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Introduction

In recent years several authors have tried to answer to this simple question: if a structure is cracked,
can this be observed from qualitative modifications in the dynamics, and in particular from
modifications in the frequency of the periodic vibrations of the system (see the theoretical works of
Conley and Zehnder, (1984), Ekeland and Hofer, (1987), Dell Antonio et al., (1995), Kunze,
(2000), and the more practical work of Lan Zuo, (1992)). From an experimental point of view, it
seems clear that a modification appears in the spectrum of a cracked beam (see Ovigne et al. (2001),
(2003a), (2003b), (2003c)). In particular, one can observe an asymmetry and a large decay of the
spectrum.

The aim of this paper is to try to modelize numerically the spectrum of a cracked beam. In the first
part of the paper general mathematical results due to M. Schatzman are presented. In the second
part of the paper, the mechanical problem is presented. In the third part an original finite element is
proposed in order to take into account a crack in the beam. The fourth part is devoted to numerical
results. Conclusion are given at the end of the paper.

The mathematical results due to M. Schatzman
We consider the following perturbed problem in finite dimension:

Mu+Ku-+&f(u)=0 (1)
in the neighborhood of harmonic vibrations. We denote respectively by M and K the mass and

stiffness matrices; they are symmetric positive definite. Let w; be the square roots of the eigenvalues
of MK, with

O0<m<..< g (2
with corresponding M-orthonormal eigenvectors v;:
Kv;= a)% M v, 3)

We assume that f is a Lipschitz continuous function from R¢ to itself, which is positively
homogeneous of degree 1. The dynamical system can be written:

Mu€ +Ku€ +¢f(u€)=0. (4)
The only periodic solutions of (4) for € = 0 are given by:
Acos(wj t + ¢))v;. (5)

We seek periodic solutions which are close to the ones defined by (5). We suppose that our
solutions are of the form:
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(M) u) =w(pt), (Ifw=wo+ews + ..., (ili)p=1+egp1 + ... (6)
We substitute (6ii) in (4) and we perform the change of variable pt =s. Equation (4) becomes:

P> Mw € +Kw € +ef(W€)=0. (7
We substitute (6ii) and (6iii) in (7) and we equate the terms of equal degree in €. We find at order 0:

Mw , +Kw, =0, (8)
and at order 1:

2p1 MWy +Mw, + Kw; +f(w,)=0. 9)
We observe that:

Wo(t) = Acos(wj t + d;)V;. (10)

Equation (9) can have a periodic solution if and only if 2p; Mw , +f(w,) is orthogonal to cos(w; t)v;
and to sin(w; t)v;. p1is determined by the following relation:

27l wj 27l wj
20102 j cos(oft) v Mwo dt = j cos(aft) v! f(wo)dt (11)
0 0
712 wj 27l wj
-1 2(nt) T fvdt - 2(t) T (v
or p1= [ coset) v] fvydt- [ cos(of) V] f-wdt) 12)
7 0 0

Equation (12) gives the perturbation of the eigenfrequency w; due to the perturbation &f. This result
can be proved rigorously using a bifurcation analysis.

Statement of the mechanical problem

Figure 1: an example of cracked beam

We consider a cracked beam with only one crack (figure 1). In the numerical applications, the
length of the beam is 77 cm, the dimension of its section are 4 cm and 8.5 cm, the beam is supposed
to beam embedded on its left part and loaded on its right part during a short time, the density is
equal to 2400 N/ms™ and the Young modulus is equal to 30 GPa (concrete). The crack is supposed
to be close to the middle of the beam. The real position of the crack and the value of the loading
will be précised in the following. The problem is to analyze the spectrum of this beam and to
compare it to the spectrum of a safe beam.

Numerical method

In order to eliminate instabilities and percussions effects, we have developed an original finite
element which takes into account the crack in the element. Classically, the finite element
approximation uses cubic Hermite elements. We have developed a piecewise quadratic Hermite
element (see the two first Hermite functions on figure 2). This element takes into account the
discontinuity of the rotation at a given point. The safe part of the structure is meshed by classical
elements, the cracked part by the new element. In order to model the opening and the closing of the
crack, we have proceeded in two steps. If the crack is open, we suppose that the stiffness of the
element is small (10 or 100 times lower than the stiffness of the safe beam). If the crack is closed,
we consider that the stiffness is equal to the safe one. This process can be performed implicitly or



explicitly by a test on the curvature or on the gap of rotation. Note that integration is done by an
implicit second order Euler schema. The algorithm is given in table 1.
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Figure 2: The two first piecewise quadratic Hermite functions (compared to the classical
ones)

Begin
Step 0 Initialization
u(0) and v’(0) given
Fixed matrix computation
Non-fixed matrix computation (safe case)
Resolution (one step of Euler schema)
Step 1 to k Normal step
Test on the crack status (opening or closing)
If (crack closed) then
Non-fixed matrix computation (safe case)
Else (crack open)
Non-fixed matrix computation (unsafe case)
End if
Resolution (one step of Euler schema)
If (k < Kmax) then k = k + 1 goto Step k
End

Table 1: Algorithm (explicit version)

Numerical Examples

In this section, we present only a small part of our numerical results. We present on figure 3 the
beam with an “equivalent” stiffness of the crack equal to 3 GPa. In the first computation (figure 3a)
we have supposed that the crack is placed to a distance of 37.5 cm of the left of the beam. In the
second computation, we have changed this distance (37.5 cm, 38.5 cm, 39.5 cm). We observe a
dissymmetry in the amplitude of the displacement and the importance of the position of the crack.
The differences between the safe and the unsafe beams are magnified observing the Fourier
transform (figure 4).

Conclusions

In this paper, we have developed a numerical procedure to study the modifications of the spectrum
of a cracked beam. Our numerical results show in particular, that the response is less smooth and
the value of the Fourier transform is not equal to zero in zero.
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Figure 3: modification of the displacement response a) comparison safe/unsafe b) three
positions of the crack
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Figure 4: modification of the spectrum (comparison safe/unsafe)
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