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1. Introduction

Roughly observed, some random phenomena seem perfectly scale invariant. This
is the case for the velocity field of turbulent flows or the (logarithm of) evolution
in time of the price of a financial asset. However, a more precise empirical study
of these phenomena displays in fact a weakened form of scale invariance commonly
called multifractal scale invariance or intermittency (the exponent which governs
the power law scaling of the process or field is no longer linear). An important ques-
tion is therefore to construct intermittent random fields which exhibit the observed
characteristics.

Following the work of Kolmogorov and Obukhov ([9], [12]) on the energy dissi-
pation in turbulent flows, Mandelbrot introduced in [10] a ”limit-lognormal” model
to describe turbulent dissipation or the volatility of a financial asset. This model
was rigorously defined and studied in a mathematical framework by Kahane in [8];
more precisely, Kahane constructed a random measure called gaussian multiplicative
chaos. A natural extension of this work is to use gaussian multiplicative chaos to
construct a field (or a process in the financial case) which describes the whole phe-
nomenom: the velocity field in turbulent flows (the price of an asset on a financial
market). This extension was first performed by Mandelbrot himself who proposed
to modelize the price of a financial asset with a time changed Brownian motion,

Partially supported by CNRS (UMR 7599 “Probabilités et Modèles Aléatoires”).
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the time change being random and independant of the Brownian motion. In [2], the
authors proposed for the time change to take the primitive of multiplicative chaos:
this gives the so called multifractal random walk model (MRW) (Bacry and Muzy
later generalized the construction of the MRW model in [3]). The obtained process
accounts for many observed properties of financial assets.

The inconvenient of the above construction and of the MRW model is that the
laws of the increments are symmetrical. In the case of finance, this is in contra-
diction with the skewness property observed for certain asset prices. In the case of
turbulence, the laws of the increments must be nonsymmetrical: it is a theoretical
necessity and stems from the dissipation of the kinetic energy ([7]). In light of these
observations, we are naturally led to construct random fields which generalize to
any dimension such process and which present multifractal scale invariance as well
as nonsymmetrical increments.

We will answer a very natural question: how can one obtain a two parameter family
of multifractal fields with nonsymmetrical increments by perturbing a given scale
invariant gaussian random field on R

d? Finally, in the last part we will mention the
difficulties which arise in trying to construct an incompressible multifractal velocity
field that verifies the 4/5-law of Kolmogorov with positive dissipation.

2. Notations and preliminary results

2.1. The underlying gaussian field. Let dW0(x) denote the gaussian white noise
on R

d and ϕ : R
d → [0, 1] denote a C∞, radially symmetric function worth 1 for

|x| 6 1 and 0 for |x| > 2. We also introduce a fixed correlation scale R > 0 and α a
number which satisfies

d/2 < α < d/2 + 1. (2.1)

We define the gaussian field X g by the following formula:

X g(x) =

∫

Rd

ϕR(x− y)

|x− y|d−α
dW0(y), (2.2)

where we set the following notation:

ϕR(x) = Rd/2−αϕ(
x

R
).

It is easy to show that (2.2) defines a homogeneous, isotropic gaussian field which is
almost surely holderian of order < α − d/2. Note that condition (2.1) implies that
the integrand in (2.2) is square integrable and the Rd/2−α factor ensures that the
field is dimensionless.

scaling property. Let e be a unitary vector and λ > 0. we have the following identity
in law:

X g(x+ λe) −X g(x) =
(law)

∫

Rd

(
ϕR(y − λe)

|y − λe|d−a
−
ϕR(y)

|y|d−a
)dW0(y).

From the gaussianity of the above law, we deduce that for all q > 0, there exists
cq > 0 such that:

E(|X g(x+ λe) − X g(x)|q) = σq
λecq,
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with

σ2
λe ∼

λ→0
(
λ

R
)2α−d

∫

Rd

(
1

|y − e|d−a
−

1

|y|d−a
)2dy.

We thus derive the following scaling

E(|X g(x+ λe) − X g(x)|q) ∼
λ→0

(
λ

R
)q(α−d/2)Cq,

where the constant Cq is independent of e. One says that (X g(x))x∈Rd is at small
scales monofractal with scaling exponent α− d/2.

A field (X (x))x∈Rd is multifractal if there exists a non linear function ζq such that:

E((X (x+ λe) − X (x))q) ∼
λ→0

(
λ

R
)ζqCq.

We call ζq the structural function of the field (X (x))x∈Rd.

2.2. Outline of the construction of multifractal fields from the field X g.

Our construction is inspired by the work of Kahane in [8]. Let ǫ > 0 and Xǫ(y) a
regular family of gaussian fields (not necessarily independent of dW0). We consider
a family of fields X ǫ defined by:

X ǫ(x) =

∫

Rd

ϕR(x− y)

|x− y|d−α
ǫ

eXǫ(y)−CǫdW0(y) (2.3)

(|x − y|ǫ is defined in the next subsection and is given by a standard convolution).
For an appropriate family Xǫ, we show that it is possible to find constants Cǫ such
that X ǫ tends to a non trivial field X as ǫ tends to 0. If one chooses Xǫ independent
of dW0, we will see that this leads to a field X that extends the model introduced by
Bacry in [2] and that has symmetrical increments. Thus, to obtain nonsymmetrical
increments, we must introduce correlation between Xǫ and dW0.

2.3. Notations and construction of the family Xǫ. Let kR be the function

kR(x) =

{
1

|x|d/2 for |x| 6 R,

0 otherwise.

Let θ(x) be a C∞, non negative and radialy symmetrical function with compact
support in |x| 6 1 such that ∫

Rd

θ(x)dx = 1.

We define θǫ = 1
ǫd θ(

.
ǫ
) and the corresponding convolutions:

kR
ǫ = θǫ ∗ kR, |.|ǫ = θǫ ∗ |.|.

Let γ be a strictly positive parameter and dW be a gaussian white noise on R
d. We

consider the following gaussian field:

Xǫ(y) = γ

∫

Rd

kR
ǫ (y − σ)dW (σ).
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Its correlation kernel is given by:

E(Xǫ(x)Xǫ(y)) = γ2ρǫ/R(
x− y

R
),

where ρ = k1 ∗ k1 and ρǫ = θǫ ∗ θǫ ∗ ρ. One can prove the following expansion

ρ(x) = ωd ln+ 1

|x|
+ φ(x),

where ωd denotes the surface of the unit sphere in R
d and φ is a continuous function

that vanishes for |x| > 2. We will note |.|∗ = 1 ∧ |.| and, with this definition, the
previous expansion is equivalent to:

eρ(x) =
eφ(x)

|x|ωd
∗
.

