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Introduction 
The sound radiated into a cavity by the surrounding walls 
depends on several factors. The signal type, wall con
struction, cavity geometry and damping are of the most 
important. In this paper results that illustrate many of 
the basic features of vibro-acoustic coupling in the tran
sient regime aJ·e presented. One shows that the efficiency 
by which the plate radiates sound into the room can in 
general qualitatively be explained by the speed of the 
Fomier frequency components of the impulse type sig
nal. Subsonic phase velocities generate a near acoustic 
field, and only transfer acoustic energy to the room from 
the region close to the plate boundaries. For supersonic 
bending wave speeds energy is transferred to the room 
all along the trajectory. 

Statement of the problem 
In the rest of this paper, small case letters correspond 
to time functions while capital letters denote time har
monic functions with time dependence exp(-iwt). Let 
us consider a rectaJ1gular cavity, filled by air, defined in 
cartesian co-ordinate (O,x, z) by x E IO,Lx] x z E IO,Lz]· 
A thin one dimensional steel plate of length Lx = lm, 
thickness h = 5mm, with critical frequency 2517 Hz, 
and simply supported at its boundary occupies the up
per wall. The other walls a1'e considered as rigid. The 
plate is damped by a proportional damping given by 
T/p = 1 ms-1. The geometry of the cavity is given by the
side lengths Lx and Lz = 0.8m. The plate is excited by
a point-mechanical Ricker wavelet f (x, t) of unit maxi
mum amplitude. This signal is of finite duration between 
0 and Te = 2/ Jo and of finite spectrum between 0 and

3f0. u(x, t), the normal displacement of the plate, is the 
solution of the usual Kirchhoff plate equation. In the
cavity, the acoustic pressure p(x, z, t) is governed by the 
d'Alembert equation. 

Modal expansion and time domain 

solution 
In the harmonic regime, using Green's representation of 
the pressure, U(x,w) is the solution of the following in
tegrodifferential equation 

D6..2U(x,w) - pphw2 (u(x,w) +i �U(x,w) (1) 

- e1 foL
.,U(x',w)G(x, O,x',O,w)dx') = F(x,w) 

where Ev = T/'P'/ pph and f. f = p f / pph are smal I parameters 
for a slightly damped plate in air. The Green's function 

of the rigid cavity is given by the usual modal ex.pan-
. G( 1 1 ) __0__ '\' oo >li,,.,.(x,z)lli,,..,(x',z') s1on X, z, X , Z , W = L L · L..,m n=O w2-wo2 · 

w�n is the mn-th eigenp�l;a.tion
' 

and ilimn(x ,;)" is the 
mn-th eigenmode of the rigid cavity. The pressure inside 
the cavity is given by the integral equation P(x,z,w) = 
w2pt J0L" U(x1,w)G(x,z,x1,0,w)dx1• Tt is easy to see 
that, because G(x,z,x',z',w) depends on the frequency, 
both the eigenmodes and the eigenpulsations are fre
quency dependent. As Ep and e f aJ·e small parame
ters, to compute these eigenmodes and eigenpulsations 
one can use pertubation expansions [2]. The fluid 
loaded eigenmodes are given by U1(x,w) = up(x) + 

0 2 

f.J L:1 s J. t w"::!__wo2f3w(Ut°, U2*)U2(x), and w1(w) ='T .-t I 
wf(l - i� + ¥f3w(Ut°, UP*)), where up(x) and 
wp are the usual 1-th eigenmode and eigenpulsa.
tion of the simply supported elastic plate in vac-
uum. The intermodal impedance f3w(Up, UJ*) 
f0L"' f0L"' Ut°(x1)UJ(x')G(x, 0, x', O,w)dx'dx describe the 
energy exchanged with the :fluid. One shows that the 
solution reads 

