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The simulation of piano string vibration: From physical models
to finite difference schemes and digital waveguides

Julien Bensa, Stefan Bilbao, Richard Kronland-Martinet, and Julius O. Smith III
Center for Computer Research in Music and Acoustics (CCRMA), Department of Music,
Stanford University, Stanford, California 94305-8180

A model of transverse piano string vibration, second order in time, which models 
frequency-dependent loss and dispersion effects is presented here. This model has many desirable 
properties, in particular that it can be written as a well-posed initial-boundary value problem 
~permitting stable finite difference schemes! and that it may be directly related to a digital 
waveguide model, a digital filter-based algorithm which can be used for musical sound synthesis. 
Techniques for the extraction of model parameters from experimental data over the full range of the 
grand piano are discussed, as is the link between the model parameters and the filter responses in a 
digital waveguide. Simulations are performed. Finally, the waveguide model is extended to the case 
of several coupled strings. 
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I. INTRODUCTION

Several models of transverse wave propagation on a
string, of varying degrees of complexity, have appeared
the literature.1–5 These models, intended for the synthesis
musical tones, are always framed in terms of a partial dif
ential equation~PDE!, or system of PDEs; usually, the sim
plified starting point for such a model is theone-dimensional
wave equation,6 and the more realistic features, such as d
persion, frequency-dependent loss and nonlinear hamme
citation ~in the case of the piano string!, are incorporat
through several extra terms. Chaigne and Askenfelt3 have
proposed such a model~see the Appendix for a concise d
scription of this model!, and used it as the basis for a s
thesis technique, through the use of finite differences—
time waveform on a struck piano string is simulated in t
way to a remarkable degree of fidelity.4 Frequency-
dependent loss, the feature of primary interest in this pa
is modeled through the use of a third-order time derivat
perturbation to the dispersive wave equation; while a ph
cal justification for the use of such a term is tenuous, it d
give rise to perceptually important variations in dampi
rates.

In Sec. II, we introduce a model of string vibratio
which is of second order in time differentiation; frequenc
dependent loss is introduced via mixed time–space der
tive terms. As it turns out, the model discussed here i
substantial improvement in several different ways. First,
frequency domain analysis of a second-order system is q
straightforward, and it is quite easy to obtain explicit form
las for dispersion and loss curves; this is considerably m
complicated for systems which are higher order in time,
sentially requiring the factorization of a higher order polyn
mial dispersion relation. Second, it is easy to prove that
model, when complemented by initial and boundary con
tions, is well posed.7,8 Though we do not give a complet
description of this condition here, to say that such an init
boundary value problem is well posed is to say, gener
speaking, that solutions may not grow faster than expon
1
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tially; for linear and shift-invariant systems such as simp
stiff string models, the condition can be conveniently e
pressed in the frequency domain. We show in the Appen
that the PDE first proposed by Ruiz,9 and later popularized
by Chaigne and Askenfelt3,4 is in fact not well-posed, and
possesses a spurious unstable solution. Third, it beco
easy to developfinite difference schemes, for which preci
numerical stability conditions may be easily derived. Fin
difference schemes are discussed briefly in Sec. III. Fourt
is possible to extend the model described here to a m
realistic representation of dispersion and loss as a functio
frequency through additional terms in the PDE, without co
promising well-posedness, or the stability of resulting n
merical schemes.

Finally, it is possible to identify the model PDE with
digital waveguide—this filterlike structure models on
dimensional wave propagation as purely lossless through
the length of the string, with loss and dispersion lumped
terminating filters. It thus performs a simulation of amodi-
fied physical system.

We show, in Sec. IV A, how one can relate the PD
model presented in Sec. II to a digital waveguide structu
paying particular attention to the relationship between
lumped filters used to model loss and dispersion and
model parameters which define our PDE. In Sec. V, we p
form several numerical simulations in order to compare
finite difference and waveguide approaches for this particu
problem. In particular, in Sec. VI, we examine in detail
procedure allowing the resynthesis of natural string vib
tion. Using experimental data obtained from a grand pia
both the terminating filters of a digital waveguide and t
parameters of the physical model are estimated over mos
the keyboard range. This leads to a simple description of
variation of some of these parameters~namely loss param-
eters and string stiffness!over the piano’s range which ca
be used for the convenient synthesis string vibrations a
given excitation point. Finally, in Sec. VII, interstring cou
pling is discussed and modeled using coupled dig
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waveguides. This is a further step towards the design o
realistic piano simulator, which should ultimately also mod
effects such as nonlinear hammer-string coupling and sou
board radiation phenomena.

II. SECOND-ORDER MODELS OF ONE-DIMENSIONAL
WAVE PROPAGATION

A. A family of PDEs

Consider a general linear second-order~in time! wave
equation, of the form

]2y

]t2
12(

k50

M

qk

]2k11y

]x2k]t
1 (

k50

N

r k

]2ky

]x2k
50. ~1!

