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1. INTRODUCTION

Roughly observed, some random phenomena seem perfectly scale invariant. This
is the case for the velocity field of turbulent flows or the (logarithm of) evolution
in time of the price of a financial asset. However, a more precise empirical study
of these phenomena displays in fact a weakened form of scale invariance commonly
called multifractal scale invariance or intermittency (the exponent which governs
the power law scaling of the process or field is no longer linear). An important ques-
tion is therefore to construct intermittent random fields which exhibit the observed
characteristics.

Following the work of Kolmogorov and Obukhov ([, [IZ]) on the energy dissi-
pation in turbulent flows, Mandelbrot introduced in [[(] a ”limit-lognormal” model
to describe turbulent dissipation or the volatility of a financial asset. This model
was rigorously defined and studied in a mathematical framework by Kahane in [§;
more precisely, Kahane constructed a random measure called gaussian multiplicative
chaos. A natural extension of this work is to use gaussian multiplicative chaos to
construct a field (or a process in the financial case) which describes the whole phe-
nomenom: the velocity field in turbulent flows (the price of an asset on a financial
market). This extension was first performed by Mandelbrot himself who proposed

to modelize the price of a financial asset with a time changed Brownian motion,

Partially supported by CNRS (UMR 7599 “Probabilités et Modeles Aléatoires”).
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2 HYDRODYNAMIC TURBULENCE AND INTERMITTENT RANDOM FIELDS

the time change being random and independant of the Brownian motion. In [J], the
authors proposed for the time change to take the primitive of multiplicative chaos:
this gives the so called multifractal random walk model (MRW) (Bacry and Muzy
later generalized the construction of the MRW model in []). The obtained process
accounts for many observed properties of financial assets.

The inconvenient of the above construction and of the MRW model is that the
laws of the increments are symmetrical. In the case of finance, this is in contra-
diction with the skewness property observed for certain asset prices. In the case of
turbulence, the laws of the increments must be nonsymmetrical: it is a theoretical
necessity and stems from the dissipation of the kinetic energy ([[]). In light of these
observations, we are naturally led to construct random fields which generalize to
any dimension such process and which present multifractal scale invariance as well
as nonsymmetrical increments.

We will answer a very natural question: how can one obtain a two parameter family
of multifractal fields with nonsymmetrical increments by perturbing a given scale
invariant gaussian random field on R%? Finally, in the last part we will mention the
difficulties which arise in trying to construct an incompressible multifractal velocity
field that verifies the 4/5-law of Kolmogorov with positive dissipation.

2. NOTATIONS AND PRELIMINARY RESULTS

2.1. The underlying gaussian field. Let dW;(z) denote the gaussian white noise
on R? and ¢ : R? — [0,1] denote a C*, radially symmetric function worth 1 for
|z| < 1 and O for |z| > 2. We also introduce a fixed correlation scale R > 0 and « a
number which satisfies

d/2 <a<d/2+1. (2.1)
We define the gaussian field X9 by the following formula:
Yr(x—y)
X(z) = ———==dWy(y), 2.2
@) = [ e awiy) (22
where we set the following notation:
— Rd/Q—a £ )
() o)

It is easy to show that (B.J) defines a homogeneous, isotropic gaussian field which is
almost surely holderian of order < o — d/2. Note that condition (R.1) implies that
the integrand in (2.J) is square integrable and the R%?~® factor ensures that the
field is dimensionless.

scaling property. Let e be a unitary vector and A > 0. we have the following identity
in law:

oasre) - aota) = [ (E2D 2 ),

From the gaussianity of the above law, we deduce that for all ¢ > 0, there exists
¢q > 0 such that:
E(|X%(z + Xe) — X9(x)]*) = 03 ¢q,
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with
A 1 1

2 2a—d 2
~ (5 - dy.
O e A0 <R) /]R;d<‘y - e‘d,a ‘y‘d,a) Y

We thus derive the following scaling

A
E(|X9(x + Ae) — X9(x)|7) ~ ()1 2C,
A—0 "R
where the constant C, is independent of e. One says that (X9(x)),cre is at small
scales monofractal with scaling exponent o — d /2.

A field (X (2)),era is multifractal if there exists a non linear function ¢, such that:

B+ Xe) = X)) ~ (})C,

We call (, the structural function of the field (X (z)),cpa.

2.2. Outline of the construction of multifractal fields from the field &Y.
Our construction is inspired by the work of Kahane in [§. Let ¢ > 0 and X(y) a

regular family of gaussian fields (not necessarily independent of dWWj). We consider
a family of fields A'¢ defined by:

X(x) = /R orlt — ) xe-Ce gy ) (2.3)

a |z —yld—=

(| — y|. is defined in the next subsection and is given by a standard convolution).
For an appropriate family X¢, we show that it is possible to find constants C, such
that X tends to a non trivial field X as € tends to 0. If one chooses X independent
of dWy, we will see that this leads to a field X that extends the model introduced by
Bacry in [J] and that has symmetrical increments. Thus, to obtain nonsymmetrical
increments, we must introduce correlation between X¢ and dWj.