One can also prove the following expansions with respect to ǫ:

kR
ǫ (0) =

C0

ǫd/2
(2.4)

with C0 =
∫
|u| 6 1

θ(u)

ud/2du and there exists a constant C1 such that

ρǫ/R(0) = ωd ln
R

ǫ
+ C1 + o(ǫ). (2.5)

In the sequel, we will consider the case

γdW = γ0(ǫ)dW0 + γ1dW1,

where dW1 is a white noise independant of dW0 and γ0(ǫ) is a function of ǫ that will
be defined later. Note that the integral in formula (2.3) has a meaning since dW0

can be viewed as a random distribution.

2.4. Preliminary technical results. We remind the following integration by parts
formula for gaussian vectors (cf. lemma 1.2.1 in [11]):

Lemma 2.1. Let (g, g1, . . . , gn) be a centered gaussian vector and G : R
n → R a C1

function such that its partial derivatives have at most exponential growth. Then we
have:

E(gG(g1, . . . , gn)) =

n∑

i=1

E(ggi)E(
∂G

∂xi
(g1, . . . , gn)). (2.6)

From the above formula, one can easily deduce by induction the following lemma
which will be frequently used in the sequel:

Lemma 2.2. Let l ∈ N∗ be some positive integer and (g, g1, . . . , g2l) a centered
gaussian vector. Then:

E(g1 . . . g2le
g) = (

l∑

k=0

Sk,l)e
1
2
E(g2),
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where

Sk,l =
∑

{i1,...,i2k}⊂{1,...,2l}

∑
E(ggi1) . . . E(ggi2k

)E(gi2k+1
gi2k+2

) . . . E(gi2l−1
gi2l

),

where the second sum is taken over all partitions of {1, . . . , 2l}/{i1, . . . , i2k} in
subsets of two elements {i2k+1, i2k+2}.

Similarly, we get the following formula:

E(g1 . . . g2l+1e
g) = (

l∑

k=0

S̃k,l)e
1
2
E(g2),

where

S̃k,l =
∑

{i1,...,i2k+1}⊂{1,...,2l+1}

∑
E(ggi1) . . . E(ggi2k+1

)E(gi2k+2
gi2k+3

) . . . E(gi2l
gi2l+1

),

Remark 2.3. In Sk,l (S̃k,l), the summation is made of 2l!
2k!2l−k(l−k)!

( (2l+1)!
(2k+1)!2l−k(l−k)!

)

terms, number we will denote by αk,l (α̃k,l).

We will also use the following lemma essentially due to Kahane ([8]).

Lemma 2.4. Let (T, d) be a metric space and σ a finite positive measure on T
equiped with the borelian σ-field induced by d.

Let q : T × T :→ R+ a symmetric application and m a positive integer. Then we
have the following inequalities:

∫

T 2m

e
∑

1 6 j<k 6 2m q(tj ,tk)dσ(t1) . . . dσ(t2m) 6 σ(T )(sup
s∈T

∫

T

emq(t,s)dσ(t))2m−1, (2.7)

∫

T 2m+1

e
∑

1 6 j<k 6 2m+1 q(tj ,tk)dσ(t1) . . . dσ(t2m+1)

6 σ(T ) sup
s,s̃

(

∫

T

eq(s̃,t)dσ(t))(

∫

T

emq(s,t)eq(s̃,t)dσ(t))2m−1. (2.8)

Proof. The proof of (2.7) can be found in [8]. Thus we just prove how to derive
inequality (2.8) from (2.7). By integrating with respect to the first 2m variables, we
get:

∫

T 2m+1

e
∑

1 6 j<k 6 2m+1 q(tj ,tk)dσ(t1) . . . dσ(t2m+1)

=

∫

T

dσ(t2m+1)

∫

T 2m

e
∑

1 6 j<k 6 2m q(tj ,tk)
2m∏

j=1

eq(tj ,t2m+1)dσ(t1) . . . dσ(t2m)

6
(2.7)

∫

T

dσ(t2m+1)(

∫

T

eq(t,t2m+1)dσ(t))(sup
s

∫

T

emq(s,t)eq(t,t2m+1)dσ(t))2m−1

6 σ(T ) sup
s,s̃

(

∫

T

eq(s̃,t)dσ(t))(

∫

T

emq(s,t)eq(s̃,t)dσ(t))2m−1.
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3. Construction of multifractal random fields with

nonsymmetrical increments

In this section, we will suppose that d/2 < α < (d/2+1)∧ d and ωdγ
2
1 < d.

We consider the field X ǫ defined by formula (2.3) with

Xǫ(y) = γ0(ǫ)X
ǫ
0(y) + γ1X

ǫ
1(y),

where

Xǫ
i (y) =

∫

Rd

kR
ǫ (y − σ)dWi(σ), i = 0, 1.

We set also
Cǫ = ((γ0(ǫ))

2 + γ2
1)ρǫ/R(0).

and

γ0(ǫ) = γ∗0(
ǫ

R
)

d−ωdγ2
1

2 .

Therefore, we introduce a slight correlation between Xǫ and dW0 (γ0(ǫ) tends to
0 as ǫ goes to 0).

3.1. Multiplicative chaos in dimension d. Multiplicative chaos or the ”limit-
lognormal” model introduced by Mandelbrot is a generalization of the exponential
of a gaussian process. As mentioned in the introduction, it was defined rigorously by
Kahane in [8]. The construction of Kahane was based on the theory of martingales
and thus the generalized correlation kernel (here ρ(t− s)) had to verify a condition
hard to verify practically (the σ-positivity condition). Our construction is based on
L2-theory and can be carried out without this condition.

Let γ1 be some real number such that γ2
1ωd < d and ǫ a positive number. Let

B(Rd) denote the standard borelian σ-field; we want to consider the limit as ǫ goes
to 0 of the random measures Qǫ,γ1 defined by:

Qǫ,γ1(dy) = eγ1Xǫ
1(y)− 1

2
E((Xǫ

1(y))2)dy

= eγ1Xǫ
1(y)− 1

2
γ2
1ρǫ/R(0)dy. (3.1)

This leads us to state the following proposition:

Proposition 3.1 (Multiplicative chaos of order γ1). There exists a positive random
measure Qγ1(dy) independent of the regularizing function θ such that:

(1) for all A bounded in B(Rd), E(Qγ1(A)) = |A|.
(2) Qγ1 has almost surely no atoms.
(3) Qγ1 is almost surely singuliar with respect to the Lebesgue measure.