Here,y(x,t), the solution, is a function of positionxPR and
time t>0, andqk andr k are real constants; the solution is n
uniquely defined until two initial conditions are supplie
~For the moment, we concentrate on the pure initial va
problem and ignore boundary conditions—we will return
this subject in Sec. II B.!Because this equation describes
linear and shift-invariant system, it is possible to analyze
through Fourier techniques. Defining the spatial Four
transformŷ(b,t) of y(x,t) by

ŷ~b,t !5
1

A2p
E

2`

`

y~x,t !e2 j bx dx,

Eq. ~1! can be rewritten as

]2ŷ

]t2
12(

k50

M

~ j b!2kqk

] ŷ

]t
1 (

k50

N

~ j b!2kr kŷ50. ~2!

This second-order linear ordinary differential equation w
real coefficients will have solutions of the form

ŷ~b,t !5 ŷ0~b!est ~3!

for complex frequenciess which satisfy the characteristi
polynomial equation

s212q~b!s1r ~b!50 ~4!

with

q~b!5 (
k50

M

~ j b!2kqk , r ~b!5 (
k50

N

~ j b!2kr k .

Notice that because only even derivatives appear in the f
ily Eq. ~1!, the functionsq and r are real. The characteristi
polynomial equation has roots

s652q6Aq22r .

The condition that the initial value problem corresponding
Eq. ~1! bewell-posedis that these roots have real parts whi
are bounded from above as a function ofb; this is in effect
saying that solution growth can be no faster than expon
tial. A more restrictive~and physically relevant!condition is
that these roots have nonpositive real part for allb, so that all
exponential solutions are nonincreasing. It is simple to sh
that this will be true for

q~b!,r ~b!>0. ~5!

For q and r satisfying Eq.~5!, the imaginary parts o
2
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these roots correspond to oscillation frequencies, and the
parts to loss. Clearly, for real wave numbersb such thatq2

<r , the real parts ofs6 are simply2q. This case corre-
sponds to normal damped wave propagation; notice in p
ticular that if q depends onb, then damping rates will be
wave number~and thus frequency!dependent. Ifq2.r , then
both roots are purely real and nonpositive, yielding damp
nontraveling solutions.

Consider a member of the family defined by Eq.~1!,

]2y

]t2
5c2

]2y

]x2
2k2

]4y

]x4
22b1

]y

]t
12b2

]3y

]x2]t
. ~6!

The first term on the right-hand side of the equation, in
absence of the others, gives rise to wavelike motion, w
speedc. The second ‘‘ideal bar’’ term10 introduces disper-
sion, or frequency-dependent wave velocity, and is para
etrized by a stiffness coefficientk. The third and fourth terms
allow for loss, and ifb2Þ0, decay rates will be frequenc
dependent.@A complete model, for a piano string, is obtaine
by including a hammer excitation term,f (x,t), possibly ac-
counting for nonlinear effects, on the right-hand side, and
restricting the spatial domain to a finite interval and supp
ing a realistic set of boundary conditions.# This model differs
from that of Ruiz9 in only the last term~see the Appendix!.

The characteristic equation has the form of Eq.~4!, with

q~b!5b11b2b2, r ~b!5c2b21k2b4.

For b1 , b2>0, condition Eq.~5! is satisfied and this PDE
obviously possesses exponentially decaying solutions,
what is more, loss increases as a function of wave num
The PDE of Eq.~6! possesses traveling wave solutions wh
q2<r , which, for realistic values of the defining paramete
for a piano string, includes the overwhelming part of t
audio spectrum. For instance, for a C2 piano string,
scribed by the parameters given in Table I, the lower cu
wave number for traveling waves will beb50.0025, corre-
sponding to a frequency of 0.080 Hz. There is no up
cutoff.

In order to relate this PDE model with a digital wav
guide numerical simulation method, it is useful to write t
expressions for dispersion and loss directly. Taking

s65s6 j v ~7!

over the range ofb for which traveling wave solutions exist
we obtain

s~b!52b12b2b2, ~8!

v~b!5A2~b11b2b2!21c2b21k2b4. ~9!

We will discuss digital waveguide models in detail in Se
IV A.

TABLE I. Physical model parameters for piano tones C2, C4, and C7.

C2 C4 C7 Units

L 1.23 0.63 0.10 m
c 160.9 329.6 418.6 m s21

k 0.58 1.25 1.24 m2 s21

b1 0.25 1.1 9.17 s21

b2 7.531025 2.731024 2.131023 m2 s21

Fs 16 000 32 000 96 000 s21
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Finally, we mention that the general form Eq.~1! serves
as a useful point of departure for more accurate model
loss and dispersion in a stiff string. The more terms are
cluded, the better these phenomena can be modeled ove
entire frequency range of interest. Though it is difficult
associate physical processes directly with the various e
perturbation terms in the equation, it is at least simple
ensure, through condition Eq.~5!, that the model is well-
posed, an important first step in developing stable numer
methods.

