterating the fusion stages.

2.3.3 General case

While the fusion rule is clearly defined by (3) for models avoiding the conflict, there are many
possible rules when this conflict has to be redistributed. Typically, the rule could be defined
in two steps. First, compute the conjunctive function µ of m1 and m2 by:

∀φ ∈< Θ >Γ , µ(φ) =
∑

ψ∧η=φ

m1(ψ)m2(η) .

The function µ is like the fusion rule in the TBM paradigm. It cannot be used directly, since
µ(⊥) have to be redistributed when µ(⊥) > 0 . Redistributing the conflict means:

• Constructing a function ρ on < Θ >Γ such that:

ρ(⊥) = 0 ,
∑

φ∈<Θ>Γ

ρ(φ) = 1 and ρ ≥ 0 ,

• Derive the bba m1 ⊕m2 by:

m1 ⊕m2(φ) = µ(φ) + ρ(φ)µ(⊥) .

There are many possible rules deduced from the redistribution principle. Moreover, the
redistribution may be dependent to a local conflict, like the PCR rules[6, 8]. It is also noticed
that some authors[7] allows negative redistributions by removing the constraint ρ ≥ 0 . These
new rules are as well legitimate and interesting, but by allowing negative redistributions, the
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criterion for defining rules is again weakened. The question now is how to decided for a
rule or another? This choice is certainly dependent of the structure of the fusion problem.
Actually, Florea, Jousselme and al[7] proposed a rule adaptive with the conflict level. More
generally, it is foreseeable that a fusion rule should be defined or computed specifically for a
given fusion problem.

In the next sections, we will derive logically a new ruling method, which avoids the conflict
redistribution by exploiting a new concept of independence of the sensors. The new rules
will be essentially computed from an entropic optimization problem. This problem may be
unsolvable, which will imply a rejection of the hypotheses (too high conflict between the
sources). Otherwise, it will adapt the belief dispatching in a much more flexible way than
the usual conjunctive function µ.

3 Entropic approach of the rule definition

To begin with this new rule concept, we will directly settle the concrete optimization princi-
ples of our method. The logical justifications will come later, in section 5.

3.1 Independent sources and entropy

Actually, the idea is not completely new, and Dezert used it in order to give a first justification
to the free DSmT [5]. More precisely, the free rule could be rewritten:

∀φ ∈< Θ >Γ , m1 ⊕m2(φ) =
∑

ψ∧η=φ

fo(ψ, η) ,

where:
fo(ψ, η) = m1(ψ)m2(η) . (5)

If we are interpreting mi as a kind of probability, the relation (5) is like the probabilistic
independence, where fo(ψ, η) is a kind of joint probability. Section 5 will clarify this prob-
abilistic viewpoint. Now, there is a link between the notion of probabilistic independence
and the notion of entropy, which is often forgotten. The law fo(ψ, η) = m1(ψ)m2(η) is a
maximizer of the entropy, with respect to the constraint of marginalization:

fo ∈ arg max
f

−
∑

ψ,η

f(ψ, η) ln f(ψ, η)

under constraints:

f ≥ 0 ,
∑

ψ

f(ψ, η) = m2(η) and
∑

η

f(ψ, η) = m1(ψ) .

(6)

This is actually how Dezert derived the conjunctive rule of free DSmT [5], although he
did not make an explicit mention to the probability theory. Now, the equation (6) has a
particular interpretation in the paradigm of information theory: fo is the law which contains
the maximum of information, owing to the fact that its marginals are m1 and m2. By
the way, independent sources of information should provide the maximum of information,
so that the maximization of entropy appears as the good way to characterize independent
sources. When the constraints are just the marginalizations, the solution to this maximization
is the independence relation fo(ψ, η) = m1(ψ)m2(η). In Bayesian theory particularly, the
marginalizations are generally the only constraints, and the notion of independent sources of
information reduces to the notion of independent propositions. But in the case of evidence
theories, there is the problem of the conflict, which adds constraints.
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3.2 Definition of a new rule for the DSmT

Let be defined a pre-Boolean algebra < Θ >Γ, constituting the logical framework of the
information. Let be defined two bbas m1 and m2 over < Θ >Γ. The bbas are assumed to be
coherent, so that m1(⊥) = m2(⊥) = 0 . Then the fusion of m1 and m2 is the bba m1 ⊕m2

defined by:

∀φ ∈< Θ >Γ , m1 ⊕m2(φ) =
∑

ψ∧η=φ

fo(ψ, η) ,

where:

fo ∈ arg max
f

−
∑

ψ,η

f(ψ, η) ln f(ψ, η)

under constraints:

f ≥ 0 ,
∑

ψ

f(ψ, η) = m2(η) ,
∑

η

f(ψ, η) = m1(ψ) ,

and ∀ψ, η ∈< Θ >Γ , ψ ∧ η = ⊥ =⇒ f(ψ, η) = 0 .

(7)

This rule will be named Entropy Maximizing Rule (EMR).

Corollary of the definition. The fused bba is compatible with the coherence constraint
m1 ⊕m2(⊥) = 0 of DSmT.

Proof is immediate owing to the constraints ψ ∧ η = ⊥ =⇒ f(ψ, η) = 0 in the optimization.

3.3 Feasibility of the rule

The rule is feasible when there is a solution to the optimization. The feasibility is obtained
as soon there is a solution to the constraints.

Definition. The fused bba m1 ⊕m2 is defined if and only if there exists a function f such
that:

f ≥ 0 ,
∑

ψ

f(ψ, η) = m2(η) ,
∑

η

f(ψ, η) = m1(ψ) ,

and ∀ψ, η ∈< Θ >Γ , ψ ∧ η = ⊥ =⇒ f(ψ, η) = 0 .

(8)

In next section, it will be shown on examples that the fusion is not always feasible. Ac-
tually, the infeasibility of the rule is a consequence of fundamental incompatibilities of the
information.

3.4 Generalizations

3.4.1 Fusion of N bbas

It will be seen that the fusion rule defined previously is not associative. This means that the
sources of information do not have the same weight in a sequential fusion. However, when it
is needed to fuse N sources of information simultaneously, the fusion method has then to be
generalized to N bbas. The subsequent definition makes this generalization.

