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Introduction

The sound radiated into a cavity by the surrounding walls depends on several factors. The signal type, wall con struction, cavity geometry and damping are of the most important. In this paper results that illustrate many of the basic features of vibro-acoustic coupling in the tran sient regime aJ•e presented. One shows that the efficiency by which the plate radiates sound into the room can in general qualitatively be explained by the speed of the Fomier frequency components of the impulse type sig nal. Subsonic phase velocities generate a near acoustic field, and only transfer acoustic energy to the room from the region close to the plate boundaries. For supersonic bending wave speeds energy is transferred to the room all along the trajectory. plate is damped by a proportional damping given by T/p = 1 ms-1. The geometry of the cavity is given by the side lengths L x and Lz = 0.8m. The plate is excited by a point-mechanical Ricker wavelet f (x, t) of unit maxi mum amplitude. This signal is of finite duration between 0 and Te = 2/ J o and of finite spectrum between 0 and 3f 0 . u(x, t), the normal displacement of the plate, is the solution of the usual Kirchhoff plate equation. In the cavity, the acoustic pressure p(x, z, t) is governed by the d'Alembert equation.

Statement of the problem

Modal expansion and time domain solution

In the harmonic regime, using Green's representation of the pressure, U(x,w) is the solution of the following in tegrodifferential equation D6. .2U(x,w) -pphw2 (u (x, w ) +i �U (x,w) (1) -e1 fo L .,U(x',w)G(x, O,x',O,w)dx') = F(x,w)

where Ev = T/'P'/ pph and f. f = p f / pph are smal I parameters for a slightly damped plate in air. The Green's function of the rigid cavity is given by the usual modal ex.pan-.

G( The intermodal impedance f3w(Up, UJ*) f0 L "' f0 L "' Ut°(x 1 )UJ(x')G(x, 0, x', O,w)dx'dx descr ibe the energy exchanged with the :fluid. One shows that the solution reads

U(

)

_ � 1 /( Pv h) (F , Ut)U1(x,w) (2) 
x,w -� wp2-iepw-w2(1 +Etf3w(Ut°,Ut°*))'

where (U1, un is the usual inner product. The response of the plate and its pressure radiated into the cavity is computed using inverse time Fourier transform. Using residu integration theorem, one can shows that the re sponse of the system involves resonance mode series ex pansion u(x, t)

p(x, z, t) = 2 oo -iw 1 t - � ••+ A + e -} � �(f, u l ) U l (x) A+ A-) ( 3 ) P p i l=l W1 -wl {L,. d 2u(x' t) PJ J o d t 2 ' *9 (x,z,x',O,t)dx',( 4 
)
where * stands for the usual time convolution product.

The resonance modes U1(x) = Ui(x,w() and resonance pulsations wt are the free oscillation of the system [l]. wf are the zeros of w? 2 -iEpw -w2(1 + EJ/3w(Up, Ut°*))

and have negative imaginary part. Ca. re must be taken when applying the residue integration arnund the first resonance frequency of the cavity which is zern for a rigid cavity. For an excitation without continuous component the solution exist and is unique.

Finite difference solution

Finite difference expressions of second order accuracy were used to replace the diff erential operators in the dif femetial equations. 6.x, 6.z and 6.t are the spatial and 1

CF AIDA GA '04, Strasbourg, 22-2510312004 time discretization distances. For the finite difference grid, the appropriate equations were written in a finite difference form for each node, thereby obtaining a system of simultaneous algebraic equations in the unknowns u a.n.d p . Outside points are generated when the equations are written for points lying on the domain boundaries.

These are however eliminated when combining the sys tem equations with the boundary conditions. Recall that in the frequency domain, tbe bending wave phase velocity on an unda.mped beam is wriitten as cb = ./WijD/(pph).

In the time domain, care must therefore be taken to en sure that the wavelengths of the high frequency compo nents of the pulse are meshed with enough nodes.

For a finite grid, too long time steps with respect to space steps will introduce instabilities in the system. It has been suggested by Crandall [START_REF] Crandall | Engineeri ng Analysis, a Sur vey of Numerical Procedures[END_REF], that the second order accuracy finite difference explicit version of a 4th order equation of the type

(5)

where J, x, and t are non dimensional parameters, will be stable for 6t/(6x) 2 � 0.5. For the present system, regarding a fixed frequency, this stability criterium for bending wave propagation on the beam is given by Cb6t 6x

--< -- 6x -41TAb' (6) 
where cb and Ab, designates the phase velocity and wave length of the propagating wave at the frequency in ques tion. When exciting the beam for the time domain calcu lations, one must therefore make certain that the higher Fourier components of the signal obeys the above cri terium. Tn addition, the criterium c i,� t ::; Ji for a 2 dimensional, equal spacing (6x = 6z) acoustic system must be observed.

Results and discussion

For the finite difference investigation it was first of in terest to study the behavior of bending waves travelling on infinite beams in vacuum. This to ensure that stable 

  In the rest of this paper, small case letters correspond to time functions while capital letters denote time har monic functions with time dependence exp(-iwt). Let us consider a rectaJ1gular cavity, filled by air, defined in cartesian co-ordinate (O,x, z) by x E IO,Lx] x z E IO,Lz]• A thin one dimensional steel plate of length Lx = lm, thickness h = 5mm, with critical frequency 25 1 7 Hz, and simply supported at its boundary occupies the up per wall. The other walls a1'e considered as rigid. The

1 1 )

 11 __0__ '\' oo >li,,.,.(x,z)lli,,..,( x ',z') s1on X, z, X , Z , W = L L • L.., m n=O w2-wo2 • w�n is the mn-th eigenp�l;a. tion ' and ilimn(x,;)" is the mn-th eigenmode of the rigid cavity. The pressure inside the cavity is given by the integral equation P(x,z,w) = w2pt J 0 L " U(x1,w)G(x,z,x1,0,w)dx 1 • Tt is easy to see that, because G(x,z,x',z',w) depends on the frequency, both the eigenmodes and the eigenpulsations are fre quency dependent. As E p and e f aJ•e small parame ters, to compute these eigenmodes and eigenpulsations one can use pertubation expansions [2]. The fluid loaded eigenmodes are given by U1 (x,w) = up(x) + 0 2 f.J L:1 s J. t w" :: !__ wo2f3w(Ut°, U2*)U2(x), and w1(w) = 'T .-t I wf(l -i� + ¥f3w(Ut°, UP*)), where u p(x) and wp are the usual 1-th eigenmode and eigenpulsa. tion of the simply supported elastic plate in vacuum.
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 12 Figure 1: Pressure fields inside the cavity at 1 ms for Jo = 500Hz (left) and fo = 3000Hz (right), analyticaJ model. a:J eo 10 70 611 60 � 50 �? .io :\0 JO 20 20 •o IO .. 20 •o Gil 80 20 •D Gil RO Figure 2: Pressure fields inside the cavity for sub-and super critical waves, finite difference model.
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