B. Boundary conditions

In this section, we provide a brief analysis of pinn
boundary conditions, to show that when coupled to our str
model, the same analysis of well-posedness may be app
~i.e., wave numbers of modal solutions are real!. Let us now
restrict the spatial domain for the problem defined by Eq.~6!
to xP@0,L#. As Eq. ~6! is of fourth order in the spatial de
rivatives, we need to supply two boundary conditions at
ther end, i.e., atx50 and x5L. Following Chaigne,3 we
apply pinned boundary conditions,

yux505yux5L5
]2y

]x2U
x50

5
]2y

]x2U
x5L

50. ~10!

For a solution of the formy(x,t)5est1j bx, from dispersion
relation Eq.~4!, there are thus four solutions forb in terms
of s,

b1
2 ~s!5

2g1Ag224k2~s212b1s!

2k2
, ~11a!

b2
2 ~s!5

2g2Ag224k2~s212b1s!

2k2
~11b!

with

g5c212b2s.

At frequencys, thus, any linear combination

y~x,t !5est~a1,1ej b1x1a1,2e2 j b1x1a2,1ej b2x

1a2,2e2 j b2x! ~12!

is a solution to Eq.~6!. Applying the boundary condition
Eq. ~10! to this solution gives the matrix equation

~13!

Nontrivial solutions can occur only when det(A)50, giving
the relation
3
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2 2b2

2 !2 sin~b1L !sin~b2L !50. ~14!

Discounting the caseb1
2 5b2

2 @which yields an identically
zero solutiony(x,t)], then obviously, solutions are of th
form b15np/L, for integernÞ0 ~similarly for b2), and
the modal frequenciessn are, from the solutions Eq.~8! and
Eq. ~9! of the dispersion relation~4!,

sn5s~np/L !1 j v~np/L ! ~15!

over wave numbers for which a traveling solution exists~for
small b1 andb2 , this will be true for alln!.

III. A FINITE DIFFERENCE SCHEME

In order to solve Eq.~6! numerically, we may approxi-
mate its solution over a grid with spacingX, and with time
stepT. Equation~6! can be written as

d t
2y5c2dx

2y2k2dx
2dx

2y22b1d t,0y12b2dx
2d t,2y

1O~T,X2!, ~16!

where the various difference operators are defined by

dx
2y~x,t !5

1

X2
~y~x1X,t !22y~x,t !1y~x2X,t !!,

d t
2y~x,t !5

1

T2
~y~x,t1T!22y~x,t !1y~x,t2T!!,

d t,0y~x,t !5
1

2T
~y~x,t1T!2y~x,t2T!!,

d t,2y~x,t !5
1

T
~y~x,t !2y~x,t2T!!.

All these operators are ‘‘centered’’ about the point (x,t),
except for the backward difference operatord t,2 , which is
used in order to obtain an explicit algorithm. The appro
mation is first-order accurate in the time stepT, and second-
order accurate in the space stepX. @It is worth mentioning,
that this is but one among many ways of discretizing~6!.#
We may now rewrite Eq.~16! as a difference scheme, ope
ating on the grid functionym

n , indexed by integerm andn,
which will serve as an approximation toy(x,t) at the loca-
tion x5mX, t5nT:

ym
n115a10ym

n 1a11~ym11
n 1ym21

n !1a12~ym12
n 1ym22

n !

1a20ym
n211a21~ym11

n21 1ym21
n21 !. ~17!

Here, the difference scheme coefficients are defined by

a105~222l226m224b2m/k!/~11b1T!,

a115~l214m212b2m/k!/~11b1T!,

a1252m2/~11b1T!, ~18!

a205~2114b2m/k1b1T!/~11b1T!,

a215~22b2m/k!/~11b1T!,

where, for brevity, we have introduced the quantities

l5cT/X, m5kT/X2.

In order to examine the stability of scheme Eq.~17!,
which is, like its generating PDE, Eq.~6!, linear and shift
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2, as
invariant, we may apply frequency domain techniques—
the finite difference setting, these techniques are referre
asVon Neumann analysis.7,8 This analysis proceeds in a fas
ion exactly analogous to the analysis applied to the cont
ous time and space systems of the preceding sections. S
cutting the process somewhat, we may consider a solutio
the formym

n 5zneimXb, wherez5esT ~we could equivalently
employ az transform and a discrete-time Fourier transform!.
We thus obtain the two-step characteristic, oramplification
equation

z21a1~b!z1a2~b!50,

where the functionsa1(b) anda2(b) are defined in terms o
the difference scheme parameters of Eq.~18! by

a1~b!52a1022a11cos~bX!22a12cos~2bX!,

a2~b!52a2022a21cos~bX!.

The necessary and sufficient stability conditions for Eq.~17!
are that the roots of the amplification equation be of mag
tude less than or equal to unity, for all wave numbersb; for
this real-valued quadratic, these conditions can be writte
terms ofa1(b) anda2(b) as

ua1~b!u21<a2~b!<1.

The right inequality is satisfied forb1 , b2>0, and after some
algebra, it can be shown that the left inequality is equival
to the conditionl214m214b2m/k<1, further implying
that

T<X2
24b21A16b2

214~c2X214k2!