If q is some positive integer and f : R
d → R a deterministic function that satisfies

the following condition:∫

(Rd)2q

|f(y1)| . . . |f(y2q)|
∏

1 6 i<j 6 2q

1

|
yi−yj

R
|
γ2
1ωd

∗

dy1 . . . dy2q <∞, (3.2)

then we have the following convergence:∫

Rd

f(y)Qǫ,γ1(dy)
L2q

→
ǫ→0

∫

Rd

f(y)Qγ1(dy).
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We also have the following expression for the moments of
∫

Rd f(y)Qγ1(dy):

∀k 6 2q, E((

∫

Rd

f(y)Qγ1(dy))k) =

∫

(Rd)k

f(y1) . . . f(yk)
∏

1 6 i<j 6 k

eγ2
1φ(

yi−yj
R

)

|
yi−yj

R
|
γ2
1ωd

∗

dy1 . . . dyk.

(3.3)
We will call Qγ1(dy) multiplicative chaos of order γ1.

Proof. We first start by considering a positive integer and a function f that satisfies
the corresponding integrability condition (3.2). Let ǫ, ǫ′ be two positive numbers. By
using Fubini, we get for all j 6 2q:

E((

∫

Rd

f(y)Qǫ,γ1(dy))j(

∫

Rd

f(y)Qǫ′,γ1(dy))2q−j)

= e−
j
2
γ2
1ρǫ/R(0)− 2q−j

2
γ2
1ρǫ′/R(0)

∫

(Rd)2q

f(y1) . . . f(y2q)×

e
1
2
γ2
1E((

∑j
i=1 X

ǫ
1 (yi)+

∑2q
i=j+1 X ǫ′

1 (yi))2)dy1 . . . dy2q

→
ǫ,ǫ′→0

∫

(Rd)2q

f(y1) . . . f(y2q)
∏

1 6 i<j 6 2q

eγ2
1φ(

yi−yj
R

)

|
yi−yj

R
|
γ2
1ωd

∗

dy1 . . . dy2q,

From this, we deduce that:

E((

∫

Rd

f(y)Qǫ,γ1(dy) −

∫

Rd

f(y)Qǫ′,γ1(dy))2q) →
ǫ,ǫ′→0

0

and therefore that
∫

Rd f(y)Qǫ,γ1(dy) is a Cauchy sequence in L2q that converges to

some random variable Q̃γ1(f). For k 6 2q, the moment E((Q̃γ1(f))k) is the limit as

ǫ goes to 0 of E((Qǫ,γ1(f))k); from this one can deduce that the moments of Q̃γ1(f)
are given by formula (3.3).

Since γ2
1ωd < d, for any bounded set A in B(Rd), we deduce from the proof above

and lemma 2.4 that Qǫ,γ1(A) converges in L2 to some random variable Q̃γ1(A). This
defines a family of random variables (indexed by the bounded borelian sets) that
satisfies the following properties:

(1) For all disjoint and bounded sets A1, A2 in B(Rd),

Q̃γ1(A1 ∪ A2) = Q̃γ1(A1) + Q̃γ1(A2) a.s.

(2) For any bounded sequence (An)n > 1 decreasing to ∅:

Q̃γ1(An) →
n→∞

0 a.s.

By theorem 6.1.VI. in [5], there exists a random measure Qγ1 such that for all
bounded A in B(Rd) we have:

Qγ1(A) = Q̃γ1(A) a.s.

Finally, one can easily show that the limit random variable Q̃γ1(f) is almost surely
equal to

∫
Rd f(y)Qγ1(dy). �



8 HYDRODYNAMIC TURBULENCE AND INTERMITTENT RANDOM FIELDS

3.2. Convergence towards a field X . In this subsection, we will prove the fol-
lowing proposition:

Proposition 3.2. Let α be such that d/2 < α < (d/2 + 1) ∧ d and γ1 such that
2γ2

1ωd < α−d/2. There exists a field (X (x))x∈Rd such that for all k and x1, . . . , xk ∈
R

d the following convergence in law holds:

(X ǫ(x1), . . . ,X
ǫ(xk)) ⇒

ǫ→0
(X (x1), . . . ,X (xk)). (3.4)

Let l be an integer such that one of the following conditions hold:

(1) l is even and lγ2
1ωd < α− d/2.

(2) l is odd and (l + 1)γ2
1ωd < α− d/2.

Then there exists C such that, for all x in R
d, the random variable X (x) has a

moment of order 2l given by the following expression:

E((X (x))2l) =
l∑

k=0

αk,lC
2k

∫

(Rd)k+l

ϕR(y1)

|y1|d−α
. . .

ϕR(y2k)

|y2k|d−α

ϕR(y2k+1)
2

|y2k+1|2(d−α)
. . .

ϕR(yk+l)
2

|yk+l|2(d−α)

∏

1 6 i<j 6 2k

eγ2
1φ(

yi−yj
R

)

|
yi−yj

R
|
γ2
1ωd

∗

∏

1 6 i 6 2k
j>2k

e2γ2
1φ(

yi−yj
R

)

|
yi−yj

R
|
2γ2

1ωd
∗

∏

2k+1 6 i<j 6 k+l

e4γ2
1φ(

yi−yj
R

)

|
yi−yj

R
|
4γ2

1ωd
∗

dy1 . . . dyk+l.

(3.5)

We also have:

E((X (x+ h) − X (x))2l) =
l∑

k=0

αk,lC
2k

∫

(Rd)k+l

(
ϕR(y1 − h)

|y1 − h|d−α
−
ϕR(y1)

|y1|d−α
) . . .

(
ϕR(y2k − h)

|y2k − h|d−α
−
ϕR(y2k)

|y2k|d−α
)(
ϕR(y2k+1 − h)

|y2k+1 − h|d−α
−
ϕR(y2k+1)

|y2k+1|d−α
)2 . . . (

ϕR(yk+l − h)

|yk+l − h|d−α
−
ϕR(yk+l)

|yk+l|d−α
)2

∏

1 6 i<j 6 2k

eγ2
1φ(

yi−yj
R

)

|
yi−yj

R
|
γ2
1ωd

∗

∏

1 6 i 6 2k
j>2k

e2γ2
1φ(

yi−yj
R

)

|
yi−yj

R
|
2γ2

1ωd
∗

∏

2k+1 6 i<j 6 k+l

e4γ2
1φ(

yi−yj
R

)

|
yi−yj

R
|
4γ2

1ωd
∗

dy1 . . . dyk+l. (3.6)

Proof. Let γ1 be such that 2γ2
1ωd < α− d/2. We set

C =
γ∗0C0e

−1/2γ2
1C1

Rd/2
.

and define two auxiliary fields Yǫ,Zǫ by the following expressions:

Yǫ(x) =

∫

Rd

ϕR(x− y)

|x− y|d−α
Qǫ,γ1(dy) (3.7)

and

Zǫ(x) =

∫

Rd

ϕR(x− y)

|x− y|d−α
eγ1Xǫ

1(y)−CǫdW0(y). (3.8)

Note that Zǫ(x) exists since Xǫ
1 and dW0 are independent with:

E(

∫

Rd

ϕR(x− y)2

|x− y|2(d−α)
e2γ1Xǫ

1(y)−2Cǫdy) <∞. (3.9)
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We can compute, for all x in R
d, E((X ǫ(x) − CYǫ(x) − Zǫ(x))2) (cf. the more

complicated computations in the proof of proposition 3.7) and derive the following
limit:

X ǫ(x) − (CYǫ(x) + Zǫ(x))
L2

→
ǫ→0

0.