N-ary rule. Let be defined a pre-Boolean algebra < Θ >Γ, constituting the logical frame-
work of the information. Let be defined N coherent bbas mi|1≤i≤N over < Θ >Γ. Then the
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fusion of mi|1≤i≤N is the bba ⊕[mi|1 ≤ i ≤ N ] defined by:

∀φ ∈< Θ >Γ , ⊕[mi|1 ≤ i ≤ N ](φ) =
∑

∧
N
i=1

ψi=φ

fo(ψi|1 ≤ i ≤ N) ,

where:

fo ∈ argmax
f

−
∑

ψ

f(ψi|1 ≤ i ≤ N) ln f(ψi|1 ≤ i ≤ N)

under constraints:

f ≥ 0 , ∀i,
∑

ψj |j 6=i

f(ψj |1 ≤ j ≤ N) = mi(ψi) ,

and ∀ψ ∈< Θ >NΓ ,

N∧

i=1

ψi = ⊥ =⇒ f(ψi|1 ≤ i ≤ N) = 0 .

(9)

3.4.2 Approximation of the rule

The definition of our rule needs the maximization of the entropy of f under various con-
straints. An algorithm for solving this maximization is proposed in section 4. The problem
is solved by means of a variational method. By the way, it may be interesting to have a
more direct computation of the rule. In particular, better computations of the rule could be
obtained by approximating the optimization problem.

As soon as a solution is feasible, there are many ways to approximate the rules. The main
point is to approximate the entropy H(f) = −

∑
ψ,η f(ψ, η) ln f(ψ, η) by a function H̃(f)

such that H̃(f) ≃ H(f) . Then, the rule is just rewritten:

∀φ ∈< Θ >Γ , m1 ⊕m2(φ) =
∑

ψ∧η=φ

fo(ψ, η) ,

where:

fo ∈ arg max
f

H̃(f) ,

under constraints:

f ≥ 0 ,
∑

ψ

f(ψ, η) = m2(η) ,
∑

η

f(ψ, η) = m1(ψ) ,

and ∀ψ, η ∈< Θ >Γ , ψ ∧ η = ⊥ =⇒ f(ψ, η) = 0 .

(10)

An example of approximation is H̃(f) = −
∑
ψ,η f

2(ψ, η), which is obtained by a first order
derivation of ln. Approximated rules will not be investigated in the present chapter.

4 Implementation and properties

This section is devoted to the development of basic properties of the rule EMR and to
practical implementation on examples.

4.1 Properties

Commutativity. Let m1 and m2 be two bbas over φ ∈< Θ >Γ . By definition (7), the
fused bba m1 ⊕m2 exists if and only if m2 ⊕m1 exists. Then m1 ⊕m2 = m2 ⊕m1 .

10



Neutral element. Define the bba of total ignorance ν by ν(⊤) = 1 . Let m be a bba over
φ ∈< Θ >Γ . Then the fused bba m⊕ ν exists, and m⊕ ν = m .

Proof. Since
∑

φ fo(φ, ψ) = ν(ψ) and fo ≥ 0 , it is deduced fo(φ, ψ) = 0 unless ψ = ⊤.
Now, since

∑
ψ fo(φ, ψ) = m(φ), it is concluded:

fo(φ,⊤) = m(φ) and fo(φ, ψ) = 0 for ψ 6= ⊤ .

This function satisfies the hypotheses of (7), thus implying the existence of m⊕ ν .
Then the result m⊕ ν = m is immediate.

222

Belief enhancement. Let be given two bbas m1 and m2, and assume that there exists a
fused bba m1 ⊕m2 computed by (7). Denote by Bel1 ⊕ Bel2 the belief function related to
m1 ⊕m2 . Then:

Bel1 ⊕ Bel2(φ) ≥ max
{
Bel1(φ),Bel2(φ)

}
for any φ ∈< Θ >Γ . (11)

Proof.

Proof of Bel1 ⊕ Bel2(φ) ≥ Bel1(φ) .
Let fo be a function satisfying to (7).
Then Bel1 ⊕ Bel2(φ) =

∑
ψ⊂φm1 ⊕m2(ψ) =

∑
η∧ξ⊂φ fo(η, ξ) .

In particular, Bel1 ⊕ Bel2(φ) ≥
∑
ψ⊂φ

∑
η fo(ψ, η) .

At last, Bel1 ⊕ Bel2(φ) ≥
∑
ψ⊂φm1(ψ) = Bel1(φ) .

Conclusion. It is similarly proved Bel1 ⊕ Bel2(φ) ≥ Bel2(φ) and then the final result.

222

Corollary. Let be given two bbas m1 and m2, and assume that there exists a fused bba
m1 ⊕m2 computed by (7). Let φ1, . . . , φn ∈< Θ >Γ be such that φi ∧ φj = ⊥ for any i 6= j .
Then the property

∑n
i=1 max

{
Bel1(φi),Bel2(φi)

}
≤ 1 is necessarily true.

This result is a direct consequence of the belief enhancement. It could be used as a criterion
for proving the non existence of the fusion rule.

Associativity. The computed rule ⊕ is not associative.

Proof. Consider the bbas m1, m2 and m3 defined on the Boolean algebra {⊥, a,¬a,⊤} by :

{
m1(a) = m2(a) = 0.5 and m1(⊤) = m2(⊤) = 0.5 ,
m3(¬a) = 0.5 and m3(⊤) = 0.5 .

We are now comparing the fusions (m1 ⊕m2) ⊕m3 and m1 ⊕ (m2 ⊕m3) .

Computing (m1 ⊕m2) ⊕m3.
First it is noticed that there is no possible conflict between m1 and m2, so that m1⊕m2

could be obtained by means of the usual conjunctive rule:

m1 ⊕m2(a) = 0.5× 0.5 + 0.5× 0.5 + 0.5× 0.5 = 0.75 and m1 ⊕m2(⊤) = 0.5× 0.5 .

As a consequence:

max
{
Bel1 ⊕ Bel2(a),Bel3(a)

}
+ max

{
Bel1 ⊕ Bel2(¬a),Bel3(¬a)

}
= 0.75 + 0.5 > 1 .

It is concluded that (m1 ⊕m2) ⊕m3 does not exist.

Computing m1 ⊕ (m2 ⊕m3).
It is known that Bel2 ⊕ Bel3 ≥ max

{
Bel2,Bel3

}
when m2 ⊕m3 exists.

11



Since max
{
Bel2(a),Bel3(a)

}
= max

{
Bel2(¬a),Bel3(¬a)

}
= 0.5 , it is deduced that

necessarily m2 ⊕m3(a) = m2 ⊕m3(¬a) = 0.5
It appears that m2 ⊕m3(a) = m2 ⊕m3(¬a) = 0.5 is actually a valid solution, since it
is derived from fo such that fo(a,⊤) = fo(⊤,¬a) = 0.5 (zeroed on the other cases).
It is also deduced by a similar reasoning that m1 ⊕ (m2 ⊕m3) exists and is necessary
defined by m1 ⊕ (m2 ⊕m3)(a) = m1 ⊕ (m2 ⊕m3)(¬a) = 0.5 .