2~c2X214k2!
.

The relative ease with which an exact bound such as
above may be derived is a direct consequence of the use
two-step scheme and the relative simplicity of the mo
itself; for schemes involving more steps of lookback~which
results from the discretization of a model with higher tim
derivatives, such as Ruiz’s system!, this analysis become
much more involved, though we do approach it nonethe
in the Appendix. This, in addition to reduced memory r
quirements, is a further advantage of using a second-o
model as a starting point.

Equation~16! is but one of many possible discretizatio
of Eq. ~6!—for instance, replacingd t,2 by d t,0 yields an
implicit algorithm,7 and other implicit schemes such as t
u-forms discussed in the work of Chaigne5 may be of interest
in reducingnumerical dispersion,7 and may be of higher for-
mal accuracy~which may be tempered by the stability r
quirements!. To emphasize this point, we have plotted
phase velocities and loss curves for the model system of
~6! versus those of the difference scheme of Eq.~17! in Fig.
1. Notice that this simple difference scheme is a reason
approximation to the model only for smallv ~i.e., for low
frequencies!. As we will see later in Sec. V, this deviati
from the model PDE will account for differences in simul
tion results obtained from digital waveguide models, wh
approximates the phase velocity and loss curves directly
4
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IV. THE DIGITAL WAVEGUIDE MODEL

The digital waveguide approach provides computatio
models for musical instruments primarily in the string, win
and brass families.11 They have also been developed spec
cally for piano synthesis.11–13 This section summarizes th
basic ideas of the digital waveguide approach, and relates
parameters of a digital waveguide model to an underly
physical model.

A. Background

As mentioned in Sec. I, to arrive at a PDE modeling t
piano string, it is fruitful to start with the ideal wave equatio
and add perturbation terms to give more realistic frequen
dependent dispersion and losses. The perturbed PDE is
numerically integrated via a finite-difference scheme~or pos-
sibly by another approach, such as finite element meth
etc.!. The digital waveguide approach interchanges the o
of these operations: the ideal wave equation is integrated
using a trivial finite-difference scheme, and the resulting
lutions are perturbed usingdigital filters to add frequency-
dependent loss and dispersion. In the case of a strongly
sipative and dispersive string, the modulus of these so-ca
loop filtersdecreases rapidly with frequency, and phase
become strongly nonlinear. For a frequency-domain imp
mentation, this has no effect on computational complex
but for a time-domain implementation, a larger filter si
may be required in order to match the large variations of
phase response.

It has been known since d’Alembert14 that the ideal one-
dimensional wave equation is solved exactly by arbitra
~sufficiently smooth!wave shapes propagating in both dire
tions. The digital waveguide formulation works directly wit
these traveling wave components. An isolated traveling w
is trivially simulated in practice using adelay line. An ideal
vibrating string is then modeled as a pair of delay lines, o
for each direction of travel.

For digital implementation, the traveling waves a
sampledat intervals ofT seconds. By Shannon’s samplin

FIG. 1. Phase velocity~top!and loss~bottom!for the model of Eq.~6! ~solid
line! and for difference scheme Eq.~17! ~dashed line!as a function of the
frequency. The model parameters are those corresponding to the note C
given in Table I.
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theorem,15 the solution remains exact, in principle, at all fr
quencies up to half the sampling rate. To avoid aliasing,
initial conditions and ongoing excitations must beband-
limited to less than half the sampling ratef s51/T.

Figure 2 shows the simulation diagram for a digi
waveguide model of a rigidly terminated string. The string
excited by the signalE and observed via the signalS.
Sampled traveling velocity waves propagate to the ri
along the upper rail, and to the left along the lower rail. T
rigid terminations cause inverting reflections~the two 21
scale factors!. The delay lines are denotedDi , i 51,2,3, and
theFi blocks are digital filters to be described further belo

Consider a wavelike solution propagating from a po
M1 to a pointM2 along a string~see Fig. 3, top!. The dis
tanceM1M2 will be arbitrarily calledl and the propagation
time d at theminimalphase velocity. At the observation poin
M2 , the wave will have arrived after having undergone t
effects of loss and dispersion. In terms of digital waveguid
the wave will undergo a pure delay@in the frequency do-
main, a multiplicative phase factor exp(2ivd)], times a mul-
tiplicative factorF(v) representing the loss and the dispe
sion experienced by the wave during this interval~see Fig. 3,
bottom!.

Since loss and dispersion are, for this system, lin
time-invariant ~LTI ! phenomena, even when frequency d
pendent, the perturbations needed for added realism in
digital waveguide string model are LTIdigital filters. Since
LTI filters commute, we maylump all of the filtering associ-
ated with propagation in one direction into asingleLTI filter.
These filters are denotedFi in Fig. 2, i 51,2,3.

For purposes of computing the output signalS from the
input signalE, Fig. 2 may be further simplified.

The two filters labeledF1 can be replaced by a singl
filter F1

2 ~by commuting one of them with the intervenin
two delay linesD1 and21 gain!. A similar simplification is
possible forF3 .