Thus, we must show that the finite dimensional distributions of the field CYǫ + Zǫ

converge in law. Let k be some positive integer and x1, . . . , xk points in R
d. For all

ξ = (ξ1, . . . , ξk) in R
k, by conditioning on the field generated by the white noise dW1

and using proposition 3.1, we get:

E(eiξ.(CYǫ(x1)+Zǫ(x1),...,CYǫ(xk)+Zǫ(xk)))

= E(e
iC

∫
Rd(

∑k
i=1 ξi

ϕR(xi−y)

|xi−y|d−α )Qǫ,γ1 (dy)− 1
2
e
2γ0(ǫ)2ρǫ/R(0) ∫

Rd (
∑k

i=1 ξi
ϕR(xi−y)

|xi−y|d−α )2Qǫ,2γ1 (dy)
)

→
ǫ→0

E(e
iC

∫
Rd (

∑k
i=1 ξi

ϕR(xi−y)

|xi−y|d−α )Qγ1 (dy)− 1
2

∫
Rd (

∑k
i=1 ξi

ϕR(xi−y)

|xi−y|d−α )2Q2γ1 (dy)
).

Thus, by applying Levy’s theorem, we conclude that the finite dimensional distri-
butions of the field CYǫ +Zǫ converge in law to those of a field X . We also get from
the proof above the characteristic function of (X (x1), . . . ,X (xk)):

E(eiξ.(X (x1),...,X (xk))) = E(e
iC

∫
Rd(

∑k
i=1 ξi

ϕR(xi−y)

|xi−y|d−α )Qγ1 (dy)− 1
2

∫
Rd(

∑k
i=1 ξi

ϕR(xi−y)

|xi−y|d−α )2Q2γ1 (dy)
).

(3.10)
Suppose l is a positive integer that satisfies the condition of the proposition. By

applying (3.10), we get for all ξ in R:

E(eiξ.X (x)) = E(e
iCξ

∫
Rd

ϕR(x−y)

|x−y|d−α Qγ1 (dy)− 1
2
ξ2

∫
Rd(

ϕR(x−y)

|x−y|d−α )2Q2γ1 (dy)
).

We derive expression (3.5) by computing ∂2lE(eiξ.X(x))
∂ξ2l |ξ=0 thanks to the above formula

and proposition 3.1. We derive expression (3.6) similarly.

3.3. Scaling of X and tightness of X ǫ. The purpose of this subsection is to
show that the field (X (x))x∈Rd satisfies the multifractal scaling relation (this is what
propositions 3.5 and 3.6 below assert) and to study the tightness of the family X ǫ.

We first state two preliminary lemmas we will use in the rest of the paper.

Lemma 3.3. Let δ be some real number such that 0 6 δ < α and δ 6= α− 1. There
exists C = C(δ) such that we have the following inequality for |h| 6 R:

sup
x∈Rd

∫

Rd

|
ϕR(y − h)

|y − h|d−α
−
ϕR(y)

|y|d−α
|

1

|x−y
R

|δ∗
dy 6 Rd/2C|

h

R
|(α−δ)∧1. (3.11)

Proof. By homogenity, we suppose that R = 1 and for simplicity, we suppose d > 2.
Since 1

|x|∗
6 1

|x|
+ 1, we have to show that for δ ∈ [0, α[:

sup
x∈Rd

∫

Rd

|
ϕ(y − h)

|y − h|d−α
−

ϕ(y)

|y|d−α
|

1

|x− y|δ
dy 6 C|h|(α−δ)∧1.

There exists C such that for all y and h, we have:

|ϕ(y − h) − ϕ(y)| 6 C|h| and ϕ(y) 6 C1|y| 6 2. (3.12)



10 HYDRODYNAMIC TURBULENCE AND INTERMITTENT RANDOM FIELDS

We set

I(x) =

∫

Rd

|
ϕ(y − h)

|y − h|d−α
−

ϕ(y)

|y|d−α
|

1

|x− y|δ
dy.

Therefore we get

I(x) 6 C|h|

∫

|y| 6 3

1

|y|d−α

1

|x− y|δ
dy (3.13)

+ C

∫

|y| 6 3

|
1

|y − h|d−α
−

1

|y|d−α
|

1

|x− y|δ
dy

6 C|h| + C

∫

|y| 6 3

|
1

|y − h|d−α
−

1

|y|d−α
|

1

|x− y|δ
dy. (3.14)

First case: δ < α− 1.
Plugging inequality

|
1

|y − h|d−α
−

1

|y|d−α
| 6

(d− α)|h|

|y − h|d−α+1 ∧ |y|d−α+1

in (3.14), we get

I(x) 6 C|h|

∫

|y| 6 3

1

|y − h|d−α+1 ∧ |y|d−α+1

1

|x− y|δ
dy,

which concludes the proof.
Second case: δ > α− 1.

By the change of variable y = |h|u and setting h = |h|e with |e| = 1, we get:
∫

|y| 6 3

|
1

|y − h|d−α
−

1

|y|d−α
|

1

|x− y|δ
dy

= |h|α−δ

∫

|u| 6 3
|h|

|
1

|u− e|d−α
−

1

|u|d−α
|

1

|x/|h| − u|δ
du

6 |h|α−δ sup
a∈Rd

∫

Rd

|
1

|u− e|d−α
−

1

|u|d−α
|

1

|a− u|δ
du.