The associativity thus fails clearly on this example.

222

Compatibility with the probabilistic bound hypothesis. A temptation in evidence
theories is to link the notion of probability with the notion of belief by means of the relation:

Bel(φ) ≤ p(φ) for any φ ∈< Θ >Γ . (12)

In general, this relation is not compatible with the fusion rules.

For example, let us test Dempster-Shafer rule on the relation (12)
Let be given m1 and m2 defined on {⊥, a,¬a,⊤} by m1(a) = m1(¬a) = 0.5 and
m2(a) = m2(⊤) = 0.5 .
It is deduced Bel1(a) = Bel1(¬a) = 0.5 , Bel2(a) = 0.5 and Bel2(¬a) = 0 .
The choice of m1 and m2 is thus compatible with the bound hypothesis (12), and
it follows p(a) = p(¬a) = 0.5 .
Now, Dempster-Shafer rule implies m1 ⊕m2(a) = 2/3 and m1 ⊕m2(¬a) = 1/3 .
Confronting m1 ⊕m2 to (12), it comes p(a) ≥ 2/3 .
This is contradictory with the previously obtained relation p(¬a) = 0.5 .

This difficulty is avoided by some theorists by saying that the notion of probability is depen-
dent of the considered sensor, or that belief and probability are two separated notions.

In our opinion, probability should be considered as an absolute notion. We will see in sec-
tion 5, that the belief could be considered as a probabilistic modal proposition. Then there
are two cases:

• If the modal propositions are not comparable to the propositions without modality, then
there is no obvious relation between the belief and the probability. This is particularly
the case of the TBM paradigm.

• If the modal propositions are comparable to the propositions without modality (axiom
m.iii of section 5), then the bound hypothesis (12) is recovered. Moreover, the fusion
rule EMR is then logically derived.

This anticipatory logical result has the following implication:

The rule EMR is compatible with the bound hypothesis (12).

But this result is already foreseeable from the property (11). Indeed, property (11) makes
impossible the construction of a counter-example like the previous one of this paragraph.

Idempotence. The rule is not idempotent, since it allways increases the precision of a
bba. However it will be idempotent, when the bba does not contain any imprecision (e.g. a
probability).

This obvious property is just illustrated on examples subsequently.
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4.2 Algorithm

The optimization (7) is convex and is not difficult. The implemented algorithm is based on
Rosen’s gradient projection method. Now, the gradient of H(f) =

∑
ψ,η −f(ψ, η) ln f(ψ, η)

is characterized by:

DfH(f) =
∑

ψ,η

−(1 + ln f(ψ, η)) df(ψ, η) .

Then, the algorithm follows the synopsis:

1. Find a feasible solution f0 to the simplex:

f0 ≥ 0 ,
∑

ψ

f0(ψ, η) = m2(η) ,
∑

η

f0(ψ, η) = m1(ψ) ,

and ∀ψ, η ∈< Θ >Γ , ψ ∧ η = ⊥ =⇒ f0(ψ, η) = 0 .

If such a solution does not exist, then stop: the fusion is not possible.

Otherwise, set t = 0 and continue on next step.

2. Build ∆ft by solving the linear program:

max
∆ft

∑

ψ,η

−(1 + ln ft(ψ, η))∆ft(ψ, η) ,

under constraints:

ft + ∆ft ≥ 0 ,
∑

ψ

∆ft(ψ, η) =
∑

η

∆ft(ψ, η) = 0 ,

and ∀ψ, η ∈< Θ >Γ , ψ ∧ η = ⊥ =⇒ ∆ft(ψ, η) = 0 .

3. Repeat ∆ft := ∆ft/2 until H(ft + ∆ft) > H(ft) .

4. Set ft+1 = ft + ∆ft. Then set t := t+ 1 .

5. Reiterate from step 2 until full convergence.

The linear programing library Coin-LP has been used in our implementation.

4.3 Example

In this section is studied the fusion of bbas mi defined over P
(
{a, b, c}

)
by:

{
m1(a) = α1 , m1(b) = 0 , m1(c) = γ1 and m1({a, b, c}) = 1 − α1 − γ1 ,

m2(a) = 0 , m2(b) = β2 , m2(c) = γ2 and m2({a, b, c}) = 1 − β2 − γ2 .

This is a slight generalization of Zadeh’s example. The fusion m1 ⊕ m2 is solved by the
algorithm, but also mathematically. The solutions were identical by the both methods. The
results of fusion are presented for particular choices of the parameters α, β, γ.
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Mathematical solution. Assume that f is is a function over P
(
{a, b, c}

)2

verifying the

conditions (8) of the rule. The marginal constraints say:





∑

B⊂{a,b,c}

f(a,B) = α1 ,
∑

B⊂{a,b,c}

f(c, B) = γ1 ,
∑

B⊂{a,b,c}

f({a, b, c}, B) = 1 − α1 − γ1 ,

∑

A⊂{a,b,c}

f(A, b) = β2 ,
∑

A⊂{a,b,c}

f(A, c) = γ2 ,
∑

A⊂{a,b,c}

f(A, {a, b, c}) = 1 − β2 − γ2 ,

∑

B⊂{a,b,c}

f(A,B) = 0 and
∑

A⊂{a,b,c}

f(A,B) = 0 in any other cases.

(13)
Since f(A,B) = 0 for any (A,B) such that A ∩B = ∅ and f ≥ 0, it is deduced that :

f

(
a, {a, b, c}

)
, f

(
{a, b, c}, b

)
, f(c, c) , f

(
c, {a, b, c}

)
, f

(
{a, b, c}, c

)
and f

(
{a, b, c}, {a, b, c}

)

are the only values of f , which are possibly non zero. Then the system (13) reduces to the
linear solution:





f
(
a, {a, b, c}

)
= α1 , f

(
{a, b, c}, b

)
= β2 , f(c, c) = θ , f

(
c, {a, b, c}

)
= γ1 − θ ,

f
(
{a, b, c}, c

)
= γ2 − θ , f

(
{a, b, c}, {a, b, c}

)
= 1 − α1 − β2 − γ1 − γ2 + θ ,

f(A,B) = 0 for any other case.

(14)

This solution depends on the only unknow parameter θ. The optimal parameter θo is obtained
by solving:

max
θ

(h(θ) + h(γ1 − θ) + h(γ2 − θ) + h(1 − α1 − β2 − γ1 − γ2 + θ)) where h(τ) = −τ ln τ .