In the same way, the two delay lines labeledD1 can be
replaced by a single delay lineD1

2 ~having twice the length
of D1), and the twoD3 blocks can be replaced by oneD3

2

block.
In general, any uniform section of a linear vibratin

string which is excited and observed only at its endpoints
be accurately modeled~in one vibrational plane!by a pair of

FIG. 2. Digital waveguide model of a rigidly terminated string.

FIG. 3. The physical system and its corresponding delay line/filter.
5
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digital delay lines, each in series with a digital filter. A di
cussion of more generalized approaches involving nonu
form string sections, and the relationship with finite diffe
ence schemes, is provided in a recent dissertation.16

Since losses and dispersion are relativelyweakin vibrat-
ing strings and acoustic bores, alow-orderfilter can approxi-
mate very well the distributed filtering~infinite-order in prin-
ciple! associated with a particular stretch of string or bo
~We should repeat, however, that the approach outli
above is equally applicable in the case of strongly dispers
or lossy systems, though in these cases, higher-order fi
may be necessary.!In practice, the desired loss and dispe
sion filters are normally derived from measurements such
the decay time of overtones in the freely vibratin
string.17–19In the next section, the filter will be derived from
the stiff-string model of Eq.~16!. Interestingly, the filter~s!so
designed can be mapped back to an equivalent PDE, inc
ing many higher-order terms~which may or may not have a
physical interpretation!. Lumping of traveling-wave filtering
in this way can yield computational savings by orders
magnitude relative to more typical finite differenc
schemes,20–22 and this efficiency can be important in app
cations such as real-time modeling of musical instrume
for purposes of automatic sound synthesis or ‘‘virtual aco
tic instrument’’ performance.

B. Relating digital waveguide parameters to the
physical model

We address here the problem of relating digital wav
guide filter parameters to the loss and dispersion curves f
the physical model discussed in Sec. II. For that, we cons
the continuous frequency representation of the loop filter
show its relation with the physical parameters. The dig
waveguide parameters can then be obtained by discre
tion. We do not address here the problem of the time dom
implementation of the digital waveguide.

According to Eqs.~3! and~7!, the transformations of the
wave due to propagation along the string segment can
represented in terms of a digital waveguide filter by a m
tiplicative phase factor exp(sd1jbl). Ideally, the modulus
and phase of this expression are related to the filterF by

uF~v!u5uesd1j b l u5esd5e2~b11b2b2!d, ~19!

arg~F~v!!5arg~esd1j b l !5vd1b l . ~20!

In order to write the expressions of the modulus and
phase of the loop filter in terms of the frequencyv, it is
necessary to express the wave numberb in terms ofv. From
Eq. ~9!, solving forb, one gets

b2~v!5
2a16Aa1

214a2~b1
21v2!

2a2
~21!

with

a15c222b1b2 , a25k22b2
2. ~22!

Sinceb must be real~see Sec. II B!, we keep only the solu
tion for which the term inside the root is positive. Then,
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b~v!56A2a11Aa1
214a2~b1

21v2!

2a2
. ~23!

Given that, for realistic piano string modeling,b1.1,
b2.1024, c.200, k.1, andv.400, we make the simpli-
fying assumptions

b1b2!c2, b2
2!k2 ~24!

~the second of which also ensures the realness ofb!

b1
2!v2 ~25!

which permit the following approximation ofb:

b~v!.6
c

kA2
A211A114

k2

c4
v2. ~26!

In practice, it is helpful to work with more perceptual
significant parameters for sound synthesis purposes. For
purpose, we will now suppose that the string is of lengthL,
with perfect reflections at the extremities. The delayD,
which corresponds to the propagation time of the minim
phase-velocity wave along the lengthL can be expressed a

D5L/c5p/v0 , ~27!

wherev0 is the fundamental frequency~rad/s!of the ideal
string andc is the minimum phase velocity given by

c5v0L/p. ~28!

Thus,D is the propagation time over distanceL for a sinu-
soidal traveling wave tuned to the first resonant mode of
ideal string. This choice of nominal propagation-timeD sim-
plifies the frequency-domain computations to follow; ho
ever, since phase velocity increases with frequency, the
sociated propagation filterF will be noncausal in the time
domain. This poses no difficulty for frequency-doma
implementation.

Next, we may expressb as

b~v!.6
p

LA2B
Aj ~29!

with

j5211A114Bv2/v0
2 ~30!

in terms of the inharmonicity coefficient23 B given by

B5k2v0
2/c4, ~31!

wherec denotesc(v0) for notational simplicity.
We now have to choose the sign ofb in the expression

for the phase. Since we want the output signal to bedelayed
with respect to the input signal, the loop filter/pure del
combination has to be causal. This means that the phas
the whole transfer function must be negative, i.e.,

2vD1arg~F~v!!,0. ~32!

This indicates that we choose the negative solution fob
in the phase expression. Finally, using Eq.~29!, we arrive at
approximate expressions for the modulus and phase of
filter F as a function of frequencyv,
6

at

e

s-
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uF~v!u.expS 2DFb11
b2p2j

2BL2 G D , ~33a!

arg~F~v!!.vD2pA j

2B
. ~33b!