U( ) _ � 1/(Pvh)(F,Ut)U1(x,w) (2) x,w - � wp2-iepw-w2(1 +Etf3w(Ut°,Ut°*))'

where (U1, un is the usual inner product. The response 
of the plate and its pressure radiated into the cavity is 
computed using inverse time Fourier transform. Using 
residu integration theorem, one can shows that the re
sponse of the system involves resonance mode series ex
pansion 

u(x, t) 

p(x, z, t) = 

2 oo -iw1t - � ··+ A+ e 
-} � �(f, ul )Ul (x) A+ A-) (3)
Pp i l=l W1 - wl 

{L,. d2u(x' t) 
PJ Jo dt2 ' *9(x,z,x',O,t)dx',(4) 

where * stands for the usual time convolution product. 
The resonance modes U1(x) = Ui(x,w() and resonance 
pulsations wt are the free oscillation of the system [l]. 
wf are the zeros of w?2 - iEpw - w2(1 + EJ/3w(Up, Ut°*)) 
and have negative imaginary part. Ca.re must be taken 
when applying the residue integration arnund the first 
resonance frequency of the cavity which is zern for a rigid 
cavity. For an excitation without continuous component 
the solution exist and is unique. 

Finite difference solution 
Finite difference expressions of second order accuracy 
were used to replace the differential operators in the dif
femetial equations. 6.x, 6.z and 6.t are the spatial and 
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time discretization distances. For the finite difference 
grid, the appropriate equations were written in a finite 
difference form for each node, thereby obtaining a system 
of simultaneous algebraic equations in the unknowns u 

a.n.d p . Outside points are generated when the equations 
are written for points lying on the domain boundaries. 
These are however eliminated when combining the sys
tem equations with the boundary conditions. Recall that 
in the frequency domain, tbe bending wave phase velocity 
on an unda.mped beam is wriitten as cb = ./WijD/(pph). 
In the time domain, care must therefore be taken to en
sure that the wavelengths of the high frequency compo
nents of the pulse are meshed with enough nodes. 

For a finite grid, too long time steps with respect to space 
steps will introduce instabilities in the system. It has 
been suggested by Crandall [3], that the second order 
accuracy finite difference explicit version of a 4th order 
equation of the type 

(5) 

where J, x, and tare non dimensional parameters, will 
be stable for 6t/(6x)2 � 0.5. For the present system, 
regarding a fixed frequency, this stability criterium for 
bending wave propagation on the beam is given by 

Cb6t 6x -- < --
6x - 41TAb' 

(6) 

where cb and Ab, designates the phase velocity and wave
length of the propagating wave at the frequency in ques
tion. When exciting the beam for the time domain calcu
lations, one must therefore make certain that the higher 
Fourier components of the signal obeys the above cri
terium. Tn addition, the criterium ci,�t ::; Ji for a 2
dimensional, equal spacing (6x = 6z) acoustic system 
must be observed. 

Results and discussion 
For the finite difference investigation it was first of in
terest to study the behavior of bending waves travelling 
on infinite beams in vacuum. This to ensure that stable 
solutions were caJculated numerically. Because the dis
persive character of the signal was evident, to minimize 
numerical dispersion it important to have a fine enough 
grid to represent the shortest bending wavelengths. The 
stability criterium (equation 6), was judged to be valid 
for this type of calculations. 

Tn figure 1, we present two prnssure fields inside the cav
ity 1 ms after the beginning of the excitation (Lx = lm 
and Lz = 0.8m). The first is obtained for an excitation 
with Jo = 500 Hz and the second with Jo = 3000 Hz. 
Radiation from sub- and super critical waves are also 
presented in figure 2 for a later time. The figure shows 
that edge radiation is a predominant feature for the sub 
critical waves and that supersonic bending waves gener
ate radiation where Mach angles are clearly visible; both 
for the waves travelling away from the excitation point, 
and the waves reflected back from the beam boundaries. 

The study has shown that both give physically reasonable 
results in the time domain. It was shown that the wave 
motion is dispersive with the highest frequency compo
nents propagating the fastest. Sub- and super-criticaJ 
wave components will couple differently to the fluid in 
the cavity. The sub-critical waves will principally create 
a near field and only generate efficient radiation in the 
vicinity of the edges, while the super-critical waves rn
diate efficiently along the whole of the beam length, in 
the form of Mach angle waves. While the finite differ
ence method gives a flexibility in geometrical modelling, 
computer space requirements does however limit the ap
plicability when considering high frequencies and three 
dimensional models. Such limitations are much less of a 
problem using the analytical approach. 
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Figure 1: Pressure fields inside the cavity at 1 ms for Jo = 
500Hz (left) and fo = 3000Hz (right), analyticaJ model. 
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Figure 2: Pressure fields inside the cavity for sub- and super 
critical waves, finite difference model. 
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