The function fo is then computed by using θo in (14). And m1 ⊕m2 is of course obtained
by m1 ⊕m2(φ) =

∑
ψ∧η=φ fo(ψ, η) .

It is sometimes impossible to find a valid parameter θ. The condition of existence is easily
derived:

θ exists if and only if max{0, α1 + β2 + γ1 + γ2 − 1} ≤ min{γ1, γ2} . (15)

When this condition is fulfilled, the optimal parameter is given by2:

θo =
γ1γ2

1 − α1 − β2
when α1 + β2 < 1 , θo = 0 when α1 + β2 = 1 . (16)

Then, it is not difficult to check that θo is bounded accordingly to the existence condition:

max{0, α1 + β2 + γ1 + γ2 − 1} ≤ θo ≤ min{γ1, γ2} .

Experimentation.

Zadeh’s example.
Zadeh’s example is defined by α1 = β2 = 0, 99 and γ1 = γ2 = 0.01 . This fusion is rejected by
EMR.

More generally, assume γ1 = 1 − α1 and γ2 = 1 − α2 . Then the condition:

max{0, α1 + β2 + γ1 + γ2 − 1} ≤ min{γ1, γ2}

2Other cases are not compliant with the existence condition (15).
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fails unless when γ1 = γ2 = 1 . The case γ1 = γ2 = 1 is trivial, since it means a perfect
agreement between the two sources. Thus, Zadeh’s example is rejected by EMR, even if there
is a negligible conflict between the two sources.

By the way, this is not surprising. In Zadeh’s example, the bbas are put on the singletons
only. Then, the bbas work like probabilities, thus defining an uncertainty but without any
imprecision. Since the information provided by the sources are free from any imprecision,
there are only two possible cases: either the information are the same, either some information
are false.

Now, imagine again that our information come with a negligible conflict:

m1(a) = m2(b) = ǫ and m1(c) = m2(c) = 1 − ǫ .

This could indeed happen, when our information have been obtained from slightly distorted
sources. Now, it has been seen that EMR rejects this fusion. Thus, we have to be cautious
when using EMR and the following recommendation has to be considered:

If the sources of information are distorted, even slightly, these distortions have

to be encoded in the bbas by an additional imprecision.

Typically, by weakening the bbas as follows:

{
m1(a) = m2(b) = ρǫ , m1(c) = m2(c) = ρ(1 − ǫ) ,

m1

(
{a, b, c}

)
= m2

(
{a, b, c}

)
= 1 − ρ , with ρ ≤ 1

1+ǫ ,

the fusion is again possible by means of EMR.

Extended example.
The following table summarizes the fusion by EMR for various values of α, β, γ :

α1 γ1 β2 γ2 m = m1 ⊕m2

0.501 0 0.501 0 Rejection
0.499 0 0.499 0 m(a) = m(b) = 0.499 , m({a, b, c}) = 0.002
0.3 0.1 0.3 0.1 m(a) = m(b) = 0.3 , m(c) = 0.175 , m({a, b, c}) = 0.225
0.3 0.05 0.3 0.05 m(a) = m(b) = 0.3 , m(c) = 0.09375 , m({a, b, c}) = 0.30625
0.3 0.01 0.3 0.01 m(a) = m(b) = 0.3 , m(c) = 0.01975 , m({a, b, c}) = 0.38025

Comparison.
In this last example, we compare the fusion by EMR and by Dempster-Shafer of the bbas
m1 and m2 defined by:

{
m1(a) = m1({a, b}) = m1({a, c}) = m1({b, c}) = m1({a, b, c}) = 0.2 ,

m2(a) = m2({a, b}) = m2({a, c}) = m2({b, c}) = m2({a, b, c}) = 0.2 .

The following table presents the fusion results for Dempster-Shafer (DST) and for EMR:

A a b c {a, b} {a, c} {b, c} {a, b, c}

m1 ⊕m2(A) / DST 0.390 0.087 0.087 0.131 0.131 0.131 0.043
m1 ⊕m2(A) / EMR 0.411 0.093 0.093 0.107 0.107 0.153 0.036

We will not argue about the advantage of EMR compared to DST on such simple example.
The important point is to notice how the bba concentration subtly changes from DST to
EMR. In general, the belief enforcement of the small propositions is stronger in EMR. But
the case of proposition {b, c} is different, since it is made weaker by DST than by EMR. This
is perhaps a consequence of a greater belief attraction of proposition a compared to b and c,
during the fusion process.
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5 Logical ground of the rule

This section justifies logically the definition (7) of EMR. This logical development, based
on modal logics, is quite similar to what have been previously done in the DSmT book 1,
chapter 8 [3]. Actually, the modal operators will be applied to non modal proposition only
for the simplicity of the exposition (the definitions of [3] were more general), but there is no
significant change in the logic. Now, the reader could also refer to [3] since it introduces the
logic on examples. Subsequently, the logic behind EMR will be exposed directly.

In [3] the definition of the logic was axiomatic. Since logic is not usual for many readers, such
axiomatic definition is avoided in this presentation. A model viewpoint is considered now.
More precisely, the description of our modal logic is made in the framework of a Boolean
algebra. Typically, a logical relation ⊢ φ, i.e. φ is proved, is replaced by φ = ⊤ in the
Boolean algebra. In the same way, a relation ⊢ φ → ψ is replaced by φ ⊂ ψ. Moreover, the
modal relations are directly used within the Boolean algebra, i.e. 2φ ⊂ φ is the Boolean
counterpart of the logical axiom ⊢ 2φ → φ. We will not justify here the soundness of this
Boolean framework, in regards to the modal propositions. But such framework is of course
tightly related to an implied Kripke’s model. By the way, it is also assumed that our model
is complete for the logic. But all these technical considerations should be ignored by most
readers.

Notation. Subsequently, the proposition φ \ ψ is a shortcut for φ ∧ ¬ψ . Moreover, the
notation φ ( ψ is used as a shortcut for φ ⊂ ψ and φ 6= ψ .

5.1 The belief as a probability of a modal proposition

Many evidence theorists are particularly cautious, when comparing belief and probabilities.
On the first hand, there is a historical reason. As new theories of uncertainty, the evidence
theories had to confront the already existing theory of probability. On the second hand,
the sub-additivity property of the belief is often proposed as a counter-argument against the
probabilistic hypothesis. In this introductory subsection, it is seen that this property is easily
fulfilled by means of modal propositions.