2.3. Notations and construction of the family X¢. Let k£ be the function

]CR(ZL‘) _ \gg\% fOI‘ |$‘ < R7
0 otherwise.

Let 0(z) be a C*, non negative and radialy symmetrical function with compact
support in |z| < 1 such that
/ O(x)dx = 1.
R4

We define 0° = Eid@(g) and the corresponding convolutions:
kR = 67 % kR, |.|e = 6° % |.].

Let v be a strictly positive parameter and dWW be a gaussian white noise on R%. We
consider the following gaussian field:

X() =7 [ Ky = )W (o)
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Its correlation kernel is given by:
r—y

E(X ()X (y)) = 7*pe/r( 7 )

where p = k! x k! and p, = 0° * 6¢ * p. One can prove the following expansion

1
p(z) = wygln™ Tl + ¢(z),
where wy denotes the surface of the unit sphere in R? and ¢ is a continuous function
that vanishes for |z| > 2. We will note |.|. = 1 A |.| and, with this definition, the
previous expansion is equivalent to:

o) _ €7
€ =

wq
]2

One can also prove the following expansions with respect to e:

Co
with Cy = f | < 1 d/g W Ju and there exists a constant (' such that
R
pe/r(0) = wqln ~ + C1 + ofe). (2.5)

In the sequel, we will consider the case
VAW = 7o(e)dWo + 11dWh,

where dW; is a white noise independant of dWW, and 7 (¢€) is a function of € that will
be defined later. Note that the integral in formula (B.3) has a meaning since dWj
can be viewed as a random distribution.

2.4. Preliminary technical results. We remind the following integration by parts
formula for gaussian vectors (cf. lemma 1.2.1 in [[[])]):

Lemma 2.1. Let (g, g1, .-, 9,) be a centered gaussian vector and G : R — R a C!
function such that its partial derivatives have at most exponential growth. Then we
have:

E(9G(g1-- -+ 9n)) ZE (99:)E G(gl,---,gn))- (2.6)

From the above formula, one can easily deduce by induction the following lemma
which will be frequently used in the sequel:

Lemma 2.2. Let [ € N* be some positive integer and (g, g1,-..,9x) a centered
gaussian vector. Then:

E(g 92169 Z Sk l E(g
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where
SkJ = Z Z E ggll ggl2k)E(gi2k+1gi2k+2) .- 'E(gi21—19i21)7
{i1,. iz }C{1,...,20}
where the second sum is taken over all partitions of {1,...,2l}/{i1,... i} in

subsets of two elements {iog11,iok12}-
Similarly, we get the following formula:

E(g1 . -g2l+1€g Z Skl 25 7

Sk,l = Z Z E ggh - ggl2k+1)E<gi2k+2gi2k+3) e 'E<gi2lgi2l+1)7

{1, 92641 yC{1,.., 2041}

Remark 2.3. In Sy, (Sk), the summation is made of ST 2,5'0 Al ((QHI()Q!IJ_I,Z!(FM!)

terms, number we will denote by oy (Q).
We will also use the following lemma essentially due to Kahane ([f]).

Lemma 2.4. Let (T,d) be a metric space and o a finite positive measure on T
equiped with the borelian o-field induced by d.

Let q: T x T :— R, a symmetric application and m a positive integer. Then we
have the following inequalities:

/ ex1<i<e<2m 1) do (1) . do(tym,) < a(T)(sup/ e do (1)), (2.7)
T2m

seT

[, et do(t) . do(tann)
T2m+1

< o(T) sup( /T 150 dor (1)) / a0 G0 o (1) )21, (2.8)

$,8 T

Proof. The proof of (B77) can be found in [§]. Thus we just prove how to derive
inequality (B.§) from (7). By integrating with respect to the first 2m variables, we
get:

/ 621<1<k< 2m+1 q(tj’tk)d(]'(tl) .. .dO'(tQm+1)
T2m+1

N
3

= / do(tomy1) / e21 < <k < 2m At t) ettt2mi) do (11 ... do (L)
T T2m

J
< /d(j t2m+1)(/ €q(t’t2m+l)d0'<t))(sup
@) T T s
<o(T) sup(/ S’t)da(t))(/ () I g (1)) 21,

T T

S,8

Il
-

ema(s:t) €q(t’t2’”“)da(t))2m*1

»q\



6 HYDRODYNAMIC TURBULENCE AND INTERMITTENT RANDOM FIELDS

3. CONSTRUCTION OF MULTIFRACTAL RANDOM FIELDS WITH
NONSYMMETRICAL INCREMENTS

In this section, we will suppose that d/2 < a < (d/2+1)Ad and wgyi < d.
We consider the field X'¢ defined by formula (B.3) with

X(y) = (6)X5(y) + nXi(y),

where
X = [ K- W), =01
]Rd
We set also
Ce = ((10(€))? +77) pe/r(0).

and ,

€  d-wgni

(e =3 ()7

Therefore, we introduce a slight correlation between X and dW, (7(€) tends to
0 as € goes to 0).