�

Lemma 3.4. Let δ be some real number such that 0 6 δ < 2α− d or, if d = 1 and
α > 1, δ < 1. There exists C = C(δ) such that we have the following inequality for
|h| 6 R:

sup
x∈Rd

∫

Rd

|
ϕR(y − h)

|y − h|d−α
−
ϕR(y)

|y|d−α
|2

1

|x−y
R

|δ∗
dy 6 C|

h

R
|2α−d−δ. (3.15)

Proof. As in the proof above, we can replace |.|∗ by |.| and suppose that R = 1; thus
we have to show inequality (3.15) with J(x) where we set:

J(x) =

∫

Rd

|
ϕ(y − h)

|y − h|d−α
−

ϕ(y)

|y|d−α
|2

1

|x− y|δ
dy.
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Using inequality (3.12), we get

J(x) 6 C|h|2
∫

|y| 6 3

1

|y|2(d−α)

1

|x− y|δ
dy

+ C

∫

|y| 6 3

|
1

|y − h|d−α
−

1

|y|d−α
|2

1

|x− y|δ
dy

6 C|h|2 + C

∫

|y| 6 3

|
1

|y − h|d−α
−

1

|y|d−α
|2

1

|x− y|δ
dy. (3.16)

Since 2 > 2α− d− δ, we only have to consider the second term in inequality (3.16).
By the change of variable y = |h|u and setting h = |h|e with |e| = 1, we get:

∫

|y| 6 3

|
1

|y − h|d−α
−

1

|y|d−α
|2

1

|x− y|δ
dy

= |h|2α−d−δ

∫

|u| 6 3
|h|

|
1

|u− e|d−α
−

1

|u|d−α
|2

1

|x/|h| − u|δ
du

6 |h|2α−d−δ sup
a∈Rd

∫

Rd

|
1

|u− e|d−α
−

1

|u|d−α
|2

1

|a− u|δ
du.

�

Proposition 3.5. (Scaling along the even integers)
Let l be an integer such that one of the following conditions hold:

(1) l is even and lγ2
1ωd < α− d/2

(2) l is odd and (l + 1)γ2
1ωd < α− d/2.

Let e be a unit vector (|e| = 1). Then there exists Cl 6= 0 independent of e such that
the following scaling relation holds:

E((X (x+ λe) −X (x))2l) ∼
λ→0

Cl(
λ

R
)ζ2l , (3.17)

where we have

ζ2l = l(2α− d) − 2γ2
1ωdl(l − 1). (3.18)

Proof. For simplicity, we will suppose that l is even and that lγ2
1ωd < α − d/2. We

introduce the following notation:

fh(y) =
ϕR(y − h)

|y − h|d−α
−
ϕR(y)

|y|d−α
.

We shall see that the scaling at small scale of the sum (3.6) is given by the term
k = 0. Indeed for all k > 1 let us consider the integral
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∫

(Rd)k+l

fh(y1) . . . fh(y2k)(fh(y2k+1))
2 . . . (fh(yk+l))

2
∏

1 6 i<j 6 2k

eγ2
1φ(

yi−yj
R

)

|
yi−yj

R
|
γ2
1ωd

∗

×

∏

1 6 i 6 2k
j>2k

e2γ2
1φ(

yi−yj
R

)

|
yi−yj

R
|
2γ2

1ωd
∗

∏

2k+1 6 i<j 6 k+l

e4γ2
1φ(

yi−yj
R

)

|
yi−yj

R
|
4γ2

1ωd
∗

dy1 . . . dyk+l.

6 IkJk,l, (3.19)

where we set

Ik = sup
y2k+1,...,yk+l

∫

(Rd)2k

fh(y1) . . . fh(y2k)
∏

1 6 i 6 2k
j>2k

e2γ2
1φ(

yi−yj
R

)

|
yi−yj

R
|
2γ2

1ωd
∗

×

∏

1 6 i<j 6 2k

eγ2
1φ(

yi−yj
R

)

|
yi−yj

R
|
γ2
1ωd

∗

dy1 . . . dy2k.

and

Jk,l =

∫

(Rd)l−k

(fh(y2k+1))
2 . . . (fh(yk+l))

2
∏

2k+1 6 i<j 6 k+l

e4γ2
1φ(

yi−yj
R

)

|
yi−yj

R
|
4γ2

1ωd
∗

dy2k+1 . . . dyk+l.

By using the estimates (3.11),(3.15) and the inequalities (2.7), (2.8), one can show
that for all k > 1, we have

IkJk,l 6 CRdk|
h

R
|ck,l,

with

ck,l = (α−2(l−k)γ2
1ωd)∧1+((α−(2l−k)γ2

1ωd)∧1)(2k−1)+(2α−d)(l−k)−2γ2
1ωd(l−k)(l−k−1).

If α − 2(l − k)γ2
1ωd < 1, then ck,l = ζ2l + k(d − γ2

1ωd); If α − 2(l − k)γ2
1ωd > 1

and α − (2l − k)γ2
1ωd < 1, then ck,l = ζ2l + 1 − α + dk + (2l − 3k)γ2

1ωd; otherwise
ck,l = 2k + (2α− d)(l− k) − 2γ2

1ωd(l − k)(l − k − 1). In all cases, it is easy to show
that ck,l > ζ2l under the conditions of the proposition..
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Finally, we study the term where k = 0. We get for h = λe with |e| = 1:

∫

(Rd)l

(fh(y1))
2 . . . (fh(yl))

2
∏

1 6 i<j 6 l

e4γ2
1φ(

yi−yj
R

)

|
yi−yj

R
|
4γ2

1ωd
∗

dy1 . . . dyl.

=
yi=λui

(
λ

R
)l(2α−d)

∫

(Rd)l

(
ϕR(λ(u1 − e))

|u1 − e|d−α
−
ϕR(λu1)

|u1|d−α
)2 . . . (

ϕR(λ(ul − e))

|ul − e|d−α
−
ϕR(λul)

|ul|d−α
)2×

∏

1 6 i<j 6 l

e4γ2
1φ(

λ(ui−uj)

R
)

|
λ(ui−uj)

R
|
4γ2

1ωd
∗

du1 . . . dul.

∼
λ→0

e2l(l−1)γ2
1φ(0)(

λ

R
)ζ2l

∫

(Rd)l

(
1

|u1 − e|d−α
−

1

|u1|d−α
)2 . . . (

1

|ul − e|d−α
−

1

|ul|d−α
)2×

∏

1 6 i<j 6 l

1

|ui − uj|4γ2
1ωd

du1 . . . dul,

and inequality (2.7) shows that this integral is finite when lγ2
1ωd < α− d/2.

�

In the next proposition, we state the scaling relations of X along the odd integers.

Proposition 3.6. (Scaling along the odd integers) We suppose in this proposition
that α > 2 and thus d > 3. Let l be an integer such that l + 1 satisfies one of the
conditions in proposition 3.5.