Sub-additivity, modality and probability. Subsequently, the belief Beli(φ) of a proposi-
tion φ according to a sensor i is interpreted as the probability p(2iφ) of the modal proposition
2iφ . It is not the purpose of this paragraph to make a full justification of this interpretation,
but rather to explain how the modal interpretation is able to overcome the sub-additivity
property.

First at all, it is important to understand the meaning of the modal operator 2i . The modal
proposition 2iφ characterizes all the information, which sensor i can associate for sure to the
proposition φ.

For example, the equation 2iφ = ⊤ means: sensor i considers φ as true in any
configuration of the system.

Then, it is noticed that the modal propositions fulfill a logical sub-additivity property:

(2iφ ∨ 2iψ) ⊂ 2i(φ ∨ ψ) . (17)

The converse is false in general. This well-known property will be proved in the subsequent
section. It has a concrete interpretation. The proposition 2iφ describes logically the infor-
mation about φ which is granted as sure by the sensor i. But there are information which
sensor i can attribute to φ ∨ ψ for sure, but which cannot be attributed without ambiguity
to φ or to ψ alone. These ambiguous information are exactly described by the non empty
proposition 2i(φ ∨ ψ) \ (2iφ ∨ 2iψ) .
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The important point now is that the logical sub-additivity directly implies the sub-additivity
of the belief. From (17), it is derived:

p(2iφ ∨ 2iψ) ≤ p
(
2i(φ ∨ ψ)

)
.

Assume now that φ and ψ are disjoint, i.e. φ ∧ ψ = ⊥. It is also hypothesized that 2i is
coherent, which implies 2iφ ∧ 2iψ = ⊥ (coherent sensors will consider disjoint propositions
as disjoint). Then it comes:

p(2iφ) + p(2iψ) ≤ p
(
2i(φ ∨ ψ)

)
,

and it is finally deduced:
Beli(φ) + Beli(ψ) ≤ Beli(φ ∨ ψ) ,

from the modal definition of Beli . At last, we have recovered the sub-additivity of Beli from
the logical sub-additivity of the modal operator 2i .

It appears that the sub-additivity is not incompatible with a probabilistic interpretation of
the belief. The sub-additivity seems rather related to a modal nature of the belief. At the end
of this paragraph, a last word have to be said about the TBM paradigm. Beliefs as defined
in (1), that is including the mass assignment of the empty set, is not sub-additive in TBM.
Only the truncated belief BelS is sub-additive. This is a consequence of the possible non-zero
mass assignment of the empty set. By the way, there is also a modal interpretation of this
fact. It is seen subsequently that the TBM paradigm is equivalent to remove the coherence
hypothesis about the modality 2i. But the incoherence of 2i allows 2iφ ∧ 2iψ 6= ⊥ even
when φ ∧ ψ = ⊥. As a consequence, the sub-additivity cannot be recovered from the modal
hypothesis either, when considering incoherent sensors.

This introduction has revealed some similar characteristics of the belief functions and the
modal operators. The forthcoming sections establish a complete correspondence between the
evidence theories and the probabilistic modal logic.

5.2 Definition of the logic

Let Θ be a set of atomic propositions. Let Γ be a set of Boolean constraints built from Θ
and the Boolean operators. The constraints of Γ are describing the logical priors which are
known about the atomic propositions. Then, define BΓ(Θ) the Boolean algebra generated by
Θ and compliant with the constraints of Γ.3 The algebra BΓ(Θ) will describe the real world.

The real world will be observed by sensors. Let I be the set of the sensors. The sensors
of I may be combined by pairs, thus constituting composite sensors. The set of composite
sensors, denoted J , is defined recursively as follows:

I ⊂ J and (i, j) ∈ J for any i, j ∈ J .

Among the (composite) sensors of J , it will be assumed that some pairs of sensors are
mutually independent.

For i, j ∈ J , the notation i× j indicates that the sensors i and j are independent. (18)

To any sensor i ∈ J is associated a modal operators 2i (for short, the notation 2i,j will
be used instead of 2(i,j)). The modal operators 2i will describe logically the information
received and interpreted by sensor i. The modal operators will act on any proposition of
BΓ(Θ). For any φ ∈ BΓ(Θ) , the proposition 2iφ is an interpretation of the real proposition
φ by the sensor i. It is noticed that 2iφ is not necessarily a proposition of BΓ(Θ), so
that 2i should be considered as an external operator. In order to manipulate these modal
propositions, we will consider the Boolean algebra BΓ(Θ,2) generated by Θ and 2iφ where
φ ∈ BΓ(Θ) and i ∈ J . It is also assumed that the algebra BΓ(Θ,2) is compliant with the
following constraints on the modal propositions:

3BΓ(Θ) could be obtained by propagating the constraints of Γ within the free Boolean algebra B(Θ).
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m.i. 2i⊤ = ⊤ ,

m.ii. 2i(¬φ ∨ ψ) ⊂ (¬2iφ ∨ 2iψ) , for any φ, ψ ∈ BΓ(Θ) and i ∈ I ,

m.iii. (optional) 2iφ ⊂ φ , for any φ ∈ BΓ(Θ) and i ∈ I ,

m.iv. 2iφ ⊂ 2i,jφ , for any φ ∈ BΓ(Θ) and i, j ∈ I ,

m.indep. 2i,jφ ⊂ (2iφ ∨ 2jφ) , for any φ ∈ BΓ(Θ) and i, j ∈ I such that i× j .

Together with the axioms m.∗, the algebra BΓ(Θ,2) is a model characterizing our modal
logic. It is necessary to explain the signification of these axioms.

Axiom m.i explains that the sensors hold any tautology (trivially true propositions) for true.

Axiom m.ii is the model counterpart of the axiom ⊢ 2i(φ → ψ) → (2iφ → 2iψ) of modal
logic, which is a modus ponens encoded within the modality. In other word, axiom m.ii just
says that the sensors make logical deductions. Together, axioms m.i and m.ii express that
the sensors are reasoning logically.

Axiom m.iii says that the sensors always say the truth. More precisely, it says that φ is true
whenever sensor i considers φ as true. This axiom implies the coherence of the sensors. By
the way, it is probably stronger than the coherence hypothesis. Axiom m.iii is considered as
optional. It will be suppressed in the case of the TBM paradigm, but used otherwise.

Axiom m.iv says that the knowledge increases with the number of sensors used. More pre-
cisely, m.iv means that the surety of a proposition φ is greater according to i, j than according
to i only. Although this axiom seems quite natural, it is noticed that it is not necessarily
compatible with fusion rules involving a redistribution of the conflict.