3.1. Multiplicative chaos in dimension d. Multiplicative chaos or the ”limit-
lognormal” model introduced by Mandelbrot is a generalization of the exponential
of a gaussian process. As mentioned in the introduction, it was defined rigorously by
Kahane in [§]. The construction of Kahane was based on the theory of martingales
and thus the generalized correlation kernel (here p(t — s)) had to verify a condition
hard to verify practically (the o-positivity condition). Our construction is based on
L2-theory and can be carried out without this condition.

Let v be some real number such that 7?w; < d and € a positive number. Let
B(R?) denote the standard borelian o-field; we want to consider the limit as € goes
to 0 of the random measures Q7" defined by:

QM (dy) = eﬂme(y)*%E((Xf(y))Q)dy
_ 6“/1Xf(y)—%“/fpe/3(0)dy_ (3.1)
This leads us to state the following proposition:

Proposition 3.1 (Multiplicative chaos of order ;). There exists a positive random
measure Q" (dy) independent of the regularizing function 6 such that:

(1) for all A bounded in B(R?), E(Q"(A)) = |A|.

(2) Q™ has almost surely no atoms.

(3) Q™ is almost surely singuliar with respect to the Lebesgue measure.

If q is some positive integer and f : R* — R a deterministic function that satisfies
the following condition:
1
Lol sl T i <o (32)
R%)2q

£ 4 |yi—yj"¥%wd
1 <ii<j < 2¢q R I*

then we have the following convergence:

[t 2 [ e )
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We also have the following expression for the moments of [pa f(y)Q" (dy):

e yi;yj)
VE<2q, E(([| f(y)Q"(dy))" / f(y) (Yr) H md% - dyp.
R 1<i<j <k TRl

(3.3)
We will call Q" (dy) multiplicative chaos of order ;.

Proof. We first start by considering a positive integer and a function f that satisfies
the corresponding integrability condition (B.9). Let €, € be two positive numbers. By
using Fubini, we get for all j < 2¢:

B[ t@ @[ 1@ )
: 1/r(0) ... 2
0 [ ) )

. .
— o 37iPe/r(0) =507

e3 PRSI MO0 X 0D gy dyy,
TR
— Fln) . ) ] mdyl---d?hqa

€€ =0 J(rd)2q

1 <9<y < 2¢q

From this, we deduce that:

B((f S () = | Q™ d)™) 0

€,/ —0

and therefore that [, f(y)Q“" (dy) is a Cauchy sequence in L*? that converges to
some random variable Q7 (f). For k < 2¢, the moment E((Q"(f))*) is the limit as
€ goes to 0 of E((Q“"(f))*); from this one can deduce that the moments of Q" (f)

are given by formula (B.3).
Since 2wy < d, for any bounded set A in B(R?Y), we deduce from the proof above

and lemma P-4 that Q" (A) converges in L? to some random variable Q" (A). This
defines a family of random variables (indexed by the bounded borelian sets) that
satisfies the following properties:

(1) For all disjoint and bounded sets A;, Ay in B(R?),

QM (A UA) = Q" (A) + Q" (A:)  as.
(2) For any bounded sequence (A,,), >1 decreasing to &:

Q" (A,) — 0 as.

n—oo

By theorem 6.1.VI. in [{], there exists a random measure Q" such that for all

bounded A in B(R?) we have:
Q" (A)=Q"(A) as.

Finally, one can easily show that the limit random variable @“ﬂ (f) is almost surely

equal to [, f(y)Q" (dy). O
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3.2. Convergence towards a field X'. In this subsection, we will prove the fol-
lowing proposition:

Proposition 3.2. Let o be such that d/2 < a < (d/2 + 1) Ad and v, such that
2viwg < a—d/2. There exists a field (X (x))gera such that for allk and zy, ...,z €
R? the following convergence in law holds:

(X(1), o X)) = (K)o, X)), (3.4)

Let | be an integer such that one of the following conditions hold:
(1) 1 is even and lyjwg < o — d/2.
(2) Lis odd and (I + 1)viwg < a — d/2.
Then there exists C' such that, for all x in R?, the random variable X (z) has a
moment of order 2l given by the following expression:

!
_ ok er(y)  or(yar) er(Yni1)?  or(Wkn)?
_ZQWC o a_ Nda) " 2(d—a)
®ays [ T [yan|P (Yo [P0 T g [P

et 7L) e (Z 7 1) R )

— —_—— 7d 1...d .
H Yi— y] ’Ylwd H Yi— y]|271wd H Yi— yj‘4'\/1wd y yk+l

1 <i<j <2k 1 <1 <2k 2k+1 <i<j < k+l
J>2k

(3.5)

We also have:

BR( + ) - X)) =Y et [ (0ol o),

@iy |yr — hl4e |yt

er(yor — ") @r(yr)\ PRt — 1) @r(yors1) o PRk —h)  @r(Yk+) 2

lyoe — A1 |yl yaesr — P14 Jyarsa |4 kg — Rl Y|4
2o(Mg) 276(“ 7 2) o g)

m = I 11

Yi—yj | ViWd yi—y; |273iwa
1<i<i<2% TR B 1<is<ok TR |+ k1 <isj <kt
j>2k

Proof. Let ; be such that 2vw; < a — d/2. We set

Yi—Yj |47fwd
*

,Y*C 6—1/27101
C= Ri/2
and define two auxiliary fields )¢, Z¢ by the following expressions:
pr(z —y)
Y(x) = / — Q" 3.7
@)= [ E 0 ay) (37
and ( )
¢ PrZ —Y X¢(y)—C
Z = e <dW, 3.8
@)= [ e () (39
Note that Z¢(z) exists since X and dW, are independent with:
)2
E(/ SOR(x y) eQ'le QCEdy) (39)
R

a v — y[2d=e)
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We can compute, for all x in R, E((X(z) — CY(x) — Z¢(x))?) (cf. the more
complicated computations in the proof of proposition B.7) and derive the following
limit:

2
X(2) = (CY“(2) + £%(x)) 5 0.
Thus, we must show that the finite dimensional distributions of the field C )¢ + Z¢
converge in law. Let k be some positive integer and z1, ..., z; points in R¢. For all
€= (&,...,&) in R* by conditioning on the field generated by the white noise dW;
and using proposition B, we get:
E(eif-(Cl’e(961)+Z€($1)7---,Cy€(xk)+26(xk)))

( in]Rd(Z?:I&' ‘iR(de— QO (dy)— 1 G20(e 0?2 Pe/Rr(0) Jea(SF 151M) Q2 (dy)>

= F(e P
i PR(®i—y) _1 ko PRE@=Y) \2 92

- E(elchd i— 151‘96 = a—a) @7 (dy) 2fRd(Zi:l&m_wl_a) Q w1(dy)).

€e—

Thus, by applying Levy’s theorem, we conclude that the finite dimensional distri-
butions of the field C' Y+ Z¢ converge in law to those of a field X'. We also get from
the proof above the characteristic function of (X (z1),..., X (zx)):

E(eig.(é\f(xl),...,/\’(mk))) — Ble iC fpa (X k., & 2SI Q1 (dy)—L [La(Th & £REZY )2 QQVI(dy))_

la;—yld— la; —yld—
(3.10)
Suppose [ is a positive integer that satisfies the condition of the proposition. By
applying (B:10), we get for all £ in R:

B(e6X@) = E(ei(JE Jea EEETE QM (dy) -4 €2 fra(EESTE 2020 (dy)).

|z—

We derive expression (B.5) by computing %

and proposition B.]. We derive expression (B.g) similarly.

|e=o thanks to the above formula

3.3. Scaling of X and tightness of A“. The purpose of this subsection is to

show that the field (X' (z)),cgre satisfies the multifractal scaling relation (this is what

propositions B.J and B.g below assert) and to study the tightness of the family X°.
We first state two preliminary lemmas we will use in the rest of the paper.

Lemma 3.3. Let § be some real number such that 0 < § < a and § # o — 1. There
exists C' = C(0) such that we have the following inequality for |h| < R:

sup |¢R(y—h) @R(y)|
verd Jra |y — hl4e Jyldmet |20

dy < RY?C|— |<0“S : (3.11)

Proof. By homogenity, we suppose that R = 1 and for simplicity, we suppose d > 2

Since ‘xl‘ | T+ 1, we have to show that for ¢ € [0, af:

ely—nh)  oy) 1 (a—8)Al
sup | | dy < C|h|**
perdJra |y — Blie Jyliejz —yp T

There exists C' such that for all y and h, we have:
o(y = h) = ¢(y)| < Clh] and p(y) < Clyy <o (3.12)
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We set
ply—h)  oly), 1
dy.
)= |y hs ~ e g
Therefore we get
1 1
I(x) < C|h| |5dy (3.13)

lyl <3 |yl [z —

1 1 1
+0/ | ~ 1 dy
wi<s |y —hl&e ylie e —yl0

1 1 1
< Clh| + C/ | — | dy. (3.14)
w<s |y =Ryl =yl
First case: 6 < o — 1.
Plugging inequality
1 1 (d — «)|hl

‘ - ‘ S
|y _ h|d—a |y|d—a |y _ h|d—a+1 A |y|d—oz+1
in (B.14), we get

1 1
I(x) < Ch) dy,
h i <3 [y — hldott A Jyld-atl [z — y|?

which concludes the proof.
Second case: 6 > a — 1.
By the change of variable y = |h|u and setting h = |h|e with |e| = 1, we get:
1 1 1
| - | dy
/y| <3 ly—hl&e fylte =yl

1 1 1
_ |h|a6/ | o du
<& [u—eltefulte |z /|h] — ul®

1 1 1
< |h|*9 su / — du.
S sw f e T e fa—ap

O

Lemma 3.4. Let 6 be some real number such that 0 < d < 2a—d or, if d =1 and

a > 1,9 < 1. There exists C = C(§) such that we have the following inequality for
|h| < R

er(y—h)  ¢r(Y)
Sup | d—a d— oz|
verd Jra |y — Dl |y

b oa—a-
‘x}—%y‘idy < C|E|2a I 6- (3'15)

Proof. As in the proof above, we can replace |.|, by |.| and suppose that R = 1; thus
we have to show inequality (B.13) with J(z) where we set:

Iy h|d‘“ Iyld“ lz —y|°

dy.
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Using inequality (B.12), we get

1 1
J(x) < C h2/ dy
S N NPT
1 1 1
vef L 1y,
wi<s ly—hlTe fyli= |z -y
1 1 1
< Olhf* + C/ | - |2 dy. (3.16)
wl<s [y —hldme Jyldel o =yl

Since 2 > 2a — d — d, we only have to consider the second term in inequality (B.16).