Let e be a unit vector (|e| = 1). Then there exists Cl (with C3 6= 0) independent
of e such that the following scaling relation holds:

E((X (x+ λe) − X (x))2l+1) ∼
λ→0

γ∗0R
d/2Cl(

λ

R
)ζ̃2l+1 , (3.20)

where we have

ζ̃2l+1 = l(2α− d) − 2γ2
1ωdl(l − 1) + 2. (3.21)

Proof. As in proposition 3.2, setting C =
γ∗
0C0e−1/2γ2

1C1

Rd/2 , it is possible to show that:

E((X (x+ h) − X (x))2l+1)

=
l∑

k=0

α̃k,lC
2k+1

∫

(Rd)k+l+1

fh(y1) . . . fh(y2k+1)(fh(y2k+2))
2 . . . (fh(yk+l+1))

2×

∏

1 6 i<j 6 2k+1

eγ2
1φ(

yi−yj
R

)

|
yi−yj

R
|
γ2
1ωd

∗

∏

1 6 i 6 2k+1
j>2k+1

e2γ2
1φ(

yi−yj
R

)

|
yi−yj

R
|
2γ2

1ωd
∗

∏

2k+2 6 i<j 6 k+l+1

e4γ2
1φ(

yi−yj
R

)

|
yi−yj

R
|
4γ2

1ωd
∗

dy1 . . . dyk+l+1,

where, as usual, we set

fh(y) =
ϕR(y − h)

|y − h|d−α
−
ϕR(y)

|y|d−α
.
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Similarly to proposition 3.5, to get the main contribution as |h| goes to 0, we examine
the term k = 0. We set:

ψ(y) =
ϕ(y)

|y|d−α
.

Note that the condition 2lγ2
1ωd < α− 2 ensures that:
∫

Rd

|
∂2ψ

∂yi∂yj
|e2lγ2

1ρ(y)dy <∞.

We get for h = λe with |e| = 1 the following equivalent:

∫

(Rd)l+1

fh(y1)(fh(y2))
2 . . . (fh(yl+1))

2
∏

j > 2

e2γ2
1φ(

y1−yj
R

)

|
y1−yj

R
|
2γ2

1ωd
∗

×

∏

2 6 i<j 6 l+1

e4γ2
1φ(

yi−yj
R

)

|
yi−yj

R
|
4γ2

1ωd
∗

dy1 . . . dyl+1.

=
yi=λui,i > 2

y1=Ry

Rd/2(
λ

R
)l(2α−d)

∫

(Rd)l+1

(ψ(y −
λ

R
e) − ψ(y))

∏

j > 2

(
ϕR(λ(uj − e))

|uj − e|d−α
−
ϕR(λuj)

|uj|d−α
)2×

∏

j > 2

e2γ2
1φ(y−

λuj
R

)

|y −
λuj

R
|
2γ2

1ωd
∗

∏

2 6 i<j 6 l+1

e4γ2
1φ(

λ(ui−uj)

R
)

|
λ(ui−uj)

R
|
4γ2

1ωd
∗

dydu2 . . . dul+1.

∼
λ→0

Rd/2C̃le
2l(l−1)γ2

1φ(0)(
λ

R
)ζ̃2l+1 ,

with C̃l = AlBl where

Al =
∑

1 6 i,j 6 d

eiej

∫

Rd

∂2ψ

∂yi∂yj
e2lγ2

1ρ(y)dy

and

Bl =

∫

(Rd)l

(
1

|u1 − e|d−α
−

1

|u1|d−α
)2 . . . (

1

|ul − e|d−α
−

1

|ul|d−α
)2×

∏

2 6 i<j 6 l+1

1

|ui − uj|4γ2
1ωd

du2 . . . dul+1.

A direct computation shows that C̃3 6= 0 from which we deduce that for γ∗0 6= 0
the distribution of X (x+ λe) − X (x) is nonsymmetrical.

�

Proposition 3.7. (Tightness) Let l be some positive integer that satisfies the con-
dition of proposition 3.5 and γ a positive parameter such that γ2

1 < γ2. Then there
exists ǫ0 > 0 and C independent of ǫ such that for ǫ < ǫ0 and |h| 6 R:

∀x, E((X ǫ(x+ h) − X ǫ(x))2l) 6 C|h|l(2α−d)−2γ2ωdl(l−1), (3.22)
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and
E((X ǫ(0))2l) 6 C. (3.23)

Proof. We only prove (3.22) (the proof of 3.23 is similar). We are going to compute
the moment

E((

∫

Rd

fǫ,h(y)e
Xǫ(y)−CǫdW0(y))

2l)

where we set

fǫ,h(y) =
ϕR(y − h)

|y − h|d−α
ǫ

−
ϕR(y)

|y|d−α
ǫ

.

We get

E((

∫

Rd

fǫ,h(y)e
Xǫ(y)−CǫdW0(y))

2l) = e−2lCǫ

∫
fǫ,h(y1) . . . fǫ,h(y2l)E(eX̂ǫ

dW0(y1) . . . dW0(y2l)),

(3.24)
where

X̂ǫ = Xǫ(y1) + . . .+Xǫ(y2l).

The rest of the computation can be performed rigorously by regularizing the white
noise dW0, using lemma 2.2 and going to the limit. It is easy to see that we obtain
the same result by introducing the following formal rules:

E(dW0(y)dW0(y
′)) = δy−y′dy (3.25)

and
E(dW0(y)X

ǫ(y′)) = γ0(ǫ)k
R
ǫ (y′ − y)dy (3.26)

As a consequence of lemma 2.2, E(eX̂ǫ
dW0(y1) . . . dW0(yq)) is the sum of terms of

the form

E(dW0(y1)X̂
ǫ) . . . E(dW0(yk)X̂

ǫ)E(dW0(yk+1)dW0(yk+2)) . . . E(dW0(yq−1)dW0(yq))e
1
2
E((X̂ǫ)2).

(3.27)
We will compute the limit of each one of these terms. By using (3.26), we get

E(dW0(y)X
ǫ(yl)) = γ0(ǫ)(

q∑

i=1

kR
ǫ (yi − yl))dyl

= γ0(ǫ)k
R
ǫ (0)(1 +Qǫ

l )dyl

where

Qǫ
l =

1

kR
ǫ (0)

(
∑

i6=l

kR
ǫ (yi − yl)).

We also have:

e
1
2
E((X̂ǫ)2) = e(

q
2
ρǫ/R(0)+

∑
i<j ρǫ/R(

yi−yj
R

))(γ0(ǫ)2+γ2
1).

By using lemma 2.2, expression (3.24) and the rules above, we get:

E((
∫

Rd fǫ,h(y)e
Xǫ(y)−CǫdW0(y))

2l) =
∑l

k=0 αk,l(γ0(ǫ))
2k(kR

ǫ (0))2ke(2l−k)((γ0(ǫ))2+γ2
1 )ρǫ/R(0)−2lCǫ

∫
(Rd)k+l fǫ,h(y1) . . . fǫ,h(y2k)(fǫ,h(y2k+1))

2 . . . (fǫ,h(yk+l))
2
∏2k

i=1(1 +Qǫ
i,k,l)e

Sǫ
k,ldy1 . . . dyk+l
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where

Qǫ
i,k,l =

1

kR
ǫ (0)

(
∑

1 6 j 6 2k
j 6=i

kR
ǫ (yi − yj) + 2

∑

j>2k

kR
ǫ (yi − yj))

and

Sǫ
k,l = ((γ0(ǫ))

2 + γ2
1)(

∑

1 6 i<j 6 2k

ρǫ/R(
yi − yj

R
) + 2

∑

1 6 i 6 2k

∑

j>2k

ρǫ/R(
yi − yj

R
)

+4
∑

2k+1 6 i<j 6 k+l

ρǫ/R(
yi − yj

R
)).