Axiom m.indep expresses a logical independence of the sensors. Assuming i, j to be indepen-
dent sensors (i.e. i× j), the axiom m.indep then says that the information obtained from the
joint sensor (i, j) could be obtained separately from one of the sensors i or j. In other word,
there is no possible interaction between the sensors i and j during the observation process.

m.i, m.ii and m.iii are typically the axioms of the system T of modal logic. Before concluding
this subsection, some useful logical theorems are now derived.

5.2.1 Useful theorems

The following theorems will be deduced without the help of the optional axiom m.iii. The
axioms used for each theorem will be indicated at the end of the proof.

The modality is non decreasing. Let i ∈ J and φ, ψ ∈ BΓ(Θ) . Then:

φ ⊂ ψ implies 2iφ ⊂ 2iψ .

Proof. φ ⊂ ψ implies ¬φ ∨ ψ = ⊤ .
By applying axiom m.i, it comes 2i

(
¬φ ∨ ψ

)
= ⊤ .

Now, m.ii implies 2i

(
¬φ ∨ ψ

)
⊂ ¬2iφ ∨ 2iψ .

Consequently ¬2iφ ∨ 2iψ = ⊤ .
As a conclusion, 2iφ ⊂ 2iψ .

222

The proof requested the axioms m.i and m.ii.

Modality and conjunction. (2iφ ∧ 2iψ) = 2i(φ ∧ ψ) for any φ, ψ ∈ BΓ(Θ) and i ∈ J .

Proof.

Proof of (2iφ ∧ 2iψ) ⊂ 2i(φ ∧ ψ) .
Since ¬φ ∨ ¬ψ ∨ (φ ∧ ψ) = ⊤ , axiom m.i implies 2i

(
¬φ ∨ ¬ψ ∨ (φ ∧ ψ)

)
= ⊤ .
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Now, m.ii implies 2i

(
¬φ ∨ ¬ψ ∨ (φ ∧ ψ)

)
⊂ ¬2iφ ∨ ¬2iψ ∨ 2i(φ ∧ ψ) .

Consequently ¬2iφ ∨ ¬2iψ ∨ 2i(φ ∧ ψ) = ⊤ .
As a conclusion, (2iφ ∧ 2iψ) ⊂ 2i(φ ∧ ψ) .

Proof of (2iφ ∧ 2iψ) ⊃ 2i(φ ∧ ψ) .
Since 2i is non decreasing, it is proved 2i(φ ∧ ψ) ⊂ 2iφ and 2i(φ ∧ ψ) ⊂ 2iψ.

222

The proof requested the axioms m.i and m.ii.

Modality and disjunction. (2iφ∨2iψ) ⊂ 2i(φ∨ψ) for any φ, ψ ∈ BΓ(Θ) and i ∈ J . In
general, (2iφ ∨ 2iψ) 6= 2i(φ ∨ ψ) .

Proof.

Proof of (2iφ ∨ 2iψ) ⊂ 2i(φ ∨ ψ) .
Since 2i is non decreasing, it is proved 2iφ ⊂ 2i(φ ∨ ψ) and 2iψ ⊂ 2i(φ ∨ ψ) .
Then the result.

A counter-example for (2iφ ∨ 2iψ) = 2i(φ ∨ ψ) needs the construction of a dedicated
model of the logic. This construction is outside the scope of the chapter. Readers
interested in models constructions for modal logics could refer to [2].

222

The proof requested the axioms m.i and m.ii.

Conjunction of heterogeneous modalities. (2iφ∧2jψ) ⊂ 2i,j(φ∧ψ) for any φ, ψ ∈ BΓ(Θ)
and i, j ∈ J . In other words, if sensor i asserts φ and sensor j asserts ψ, then the fused
sensor asserts φ ∧ ψ .

Proof. Axioms m.iv says 2iφ ⊂ 2i,jφ and 2jψ ⊂ 2i,jψ .
Since (2i,jφ ∧ 2i,jψ) = 2i,j(φ ∧ ψ) , it is deduced (2iφ ∧ 2jψ) ⊂ 2i,j(φ ∧ ψ) .
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The proof requested the axioms m.i, m.ii and m.iv.

Disjunction of heterogeneous modalities. (2iφ∨2jφ) ⊂ 2i,jφ for any φ ∈ BΓ(Θ) and
i, j ∈ J . In other words, if sensor i or sensor j assert φ, then the fused sensor asserts φ .

Proof. Axioms m.iv says 2iφ ⊂ 2i,jφ and 2jφ ⊂ 2i,jφ .
Then, the result is immediate.

222

The proof requested the axiom m.iv.

The converse of this property is obtained by means of axiom m.indep, when the sensors i, j
are independent.

5.3 Fusion rule

The purpose of this subsection is to derive logically the fusion rule on < Θ >Γ, the pre-
Boolean algebra generated by Θ within the Boolean algebra BΓ(Θ).4 In a first step, the fusion
will be derived in a strict logical acceptation, by means of the modal operators. In a second
step, the notion of belief is also introduced by means of probabilistic modal propositions.
But as a preliminary, we are beginning by introducing the notion of partitions.

4In this case Γ may contain constraints outside < Θ >. But this is the same notion of pre-Boolean algebra
discussed earlier.

19



5.3.1 Preliminary definitions.

Partition. Let Π ⊂ B(Θ) be a set of propositions. The set Π is a partition of ⊤ if it
satisfies the following properties:

• The propositions of Π are exclusive (i.e. disjoint): φ ∧ ψ = ⊥ for any φ, ψ ∈ Π such
that φ 6= ψ ,

• The propositions of Π are exhaustive:
∨
φ∈Π φ = ⊤ .

Notice that Π may contain ⊥, in this definition.

Partition and complement. Let Π be a partition and let A ⊂ Π and B ⊂ Π. Then:



∨

φ∈A

φ


 \




∨

φ∈B

φ


 =




∨

φ∈A\B

φ


 .

This property just tells that the Boolean algebra generated by Π is isomorph to the Boolean
structure implied by the set Π. The proof of this result is obvious from the definition.

Partitions and probabilities. Partitions are useful since they make possible the definition
of a probability by means of elementary density. More precisely, for any partition Π and any
subset A ⊂ Π, the probability of the proposition

∨
φ∈A φ is given by:

p




∨

φ∈A

φ


 =

∑

φ∈A

p(φ) .

This property will be particularly useful subsequently for linking the logical fusion to the
belief fusion.

Joint partitions. Let Π and Λ be two partitions of ⊤. Let Γ = {φ∧ψ/φ ∈ Π and ψ ∈ Λ}
be the set of joint propositions obtained from Π and Λ. Then Γ is a partition.