By the change of variable y = |h|u and setting h = |hle with |e| = 1, we get:

/ | 1 1 : 1
wi<s |y —hlieJyldmel |z —y)?
1

1 1
:|h|2ad5/ | —— - |2 du
<2 lu—eltulte [z /|h] — ul

[h]

1 1 1
< B2 40 gy / — 2 du.
S sup f e T e a—ap

dy

Proposition 3.5. (Scaling along the even integers)
Let [ be an integer such that one of the following conditions hold:

(1) 1 is even and IViwg < o — d /2
(2) 1is odd and (I + 1)yiwy < a —d/2.

Let e be a unit vector (le| = 1). Then there exists C; # 0 independent of e such that
the following scaling relation holds:

E((X(z + Xe) — X(2))*) ot CI(%)CQ’, (3.17)
where we have
Cor = 1200 — d) — 292wyl (1 — 1). (3.18)

Proof. For simplicity, we will suppose that [ is even and that [/?wy; < a — d/2. We
introduce the following notation:

_pr(y—h) _ er(y)
) =y e g

We shall see that the scaling at small scale of the sum (B.§) is given by the term
k = 0. Indeed for all £ > 1 let us consider the integral
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2 2 eﬁ (yryj)

Fulsn) - Sulyoe) (Fu(yoes))® - (P [T o

d\k+1 7 j 1%d
(R%) 1<i<j<2k| R |*

R

Y;—Yq Yi— Y4
627%(75( ZR ]) €4V%¢( ZR J)
_— ———dy;...d .
H Yi—Yj |2'\/%Wd H Yi—yj |4'Y%Wd h Ye+i
1<i<2 |~ I 241 <i<j <k+H TR I¥
i>2k
< I iy, (3.19)

where we set

Yi—Y4
()
I, = sup fo(y) - fu(yar) Ty 2
Y2k 155 Yk+1 J (RF)2 1<i<2k | zR : |* '
j>2k
Yi—Yy
i1 )

dyl e dygk.

H Yi—Yj |‘/%Wd
*

1<z‘<j<2k| R
and

iy
647%(#( ZR ])

Ayor41 - - - AYp41-

iy = /(Rd)lk(fh(y2k+1))2 o (fr(rr))? H

2k+1 <i<j < k+l

Yi—Yj ‘4“/fwd
R *

By using the estimates (B.11]),(B.17) and the inequalities (B.7), (B.§), one can show
that for all £ > 1, we have

h
I Jiy < Cde|E|ck’l,
with
cry = (@=2(1—=k)yiwg) A1+((a—(21—k)yiwa) A1) (2k—1)+(2a—d) (I—k) =27 wa(I—k) (1—k—1).

If @ — 2(1 — k)yiwg < 1, then ¢y = Cy + k(d — viwa); If o — 2(1 — k)yviwg > 1
and o — (20 — k)viwg < 1, then ¢z = (o + 1 — a + dk + (21 — 3k)yiwy; otherwise
ey =2k + 2a —d)(I — k) — 2viwy(l — k)(I — k — 1). In all cases, it is easy to show
that c,; > (o under the conditions of the proposition..
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Finally, we study the term where k = 0. We get for h = Ae with |e| = 1:

AP E)
dyy ... dy.

L Gl Gt

|yi_yj |4“/fwd
1<i<i <UITR/ I

= %)ma—d) /(Rd)l pr(Mur —e)) wR(Aul))Q pr(Mu —e) @R@ul))g

uy — eld— lugld=a /Ny — et |y |4
pAre(Mi)
H ) A duy . .. duy.
1<i<j <1 |T|*
-~ te(ll)V%d’(O)(i)Cm/ ( 1 — 1 )2 o ! — ! )2><
A—0 R (Rl ‘Ul - €|dia |u1‘d7a |ul - e|d7a |ul|dia

H ;dul .oduy,

oy |47iwa
1<i<j <1 |ui —

and inequality (7)) shows that this integral is finite when lywy < o — d/2.

O
In the next proposition, we state the scaling relations of X along the odd integers.

Proposition 3.6. (Scaling along the odd integers) We suppose in this proposition
that o > 2 and thus d > 3. Let | be an integer such that | + 1 satisfies one of the
conditions in proposition [3.3.