We first take care of the normalizing constant outside each integral:

(γ0(ǫ)k
R
ǫ (0)e−1/2((γ0(ǫ))2+γ2

1 )ρǫ/R(0))2ke2l((γ0(ǫ))2+γ2
1 )ρǫ/R(0)−2lCǫ .

By the choice of Cǫ, we have e2l((γ0(ǫ))2+γ2
1 )ρǫ/R(0)−2lCǫ = 1. Using expansions (2.4) and

(2.5), we derive the following equivalent:

γ0(ǫ)k
R
ǫ (0)e−1/2((γ0(ǫ))2+γ2

1)ρǫ/R(0) ∼
ǫ→0

γ∗0C0e
−1/2γ2

1C1

Rd/2
.

In conclusion, the constant outside the integral of term k in the above sum is

αk,l(
γ∗
0C0e−1/2γ2

1C1

Rd/2 )2k.

Let γ be such that γ2
1 < γ2. One can choose ǫ0 > 0 such that γ0(ǫ0))

2 + γ2
1 < γ2.

Using the fact that, for all y, ρǫ/R(y/R) 6 ωd ln+ R
y

+ C with C independent of ǫ,
we get:

eSǫ
k,l 6 C

∏

1 6 i<j 6 2k

1

|
yi−yj

R
|γ

2ωd
∗

∏

1 6 i< 6 2k
j>2k

1

|
yi−yj

R
|2γ2ωd
∗

×

∏

2k+1 6 i<j 6 k+l

1

|
yi−yj

R
|4γ2ωd
∗

. (3.28)

Finally, we conclude by using inequality (3.11) and (3.15) similarly as in the proof
of proposition 3.5.

�

Remark 3.8. One can easily deduce from this that for γ2
1 sufficiently small, by

Kolmogorov’s compacity theorem, X ǫ tends to X in the functional sense and that X
is locally holderian.

Comment 3.9. Starting with a two parameter (R,α) monofractal gaussian field,
we constructed a four parameter (R,α, γ1, γ

∗
0) multifractal field with nonsymmetrical

increments. In dimension d = 1, this family can be used for financial modeling
and, in any case, has it’s own interest. Unfortunately, this family is inappropriate
to modelize the velocity of turbulent flows where, as we shall see, the 4/5-law of

Kolmogorov imposes the condition ζ̃3 = 1: indeed, a look at expression (3.21) shows

that, for this family, ζ̃3 > 2.
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In the case where γ∗0 = 0, we obtain symmetrical random fields which extend to
higher dimensions the model introduced in [2].

In the next section, we will study a multifractal field which is not in this family
but that can be seen as a limit case where γ1 = 0 and γ0 is constant (independent
of ǫ). As we will see, this family will be compatible with the 4/5-law.

4. The field X0

4.1. Construction of the field X0. In this section, we only outline the main steps
of the construction of X0. The field X ǫ

0 is given by formula (2.3) where Xǫ is now
defined by:

Xǫ(y) = γ0

∫

Rd

kR
ǫ (y − σ)dW0(σ).

We suppose that α is in the interval ]0, 1[. We choose the normalizing constant Cǫ

such that:

γ0k
R
ǫ (0)e−Cǫ+

1
2
γ2
0ρǫ/R(0) = 1.

We start by stating a lemma we will use in the proof of the proposition below:

Lemma 4.1. let δ be some real number different from d. Then there exists C =
C(δ) > 0 with: ∫

|u| 6 R

du

|u|δǫ
6 Cǫ(d−δ)∧0. (4.1)

Proof. We suppose δ > d, the other case being obvious. We have:
∫

|u| 6 R

du

|u|δǫ
=

u=ǫũ
ǫd−δ

∫

|u| 6 R/ǫ

dũ

(
∫
|v| 6 1

θ(v)|v + ũ|dv)δ

6 ǫd−δ

∫

Rd

dũ

(
∫
|v| 6 1

θ(v)|v + ũ|dv)δ
.

�

We can now state the following proposition:

Proposition 4.2. Let q be some positive integer satisfying:

(1) q = 1 or q = 2 with γ2
0ωd < α.

(2) q is even, greater or equal to 4 with (q − 3/2)γ2
0ωd < α ∧ d

2
.

(3) q is odd, greater or equal to 3 with (q − 1
2
)γ2

0ωd < α ∧ d
2
.

Under the above condition, for all x, X ǫ
0 (x) converges in Lq to a random variable

X0(x) such that, if e is a unit vector, we get the following scaling:

E((X0(x+ λe) − X0(x))
q) ∼

λ→0
Cq(

λ

R
)ζq , (4.2)

where

ζq = qα−
1

2
q(q − 1)γ2

0ωd
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and

Cq = e
q(q−1)

2
φ(0)

∫

(Rd)q

∏

1 6 i<j 6 q

1

|ui − uj|γ
2
0ωd

∏

1 6 i 6 q

(
1

|ui − e|d−α
−

1

|ui|d−α
)du1 . . . duq.

(4.3)

Proof. In the proof, we suppose that q = 2l with l > 1; we will first prove that:

E((X ǫ
0 (x))q) →

ǫ→0

∫

(Rd)q

∏

1 6 i<j 6 q

eγ2
0φ(

yi−yj
R

)

|
yi−yj

R
|
γ2
0ωd

∗

∏

1 6 i 6 q

ϕR(yi)

|yi|d−α
dy1 . . . dyq. (4.4)

We remind that the right hand side of the above limit exists by lemma 2.4. In order
to prove the above relation, we develop E((X ǫ

0 (x))q) in l + 1 terms similarly as in
the proof of proposition 3.7; then, using formula (2.4) and the fact that, for all y,
ρǫ/R(y) 6 ωd ln 1

ǫ
+C, we are led to show that, for all k 6 l−1, we have the following

convergence:

ǫ(l−k)(d−γ2
0ωd)ǫ−2(l−k)(l−k−1)γ2

0ωdǫ−4k(l−k)γ2
0ωd

∫

(Rd)k+l

ϕR(y1)

|y1|d−α
ǫ

. . .
ϕR(y2k)

|y2k|d−α
ǫ

×

ϕR(y2k+1)
2

|y2k+1|
2(d−α)
ǫ

. . .
ϕR(yk+l)

2

|yk+l|
2(d−α)
ǫ

∏

1 6 i<j 6 2k

eγ2
0φ(

yi−yj
R

)

|
yi−yj

R
|
γ2
0ωd

∗

dy1 . . . dyk+l →
ǫ→0

0.