Proof. Let φ, φ′ ∈ Π and ψ, ψ′ ∈ Λ , such that (φ, ψ) 6= (φ′, ψ′).
The exclusivity of (φ ∧ ψ) and (φ′ ∧ ψ′) is a direct consequence of:

(φ ∧ ψ) ∧ (φ′ ∧ ψ′) = (φ ∧ φ′) ∧ (ψ ∧ ψ′) = ⊥ .

The exhaustivity is derived from:

∨

φ∈Π

∨

ψ∈Λ

(φ ∧ ψ) =




∨

φ∈Π

φ


 ∧




∨

ψ∈Λ

ψ


 = ⊤ ∧⊤ = ⊤ .
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Corollary of the proof. (φ∧ψ) = (φ′∧ψ′) and (φ, ψ) 6= (φ′, ψ′) imply (φ∧ψ) = (φ′∧ψ′) = ⊥ .

This corollary will be useful for the computation of φ(i,j) , subsequently.

5.3.2 Logical fusion

Definition of the logical fusion. Logically, the information provided by the sensor i ∈ J
is described by the modal propositions 2iφ, where φ ∈< Θ >Γ. The propositions of
BΓ(Θ)\ < Θ >Γ are not considered explicitly, since our discernment is restricted to < Θ >Γ.

Let i, j ∈ J be two sensors which are independent, i.e. such that i× j. The fusion of i and
j is simply defined as the composite sensor (i, j). Now arises the following issue: How to
characterize the fused information 2i,jφ from the primary information 2iφ and 2jφ ? In
order to solve this question, we introduce first the notion of basic propositional assignments
which constitute the elementary logical components of the information.
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Definition of the basic propositional assignments. Let i ∈ J be a sensor. The basic
propositional assignments (bpa) related to sensor i are the modal propositions φ(i) defined
for any φ ∈< Θ >Γ by:

φ(i) = 2iφ \




∨

ψ∈<Θ>Γ:ψ(φ

2iψ


 . (19)

The bpa φ(i) is the logical information, which sensor i attributes to proposition φ intrinsically.
The information of φ(i) cannot be attributed to smaller propositions than φ.

Subsequently, the bpas appear as essential tools for characterizing the fusion rule.

Logical properties of the bpa.

Exclusivity. The bpas φ(i), where φ ∈< Θ >Γ, are exclusive for any given sensor i ∈ J :

∀φ, ψ ∈< Θ >Γ , φ 6= ψ ⇒ φ(i) ∧ ψ(i) = ⊥ . (20)

Proof. From the definition, it is deduced:

φ(i) ∧ ψ(i) = 2i(φ ∧ ψ) ∧




∧

η∈<Θ>Γ:η(φ

¬2iη



 ∧




∧

η∈<Θ>Γ:η(ψ

¬2iη



 .

Since φ ∧ ψ ( φ or φ ∧ ψ ( ψ when φ 6= ψ, it comes φ(i) ∧ ψ(i) = ⊥ .
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Exhaustivity. The bpas φ(i), where φ ∈< Θ >Γ, are exhaustive for any given sensor i ∈ J :

∨

ψ∈<Θ>Γ:ψ⊂φ

ψ(i) = 2iφ , and in particular:
∨

ψ∈<Θ>Γ

ψ(i) = ⊤ . (21)

Proof. The proof is recursive.
It is first noticed that 2i⊥ = ⊥(i) .

Now, let φ ∈< Θ >Γ and assume
∨
η⊂ψ η

(i) = 2iψ for any ψ ( φ .
Then:

∨

ψ⊂φ

ψ(i) = φ(i) ∨




∨

ψ(φ

∨

η⊂ψ

η(i)


 = φ(i) ∨




∨

ψ(φ

2iψ


 .

It follows
∨
ψ⊂φ ψ

(i) =
(
2iφ \

(∨
ψ(φ 2iψ

))
∨

(∨
ψ(φ 2iψ

)
= 2iφ ∨

(∨
ψ(φ 2iψ

)
.

Since 2i is non decreasing, it is deduced
∨
ψ⊂φ ψ

(i) = 2iφ .
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Partition. Being both disjoint and exhaustive, the bpas φ(i), where φ ∈< Θ >Γ, constitute a
partition of ⊤ .

Joint partition. Let i, j ∈ I. The propositions φ(i) ∧ ψ(j), where φ, ψ ∈< Θ >Γ, constitute a
partition of ⊤ .

Computing the fusion. Let i, j ∈ J be such that i × j . Then, the following property
holds for any φ ∈< Θ >Γ :

φ(i,j) =
∨

ψ,η∈<Θ>Γ:ψ∧η=φ

(
ψ(i) ∧ η(j)

)
. (22)
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Proof.

Lemma.
2i,jφ =

∨

ψ∧η⊂φ

(2iψ ∧ 2jη) =
∨

ψ∧η⊂φ

(
ψ(i) ∧ η(j)

)
.

Proof of lemma. From the property 2iψ∧2jη ⊂ 2i,j(ψ∧η) of section 5.2.1 and the
non decreasing property of 2i,j , it is deduced:

∨

ψ∧η⊂φ

(2iψ ∧ 2jη) ⊂ 2i,jφ .

Now, the axiom m.indep implies 2i,jφ ⊂ (2iφ ∨ 2jφ) and then:

2i,jφ ⊂
(
(2iφ ∧ 2j⊤) ∨ ((2i⊤ ∧ 2jφ)

)
.

As a consequence,
∨
ψ∧η⊂φ(2iψ ∧ 2jη) = 2i,jφ .

Now, since 2iψ =
∨
ξ⊂ψ ξ

(i) and 2jη =
∨
ζ⊂η ζ

(j) (refer to the exhaustivity prop-
erty), it comes also:

2i,jφ =
∨

ψ∧η⊂φ

∨

ξ⊂ψ

∨

ζ⊂η

(
ξ(i) ∧ ζ(j)

)
=

∨

ξ∧ζ⊂φ

(
ξ(i) ∧ ζ(j)

)
.
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From the definition of the bpa, it is deduced:

φ(i,j) = 2i,jφ \




∨

ψ(φ

2i,jψ


 =

∨

η∧ξ⊂φ

(
η(i) ∧ ξ(j)

)
\




∨

η∧ξ(φ

(
η(i) ∧ ξ(j)

)

 .

Now, since the propositions η(i) ∧ ξ(j) constitute a partition (and taking into account
the corollary of the proof in section 5.3.1), it comes:

φ(i,j) =
∨

η∧ξ=φ

(
η(i) ∧ ξ(j)

)
.