Let e be a unit vector (le| = 1). Then there exists C; (with C5 # 0) independent
of e such that the following scaling relation holds:

)\ ~
E((X(z+ Xe) — X(x))*) ot ’VSRd/QCz(ﬁ)CQ’“, (3.20)
where we have
Corgr = 1200 — d) — 292wgl(l — 1) + 2. (3.21)

2
76006_1/271 Cq

Proof. As in proposition B.3, setting C' = a7 , it is possible to show that:

E((X(z + h) — X ()2
l
B Z ak’lC%H /( ) Fun) - S (Yarsn) (Fu(re2))* - - (Fi(sie1))* X
k=0 R
et iR eio(ig)

[
H Yi—Yj "Y%Wd H Yi—Yj |2’7de H
* *

1<z‘<j<2k+1| I3 1<z‘<2k+1| R
j>2k41

———dyy ... dYgy141
1] |yi_yj‘4ﬁwd Y Yk+1+1,
2k+2 <i<g < k+i1+1 R I*

where, as usual, we set

_ery—h)  ¢rly)
P =y R T e
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Similarly to proposition B.J, to get the main contribution as |h| goes to 0, we examine

the term £ = 0. We set:

v(y)
U(y) = :
[yl
Note that the condition 2[y?wy; < o — 2 ensures that:
v

2
—_|e2PW) dy < 0.
re Oy Oyl

We get for h = Ae with |e] = 1 the following equivalent:

Y1—Yj5
)

/(‘Rd)l-u fh(yl)(fh(yQ))2 C. (fh(yl+1))2 H

j=z2

2 <i<j <I+1

|y1—yj |i“/fwd x
R

€4Vf¢(yi;yj )
dyi ... dyit1.

Yi—Yj |4“/fwd
R *

g d—a
Yi=Aui,i > 2 U; — e
“n=hy Jj=2 | J |
Au; AMu;—ug)
627%‘1)(?47?:7) 647%‘1)( zR ! )d d d
H Auj 2'yfwd H AMui—uy ) 4fyfwd yauz I+1
j>2|y—?|* 2<i<j<l+1|73 |«

~ =
~ DPd/2 20(1-1)v2¢(0) { 2 \Cait1
o~ RCie ()

with 51 = A;B; where

A = Z ese; ﬂe%@p(y)dy
oy ra Oy 0yI

and

1 1 1 1
Bl :/ — 2 R — 2><
o T — e Jur) e )

1
[ —— 0 duw.. du..

gy |4vEwa
2 <i<j <41 i — ;]

A direct computation shows that Cs # 0 from which we deduce that for ~§ # 0

the distribution of X (z + Ae) — X (z) is nonsymmetrical.

Proposition 3.7. (Tightness) Let | be some positive integer that satisfies the con-
dition of proposition 5.4 and v a positive parameter such that 2 < ~*. Then there

exists €g > 0 and C' independent of € such that for € < ¢y and |h| < R:

Vo,  E((X(x+h) — X(x))?) < C|h['Gemd= wal=1),

_ Rd/Z(%)l(Qa—d) /(Rd)m(w(y _ %e) —Y(y)) H <<PR()\(UJ —e)) _ Pr(Au;)

||

0

(3.22)

J
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and
E((x<(0)*) < C. (3.23)

Proof. We only prove (B.23) (the proof of is similar). We are going to compute

the moment
B[ SO awi(y))?)
Rd

where we set
_ pr(y—h) _ er(y)

Feald) =}y Zhpe gl
We get
E(( /R enly)eX WA (y))*) = e / Fon(yn) « o Fonlya) E€S dWo(yr) . .. dWo(ya1)),
(3.24)
where

A~

X =X(y)+ ...+ X(y)-
The rest of the computation can be performed rigorously by regularizing the white
noise dWy, using lemma .7 and going to the limit. It is easy to see that we obtain
the same result by introducing the following formal rules:

E(dWo(y)dWo(y')) = dy—ydy (3.25)

and
E(dWo(y)X(y) = 20(e)k (Y — y)dy (3.26)
As a consequence of lemma .3, E(eX dWo(y1) .. .dWy(y,)) is the sum of terms of

the form

E(dWO(yl)XE) = 'E(dWO(yk)XE>E(dWO(yk+1)dW0<yk+2)) EE E(dwo(yqfl)dwo(yq))eéE((XE)Q)-
(3.27)
We will compute the limit of each one of these terms. By using (B.26]), we get

E(dWy(y) X (y1)) = 70(6)(2 kf(yz —y1))dyi

= Y()kE(0) (1 + Qf)dy,

where
1

€ il

Q=

We also have: ) N
e3B(XD) = o(Bre/mO+T e pe/n(* 5 ) (0(6)*4+97)

By using lemma P.3, expression (B.24) and the rules above, we get:
E((fa fe(y)eX @~ dWo(y))*) = iy ara(0(€))* (£1(0)) el R Go@) adpe nl0)1C
Jwayers fen(n) - fen(yor) (fen(Waer1))? - - (fen(Yns))? [15 (1 + Q5 erdyy . .. dyjn
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where .
€ 1< <2k j>2k
j#i
and
€ Yi — Yj Yi — Yy
Skt = ((70(6))2 Jrﬁ)( Z Pe/R(TJ) + 2 Z Z Pe/R(TJ)
1<i<j <2 1<i<2kj>2%

o Y e Z_i,yj))-

2k+1 < i<j < k+l
We first take care of the normalizing constant outside each integral:

(30 (E) K (0) e~ /20470 5(0) )28 2((10 ()43 e 0)-2Ce.