These expressions serve as the link the PDE mode
Eq. ~6! to the lumped filters of the digital waveguide. For th
sake of simplicity, one can choose an ‘‘elementary filte
dF5F1/D such that

udF~v!u.expS 2Fb11
b2p2j

2BL2 G D , ~34a!

arg~dF~v!!.v2v0A j

2B
. ~34b!

The filtersF of the digital waveguide, which correspon
to propagation over a time durationD, can be then easily
expressed in terms ofdF by

F5dFD. ~35!

The stability of the digital waveguide model is ensured if t
modulus of the filterdF is less than one. This condition i
here always respected, since the expression in the expo
tial of Eq. ~33a! is negative.

V. NUMERICAL SIMULATIONS

We now address the validity of the analytical approa
of the preceding section to determine digital waveguide lo
filters. The modulus and phase of the filters correspondin
the digital waveguide model have been directly linked to
parameters of the physical model. For a given set of P
parameters, thus, we can design a complete digital wa
guide model simulating the signal of the vibrating string a
given location, for a predetermined excitation location. F
purposes of comparison, we have generated output sig
using both the finite difference scheme discussed in Sec.
and the digital waveguide model for the same set of mo
parameters. The digital waveguide has been computed in
frequency domain, allowing the use of Eq.~33a!. The exci-
tation, a Gaussian function of the forme2@(x2x0)2/s2#, simu-
lates an initial velocity distribution of the string at a distan
x05L/8 from one end of characteristic widths5KcLH ,
where Kc is an arbitrary constant andLH is the hammer
width ~we do not enter into too much detail here, as hamm
modeling is not dealt with in this paper!. The signal is ob-
served at the location 9L/10. We have performed simulation
for the notes C2, C4, and C7 using the parameters in Tab
~all of which are taken from values provided in the papers
Chaigne and Askenfelt,3,4 except for the parameterb2 , which
comes from the calibration procedure applied subseque
in Sec. VI.

Figure 4 shows the two first periods of the waveform
generated by both approaches. The amplitudes are sim
Nevertheless, there is a slight discrepancy between the
signals, due to the numerical dispersion introduced by
finite difference scheme~see Sec. III!.
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This discrepancy can be better seen by comparing
phase velocity of the two signals in Fig. 5. This correspon
to the phase velocity plotted in Fig. 1. The phase velocity
the signal produced by the waveguide is similar to the one
the model.

The long-time behavior of the generated signal is a
very similar. In Fig. 6 spectrograms obtained over the wh
length of the sound are shown. It is clear that the glo
damping behavior is similar in the low-frequency rang
However, at high frequencies, the finite-difference mo
suffers from an artificially high propagation gain, as deriv
in Sec. III. The fundamental frequencies are essenti

FIG. 4. Velocity signals obtained from the finite difference scheme p
sented in Sec. III~solid line!and a waveguide model~dotted line!, for three
different notes and for two periods of sound. The model is excited at
tanceL/8 from one endpoint, and the output signal is measured at dista
9L/10. Note that the abscissa scales is different for each figure.

FIG. 5. Phase velocity for the waveguide model~solid line! and for differ-
ence scheme as a function of the frequency for the note C2. The analyti
obtained phase is not shown, as it is identical~by definition! to the phase
response of the waveguide network.
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equal, but the wave dispersion due to string stiffness is
ferent due to thenumericaldispersion introduced by the dif
ference scheme.~We can see in Fig. 7 a slight tuning diffe
ence in the high-frequency partials.! In summary, these
figures illustrate the extent to which the waveguide mo
provides a more accurate digital simulation of stiff, los
strings with respect to both attenuation and dispersion
wave propagation, when compared with finite differen
schemes.

VI. CALIBRATION OF PHYSICAL MODEL
PARAMETERS FOR A GRAND PIANO FROM
EXPERIMENTAL DATA

A. Experimental setup

In order to calibrate the parameters of the physi
model, data were collected on an experimental setup con
ing of a Yamaha Disklavier C6 grand piano equipped w
sensors~see Fig. 8!. The string vibrations were measur

FIG. 6. Spectrograms of the output of the finite difference scheme~at top!
and the waveguide model~at bottom!for the note C2.

FIG. 7. Partial frequencies of the output of the finite difference sche
~dotted!and of the waveguide model~plain! as function of the theoretica
frequencies.
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-
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using an accelerometer located at the bridge level. The
klavier allows the piano to be played under computer c
trol. These measurements were made at the Laboratoir
Mécanique et d’Acoustique, Marseille, France.

In order to ensure that the measurements were ta
under similar excitation conditions, we measured the ha
mer velocity using a photonic sensor~MTI 2000, probe mod-
ule 2125H! ~see Fig. 9!.