222

Conclusion. The sensors i, j ∈ J being independent, the fused sensor (i, j) is computed
from i and j accordingly to the following process:

• Build φ(i) = 2iφ \
(∨

ψ∈<Θ>Γ:ψ(φ 2iψ
)

= 2iφ \
(∨

ψ∈<Θ>Γ:ψ(φ ψ
(i)

)
and

φ(j) = 2jφ \
(∨

ψ∈<Θ>Γ:ψ(φ 2jψ
)

= 2jφ \
(∨

ψ∈<Θ>Γ:ψ(φ ψ
(j)

)
for any φ ∈< Θ >Γ ,

• Compute φ(i,j) =
∨
η,ξ∈<Θ>Γ:η∧ξ=φ

(
η(i) ∧ ξ(j)

)
for any φ ∈< Θ >Γ ,

• Derive 2i,jφ =
∨
ψ∈<Θ>Γ:ψ⊂φ ψ

(i,j) for any φ ∈< Θ >Γ .

Obviously, this process is almost identical to the computation of the fused belief Beli⊕Belj in
free DSmT or in the TBM paradigm (while including the empty proposition in the definition
of the belief function):

• Set mi(φ) = Beli(φ) −
∑
ψ(φmi(ψ) and mj(φ) = Belj(φ) −

∑
ψ(φmj(ψ) ,

• Compute mi ⊕mj(φ) =
∑
η∧ξ=φmi(η)mj(ξ) ,

• Get back Beli,j(φ) =
∑
ψ⊂φmi ⊕mj(ψ) .
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It is yet foreseeable that the mi ⊕ mj(φ) could be interpreted as p(2i,jφ) owing to some
additional hypotheses about the probabilistic independence of the proposition. This idea will
be combined with the entropic maximization method described in section 3, resulting in a
logically interpreted fusion rule for the evidence theories.

For now, we are discussing about the signification of optional axiom m.iii which has not been
used until now.

The consequence of axiom m.iii. Axiom m.iii says 2iφ ⊂ φ and in particular implies
2i⊥ ⊂ ⊥ and then 2i⊥ = ⊥ . Thus, there are two important properties related to m.iii:

• It establishes a comparison of the propositions φ and their interpretation 2iφ by means
of 2iφ ⊂ φ ,

• It makes the sensors i coherent by implying 2i⊥ = ⊥ .

By removing m.iii, the incoherence 2i⊥ 6= ⊥ is made possible, and this has a fundamental
interpretation in term of evidence theories.

• Allowing the incoherence 2i⊥ 6= ⊥ is a logical counterpart of the TBM paradigm,

• Hypothesizing the coherence 2i⊥ = ⊥ is a logical counterpart of the DSmT or DST
paradigm.

Next section establishes the connection between the logical fusion and the belief fusion.

5.3.3 From logical to belief fusion

Subsequently, we are assuming that a probability p is defined over the Boolean algebra
BΓ(Θ,2). This probability is known partially by means of the sensors. For any i ∈ J and
any φ ∈< Θ >Γ are then defined:

• The belief Beli(φ) = p(2iφ) ,

• The basic belief assignment mi(φ) = p
(
φ(i)

)
.

For any i, j ∈ J such that i× j (independent sensors), the fused bba and belief are defined
by:

mi ⊕mj = mi,j and Beli ⊕ Belj = Beli,j . (23)

The propositions φ(i) constituting a partition of ⊤, the logical property

φ(i) = 2iφ \




∨

ψ∈<Θ>Γ:ψ(φ

ψ(i)


 (24)

implies:

mi(φ) = Beli(φ) −
∑

ψ(φ

mi(ψ) .

From the exhaustivity property, i.e. 2iφ =
∨
ψ⊂φ ψ

(i), is derived:

Beli(φ) =
∑

ψ⊂φ

mi(ψ) .

By the way, two fundamental properties of evidence theories have been recovered from our
logical approach. Now, the remaining question is about the fusion rule.
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From the definition and the computation of φ(i,j), it is deduced:

mi ⊕mj(φ) = p
(
φ(i,j)

)
= p




∨

η∧ξ=φ

(
η(i) ∧ ξ(j)

)

 .

Since the propositions η(i) ∧ ξ(j) are constituting a partition (and owing to the corollary of
the proof in section 5.3.1), it is obtained:

mi ⊕mj(φ) =
∑

η∧ξ=φ

p
(
η(i) ∧ ξ(j)

)
. (25)

It is not possible to reduce (25) anymore, without an additional hypothesis. In order to
compute p

(
η(i) ∧ ξ(j)

)
, the independence of sensors i and j will be again instrumental. But

this time, the independence is considered from an entropic viewpoint, and the probabilities
p

(
η(i) ∧ ξ(j)

)
are computed by maximizing the entropy of p over the propositions η(i) ∧

ξ(j). Denoting P(Θ) = P
(
BΓ(Θ)

)
the set of all probabilities over BΓ(Θ), the probabilities

p
(
η(i) ∧ ξ(j)

)
are obtained by means of the program:

p ∈ max
q∈P(Θ)

∑

η,ξ∈<Θ>Γ

−q
(
η(i) ∧ ξ(j)

)
ln q

(
η(i) ∧ ξ(j)

)
,

under constraints: q
(
φ(i)

)
= mi(φ) and q

(
φ(j)

)
= mj(φ) for any φ ∈< Θ >Γ .

(26)
Combining (25) and (26), it becomes possible to derive mi ⊕mj from mi and mj . Three
different cases arise.

• Axiom m.iii is removed. Then, the fusion rule (4) of TBM is recovered,

• Axiom m.iii is used, but < Θ >Γ verifies the insulation property (2). Then, the fusion
rule (3) of free DSmT is recovered,

• Axiom m.iii is used in the general case. Then, the definition (7) of EMR is recovered.
Moreover, 2i(φ) ⊂ φ implies Beli(φ) ≤ p(φ), which is exactly the bound hypothe-
sis (12).

The logical justification of rule EMR is now completed.

6 Conclusion

In this chapter, a new fusion rule have been defined for evidence theories. This rule is
computed in order to maximize the entropy of the joint information. This method provides
an adaptive implementation of the independence hypothesis of the sensors. The rule has
been tested on typical examples by means of an algorithmic optimization and by means of a
direct computation. It has been shown that it does not generate conflicts and is compatible
with a probabilistic bound interpretation of the belief function. It is still able to detect truly
conflicting sources however, since the optimization may be unfeasible on these cases. At last,
a main contribution of this rule is also that it is derived from an interpretation of evidence
theories by means of modal logics.
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