By the choice of C., we have ¢2((0()*+7)pe/r(0)-21C — 1 Using expansions (2.4) and
(B-3), we derive the following equivalent:

* —1/292C4
R((0)e~ 120 +1D)/n(0) ., Y0C0E T
Yo(€)ke (0)e 0 TR 0 Rd/2
In conclusion, the constant outside the integral of term & in the above sum is

* —1/24320C4
75 Coe T \ok
ak,l( RA/Z ) .

Let v be such that 42 < 2. One can choose ¢y > 0 such that yo(eg))* + 77 < 2.
Using the fact that, for all y, p/r(y/R) < wyln® % + C with C independent of e,
we get:

1 1
Se
ekt < C H W H WX
R

1<i<j <2k 1<i<<2k "R
i>2k
1
—_—. 3.28
H Yi—Y; |4'Y2Wd ( )
2k+1 <i<j <kH L R OI*

Finally, we conclude by using inequality (B.11]) and (B.15) similarly as in the proof
of proposition B.3.

O

Remark 3.8. One can easily deduce from this that for 7% sufficiently small, by
Kolmogorov’s compacity theorem, X€ tends to X in the functional sense and that X
1s locally holderian.

Comment 3.9. Starting with a two parameter (R,«) monofractal gaussian field,
we constructed a four parameter (R, a, 1,75 ) multifractal field with nonsymmetrical
increments. In dimension d = 1, this family can be used for financial modeling
and, in any case, has it’s own interest. Unfortunately, this family is inappropriate
to modelize the velocity of turbulent flows where, as we shall see, the 4/5-law of

Kolmogorov imposes the condition (3 = 1: indeed, a look at expression ([7.21) shows
that, for this family, (3 > 2.
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In the case where v = 0, we obtain symmetrical random fields which extend to
higher dimensions the model introduced in [J.

In the next section, we will study a multifractal field which is not in this family
but that can be seen as a limit case where v; = 0 and 7, is constant (independent
of €). As we will see, this family will be compatible with the 4/5-law.

4. THE FIELD A}

4.1. Construction of the field Aj. In this section, we only outline the main steps
of the construction of Xy. The field X is given by formula (R.J) where X*¢ is now
defined by:

X(0) =0 [ k= )iWilo),

We suppose that « is in the interval |0, 1[. We choose the normalizing constant C,
such that:
70]{::%(0)6—0&%73&/3(0) -1

We start by stating a lemma we will use in the proof of the proposition below:

Lemma 4.1. let § be some real number different from d. Then there exists C =
C(9) > 0 with:

d
/| L L Ol (4.1)

u| <R |ul?

Proof. We suppose § > d, the other case being obvious. We have:

/ du dé/ du
R — € —
lul <R ul? u=ci lu| < R/e (fm <1 0(v)|v + uldv)?
du
< Edé/ .
Rd (flvl <1 O(v)|v + uldv)?

We can now state the following proposition:

Proposition 4.2. Let g be some positive integer satisfying:

(1) g=1 or ¢ =2 with 3wy < a.

(2) q is even, greater or equal to 4 with (¢ — 3/2)dws < a A L.

(3) ¢ is odd, greater or equal to 3 with (¢ — 3)dws < a A L.
Under the above condition, for all z, X§(x) converges in L? to a random variable
Xo(x) such that, if e is a unit vector, we get the following scaling:

B((Xo(r + Ae) — Ao(a))?) ~ Cyl2)% (4.2

where

1
Co = g0 — 5alg — 1)vowd
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and
a(a=1) 1 1 1
- " / e ( - )dus . .. d

- o — Ul ...0Uq.
(Rd 1<Z<_] <q |ui_uj"ygwd 1<1:[<q |ui_e|d |ul‘d ¢
(4.3)

Proof. In the proof, we suppose that ¢ = 2] with [ > 1; we will first prove that:

TR H ) or(yi)
E((X5(2)") = /R T—— H i dun (4.4)
(R 1<z<]<q| =22 1<i<q Y

We remind that the right hand side of the above limit exists by lemma P.4. In order
to prove the above relation, we develop E((X{(x))?) in [ + 1 terms similarly as in
the proof of proposition B.7; then, using formula (.4) and the fact that, for all y,
pe/r(y) < wqln % +C, we are led to show that, for all £ < [—1, we have the following
convergence:

cU=R)(d=dwa) (~2=k)(I—k—=1)Fwa .~ 4k(I—k)Vdwa / ¢r(Y1) ©r(Yar)

®ayert [Yaldme T ] de
2 YiTYj
r(yori1)?  Pr(Yk)? 0w
2(d—a) " 2(d—a) 11 oy s W Y = 0.
|Yort1le |Ykile 1 <i<j <2k | =52 |«

We apply inequality (f1]) and obtain (if « = d/2, one can work with a« —n for n > 0
sufficiently small) :
2
/ ¢r(y) dy < 2D
R

Therefore the above convergence to 0 amounts to showing that, for all £ <1 —1, we
have the following inequality:

d+ (20— d) A0 — Ygwg > 2(1 — k — 1)Y5wy + 4kygwa.
This is equivalent to (20 — 3)73ws < oA 4. One can show, for all z, that (Xf(2))eso
is a Cauchy sequence in L? by computing E((Xg(x) — X§ (z))?) and letting €, ¢ go
to 0. Thus, E((Xy(z))?) is given by the left hand side of (£4).