Since we were interested in exciting a large portion
the frequency spectrum while remaining in the linear dom
of vibration, we chose a medium~mezzo-forte!hammer ve-
locity of 2.2 m s21, which corresponds roughly to a MID
value of 80. Such a hammer velocity allows the generation
about 140 spectral components for low frequency tones w
a reasonable signal-to-noise ratio~see Fig. 10!.

For each note of the grand piano, the optical sensor
placed close to the hammer and the accelerometer~B&K

FIG. 8. Experimental setup. The grand piano was isolated in an anec
room, and both the string vibrations and the acoustical radiated signal
measured. The string vibrations were measured using both an accelero
located at the bridge level and a laser vibrometer, while the acoustic s
was measured at the head level of the pianist using an artificial headset
library of measured data also includes signals corresponding to various
mer velocities@referred to in recent and forthcoming articles concerned w
the hammer-string interaction~Ref. 31!#, but for this paper, we only nee
acceleration measurements for each string.

FIG. 9. Optical sensor used to measure the hammer velocity. The veloc
obtained through the duration corresponding to the travel time of the h
mer between two reflectors placed on it.
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4374!at bridge level. For notes corresponding to double
triple sets of strings, the accelerometer was placed as clos
possible to the strings~see Fig. 11!. Due to the imprecisio
of MIDI coding, several measurements were made, unt
target value of the hammer speed was obtained. We h
deemed an uncertainty of60.1 m s21 for the hammer veloc-
ity to be acceptable, as the estimation of modal freque
and decay rates is relatively insensitive to such an error.
acceleration measured at the bridge level was then digit
recorded at 16 bits at a sampling rate of 44.1 kHz, bef
being entered in the database.

B. Estimation of parameters

Because this model is intended for use in the contex
musical sound synthesis, we here discuss the calibratio
b1 andb2 , and the determination of the stiffness parame
for a given string.

ic
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m-
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FIG. 10. Spectrum of the note A0.

FIG. 11. Accelerometer at the bridge level.
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To estimate the damping factor associated with e
modal component of the signal, we used a signal proces
technique based on the theory of analytic signals.24,25 The
analytic signal representation provides an easy way of
tracting both the instantaneous frequency and the dampin
each modal component, through band-pass filtering. To
late each component in frequency, we used a trunca
Gaussian window, the frequency bandwidth of which w
chosen so as to minimize smoothing effects over the at
duration and to avoid overlapping two successive freque
components. The Gaussian was employed since its ti
bandwidth product is minimized. As a consequence, it o
mizes the exponential damping support after convolut
with a causal single component for a given band p
filtering.26

The analytic signal associated with each individual co
ponent facilitates the estimation of both the instantane
frequency and the amplitude modulation law of the com
nent. The frequency dependent damping factor is dire
related to the amplitude modulation law of each partial. A
cording to the physics of a single string vibrating in o
plane, the amplitude modulation of each component is
pected to be exponential. This makes the damping fa
easy to estimate by the measurement of the slope of
logarithmic representation of the amplitude of the analy
signal.19 This technique has advantages over other param
ric methods such as Prony’s method,27 mainly due to its abil-
ity to extract a coherent mean damping factor when multi
components are present. In fact, the hammer usually str
not one, but two or three strings simultaneously. The c
pling gives rise to perceptually significant phenomena s
as beating and two-stage decay;28 these effects are not ac
counted for in our model Eq.~6!. For these multistring notes
the calculated damping coefficientss can be thought of de
scribing the global perceived decay of the sound.

For the same reason, the spectral representation of
partial is the result of the summation of several contributio
due to each string and each polarization of vibration. T
phase of the analytic signal allows an accurate estimatio
the mean frequency of the partials. Actually, it permits t
calculation of the instantaneous frequency which is a tim
dependent function oscillating around a mean value. T
mean value coincides with the spectral centroid of
partial29 and consequently with the more likely perceiv
frequency. From the mean frequency values estimated
way for each partial,B may be deduced for each note, a
consequentlyv0 , the fundamental frequency of the corr
sponding ideal string. The inharmonicity factorB is plotted
as a function of the frequency in Fig. 12;B is an increasing
function of the note number, except over the bass ran
where the strings are double-wrapped~this behavior has also
been measured by Conklin30!.

Combining Eqs.~8! and ~29!, one obtains

s~v!52b12b2S p2

2BL2
@211A114B~v/v0!2# D .

~36!

Then, from the value ofs obtained for each partial,b1 and
b2 may be estimated for a given tone. The evolution of th
9
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parameters as a function of the fundamental frequenc
shown in Fig. 13.

We see thatb1 and b2 are both increasing functions o
MIDI note number, indicating increasing loss as one a
proaches the treble range. In Fig. 13, we have also fit
tremely simple curves to the loss parameter data. The fits
linear as a function of the fundamental frequency, and
given by

b154.431023f 02431022, ~37a!

b251.031026f 01131025. ~37b!

These simple empirical descriptions ofb1 andb2 allow the
reproduction of piano tones whose damping will be close
that of the perceived acoustic note. A multistring wavegu

FIG. 12. The measured inharmonicity factorB.