We apply inequality (4.1) and obtain (if α = d/2, one can work with α−η for η > 0
sufficiently small) : ∫

Rd

ϕR(y)2

|y|
2(d−α)
ǫ

dy 6 ǫ(2α−d)∧0

Therefore the above convergence to 0 amounts to showing that, for all k 6 l− 1, we
have the following inequality:

d+ (2α− d) ∧ 0 − γ2
0ωd > 2(l − k − 1)γ2

0ωd + 4kγ2
0ωd.

This is equivalent to (2l− 3
2
)γ2

0ωd < α ∧ d
2
. One can show, for all x, that (X ǫ

0 (x))ǫ>0

is a Cauchy sequence in Lq by computing E((X ǫ
0 (x) − X ǫ′

0 (x))q) and letting ǫ, ǫ′ go
to 0. Thus, E((X0(x))

q) is given by the left hand side of (4.4).
To show the scaling (4.2), observe that we can prove the following analogue to

(4.4):

E((X0(x+ λe) −X0(x))
q) =

∫

(Rd)q

∏

1 6 i<j 6 q

eγ2
0φ(

yi−yj
R

)

|
yi−yj

R
|
γ2
0ωd

∗

∏

1 6 i 6 q

fλe(yi)dy1 . . . dyq,

(4.5)
where

fλe(y) =
ϕR(y − λe)

|y − λe|d−α
−
ϕR(y)

|y|d−α
. (4.6)

By setting yi = λỹi in the integral of (4.5), we deduce easily (4.2). �

Remark 4.3. Similarly as in the previous section, for γ0 sufficiently small, X ǫ
0

converges in law to X0 in the space of continuous fields.
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4.2. Nonsymmetry of the increments of X0. Let q be some odd integer and
consider Cq given by formula (4.3). It is clear that Cq does not depend on the
unitary vector e. By making the change of variable ũi = ui − e in (4.3), we get:

Cq(e) = −Cq(−e) = −Cq(e).

Thus, we get Cq = 0. Therefore, it is not obvious to see if the law of X0(x+h)−X0(x)
is nonsymmetrical or not. Nevertheless, one can repeat the same construction of X0

as above replacing the kernel ϕR(x−y)

|x−y|d−α
ǫ

by the kernel:

ϕR(x− y)
xi − yi

|x− y|d−α+1
ǫ

, i = 1 . . . d. (4.7)

In this case, C1 = 0 but, by Monte Carlo simulation, one can verify that C3 6= 0. In
particular, with the kernel (4.7), the law of X0(x+ h) − X0(x) is nonsymmetrical.

5. A step towards a model of the velocity field of turbulent flows

An acceptable solution to the problem of hydrodynamical turbulence in dimension
3 would be to construct a random velocity field U solution to the dynamics (Euler
or Navier Stokes typically) that is stationnary, incompressible, space-homogeneous,
isotropic and that satisfies the main statistical properties of the velocity field of
turbulent flows. These properties are:

(1) The 4/5-law of Kolmogorov that links the energy dissipation of the turbulent
flow to the statistics of the increments of the velocity. This law is widely
accepted since it is the only one that can be proven with the dynamics ([6],
[7], [13]). More precisely, this law states:

E((U(x+ ξ) − U(x).
ξ

|ξ|
)3) = −

4

5
D|ξ|. (5.1)

In the above formula, D denotes the average dissipation of the kinetic energy
per unit mass in the fluid.

Remark 5.1. To obtain this law, it is sufficient to suppose that the field U
is space homogeneous and isotropic.

(2) The intermittency of the field U :

E(|U(x+ ξ) − U(x).
ξ

|ξ|
|q) ∼

|ξ|→0
Cq|ξ|

ζq , (5.2)

where q is a positive real number and the ζq are called the structural expo-
nents.

It is a very challenging task to construct a field with all the aforementioned prop-
erties, especially because this field must be invariant by the Euler or Navier-Stokes
equation.

Nevertheless, one can in the first place forget the invariance condition and simply
try to construct a field that satisfies all the other properties. The 4/5-law shows
that the nonsymmetry of the increments is an essential feature: this is one of the
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main difficulties in trying to extend the previous construction of scalar fields to
3-dimensional incompressible fields.

Quite naturally, we consider the incompressible family U ǫ defined by:

U ǫ(x) =

∫

R3

ϕR(x− y)
x− y

|x− y|d−α+1
ǫ

∧ eXǫ(y)−CǫdW (y),

where dW (y) = (dW1(y), dW2(y), dW3(y)) denotes a three dimensional white noise
and Xǫ is defined by the following formula:

Xǫ(y) = γ

∫

R3

KR
ǫ (y − σ).dW (σ),

with KR(x) = x
|x|1+d/2 1|x| 6 R. As in the previous sections, we choose the constant Cǫ

such that U ǫ converges to a non trivial field U as ǫ goes to 0. The vector field U we
obtain is incompressible, homogeneous, isotropic and intermittent with structural
exponents ζq defined by:

ζq = qα− 2πγ2q(q − 1). (5.3)

We can derive the energy dissipation D of the field U by computing the following
limit:

−
5

4
lim
λ→0

1

λ
E(((U(x+ λe) − U(x)).e)3),

where e is some unitary vector. In order to get D finite and D 6= 0, we must have
ζ3 = 1 or equivalently:

α = 1/3 + 4πγ2. (5.4)

Unfortunately, since the field eXǫ(y)dW (y) is isotropic with respect to all unitary
transformations (and not just the rotations), we get D = 0. Thus, the construction
of an intermittent incompressible field with positive dissipation remains an open
question.

Comment 5.2. If one plugs relation (5.4) into (5.3), we get the following expression
for ζq:

ζq = (1/3 + 6πγ2)q − 2πγ2q2.

The small scale behavior of the field depends only on the intermittency parameter γ2.
One can easily identify it using the experimental curve obtained in [1] (cf. fig. 8.8 p.
132 in [7]): with their data, we find 4πγ2 = 0.023. Thus, the intermittency parameter
is small, a situation that seems to be similar in finance for certain assets; indeed,
if one denotes by γ the intermittency parameter of the MRW model introduced by
Bacry, Delour and Muzy ([2]), the authors of [4] estimate γ2 ≈ 0.03 for the S&P500
future index using intraday data over the period 1988-1999.
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