To show the scaling ([.9), observe that we can prove the following analogue to

(E9):

eo (=
B((Ap(x + Ae) — /

Yi— y] 'Y() wd

y])

T Aelwdy .. dy,,

(R)q1<z<j<q 1<Z<q
(4.5)
where ( 2 .
PRr\Y — Ae Yr\Y
f)\e Yy) = - . 4.6
W)= Jy=xef= ~ Tyl (£6)
By setting y; = Ay; in the integral of ([L.5), we deduce easily ([f.2). O

Remark 4.3. Similarly as in the previous section, for -y sufficiently small, X
converges in law to Xy in the space of continuous fields.
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4.2. Nonsymmetry of the increments of X. Let ¢ be some odd integer and
consider C, given by formula ([.3). It is clear that C, does not depend on the
unitary vector e. By making the change of variable u; = u; — e in (f.3), we get:

Cyle) = =Cy(—e) = =Cy(e).

Thus, we get C, = 0. Therefore, it is not obvious to see if the law of Ay(x+h)— X, (z)
is nonsymmetrical or not. Nevertheless, one can repeat the same construction of A

as above replacing the kernel % by the kernel:

Ty — Y

In this case, C; = 0 but, by Monte Carlo simulation, one can verify that C3 # 0. In
particular, with the kernel (f.7), the law of Xy(z + h) — Xp(z) is nonsymmetrical.

5. A STEP TOWARDS A MODEL OF THE VELOCITY FIELD OF TURBULENT FLOWS

An acceptable solution to the problem of hydrodynamical turbulence in dimension
3 would be to construct a random velocity field U solution to the dynamics (Euler
or Navier Stokes typically) that is stationnary, incompressible, space-homogeneous,
isotropic and that satisfies the main statistical properties of the velocity field of
turbulent flows. These properties are:

(1) The 4/5-law of Kolmogorov that links the energy dissipation of the turbulent
flow to the statistics of the increments of the velocity. This law is widely
accepted since it is the only one that can be proven with the dynamics ([g],

[, [[3]). More precisely, this law states:

€ \3 4

7)) = == DIE. (5.1)
4 5

In the above formula, D denotes the average dissipation of the kinetic energy
per unit mass in the fluid.

E(U(x+¢) - U(z)

Remark 5.1. To obtain this law, it is sufficient to suppose that the field U
1s space homogeneous and isotropic.

(2) The intermittency of the field U:

E(U(z+€) - U<x>%\q> C,le[, (5.2)

|§]—0
where ¢ is a positive real number and the (, are called the structural expo-
nents.

It is a very challenging task to construct a field with all the aforementioned prop-
erties, especially because this field must be invariant by the Euler or Navier-Stokes
equation.

Nevertheless, one can in the first place forget the invariance condition and simply
try to construct a field that satisfies all the other properties. The 4/5-law shows
that the nonsymmetry of the increments is an essential feature: this is one of the
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main difficulties in trying to extend the previous construction of scalar fields to
3-dimensional incompressible fields.
Quite naturally, we consider the incompressible family U¢ defined by:
() — _ r—y X<(y)—Ce
U(@) = [ nte =)ty A OCawy)
where dW (y) = (dW1(y), dWs(y), dW3(y)) denotes a three dimensional white noise
and X°€ is defined by the following formula:

X(y) =~ [ Kl(y—o0)dW(o),

RS
with Kf(x) = Wllwl < r- As in the previous sections, we choose the constant C,
such that U¢ converges to a non trivial field U as € goes to 0. The vector field U we
obtain is incompressible, homogeneous, isotropic and intermittent with structural
exponents (, defined by:

o = qa — 2my%q(q — 1). (5.3)

We can derive the energy dissipation D of the field U by computing the following
limit: - .
—7 Im SE((U(z + e) = U(x)).€)*),
where e is some unitary vector. In order to get D finite and D # 0, we must have
(3 =1 or equivalently:
a=1/3+4my°. (5.4)

Unfortunately, since the field eX"®dWW (y) is isotropic with respect to all unitary
transformations (and not just the rotations), we get D = 0. Thus, the construction
of an intermittent incompressible field with positive dissipation remains an open
question.

Comment 5.2. If one plugs relation ([5) into (p-3), we get the following expression
for (y:
G = (1/3 + 6m9%)q — 2m7%¢*.

The small scale behavior of the field depends only on the intermittency parameter 2.
One can easily identify it using the experimental curve obtained in [[] (cf. fig. 8.8 p.
132 in [[d]): with their data, we find 4wy? = 0.023. Thus, the intermittency parameter
is small, a situation that seems to be similar in finance for certain assets; indeed,
if one denotes by v the intermittency parameter of the MRW model introduced by
Bacry, Delour and Muzy ([]), the authors of [A] estimate 4* ~ 0.03 for the SEP500
future index using intraday data over the period 1988-1999.
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