FIG. 13. Values of ‘‘equivalent’’b1 andb2 fitted from measured data as
function of the fundamental frequency.
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model has also been designed,26,31 allowing for beating and
two-stage decay. Its use for synthesis purposes is discu
in Sec. VII. The deviations in the curves~Fig. 13! from the
linear fits must be attributed to the impedance ratio betw
the strings and the soundboard, which varies over the len
of the bridge. As a result, the curves should not be in
preted as impedance curves as they do not represent
surements at a single point and data are taken only at s
modal frequencies. For a detailed discussion of soundbo
impedance and its measurement, we refer to the work
Giordano.32,33

VII. WAVEGUIDES AND SOUND SYNTHESIS

The determination ofb1 , b2 , B, andv0 for each note
allows for an explicit expression of the behavior of the filt
F as a function of note number. In order to represent
evolution of the elementary loop filter in terms of note valu
we show in Fig. 14 the modulus and phase of the elemen
filter dF, normalized with respect to the time delayD,

dF5F1/D. ~38!

In order to understand the general behavior of the mo
lus and the phase of the loop filter with respect to the n
played, we expand their expressions@Eq. ~34a!# for
4B(v/v0) to third order near zero. We obtain

udF~v!u.expS 2Fb11b2

v2

c2 G D , ~39a!

arg~dF !.
v3B

2v0
2

. ~39b!

The modulus~which also accounts for the losses at t
endpoints!, is decreasing with note number as shown in
14. This is mainly due to the increase inb1 . But the param-

FIG. 14. Normalized modulus and phase ofF for selected tones.

eter b2 , which allows for frequency dependent loss is also 
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increasing, leading to a modification of theslope of the
modulus versus frequency for different note numbers.
note that this behavior is slightly different for the wrapp
strings~A0, A1! than for the other strings~A2, A3!. We also
note that althoughB is mainly an increasing function of not
number, the phase of the filtersdF grows less rapidly for the
bass tones than for higher tones. This is due to the fact
the phase of the filter depends not only onB, but also on the
fundamental frequency, as evidenced by Eq.~39b!. Though
this expression is meaningful only for the first few partials
is clear that phase dispersion decreases as a function of
damental frequency.

In the case of the piano, the string is struck at a dista
of approximately one-eighth to one-sixteenth of its leng
from the bridge, depending on the note. We are only int
ested in the vibration generated at the bridge termination
this is the mechanism by which energy is transmitted to
soundboard. This situation corresponds to a digital wa
guide structure identical to the one presented in Fig. 2,
cept that the loop filtersF2 andF3 are combined. Using the
parameters estimated by experiment, one can reproduce
vibration generated by a single string. Figure 15 shows
evolution of the amplitude of the first six partials of th
vibration velocity for the note E1, respectively, measured
the piano and generated by the digital waveguide mo
From a perceptual point of view, the two sounds are ide
cal.

If the tones are produced by two or three strings stru
simultaneously, the basic digital waveguide model still ge
erates a signal having the same amplitude and dampin
the modes. It does not, however, account for the modulati
and double decays due to the coupling of the strings at
bridge.28 Using two or three coupled digital waveguides, a
thus allowing for energy transfer between the strings, o
can easily reproduce this phenomenon.20,26,31 Figure 16
shows the time evolution of the amplitude of the first s
partials for the tone C2~two strings!, using the coupled

FIG. 15. Amplitude of partials one to six for the note E1 as a function
time and frequency.
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strings model described in a recent publication.26 The modu-
lations are essentially perfectly reproduced. Moreover,
model follows directly from the physics of coupled string
In fact, the loop filters are again related to the parameter
the physical model, and numerous sound transformations
conceivable. One could, for instance, extend the use of s
a waveguide model to practically unrealizable situations
volving, for example, widely mistuned strings or coupl
strings with differing material properties.

VIII. CONCLUSIONS

We have presented a model of transverse vibrations
string which includes the effects of stiffness and frequen
dependent loss. This model possesses several advan
over those proposed previously, in particular that it can
framed as a well-posed initial-boundary value problem~lead-
ing to stable numerical methods!, and also that it can
easily related to digital waveguides. The source of th
good properties is the fact that this model allows only t
traveling-wave type solutions; the nonphysical third unsta
term in the model of Ruiz~which can lead to difficulties both
analytically and numerically!is thus eliminated in favor of
higher-order spatial terms. It is also simple to write expr
sions for dispersion and loss as a function of frequency
terms of the model system parameters—such informatio
critical for the design of the terminating filters in a digit
waveguide implementation.

For the sake of comparison, we have performed num
cal simulations of the model system, with pianolike para
eters, using both finite differences and a digital wavegui
the most notable distinction is the complete lack of nume
cal dispersion~which leads to mode mistuning! in the wave-
guide implementation. On the other hand, the waveguide
lows the computation of a solution~‘‘sound’’! only at
preselected points on the string, whereas a finite differe
scheme computes the entire string state in~sampled!physical

FIG. 16. Amplitude of partials one to six for the note C2 as a function
time and frequency.
11
is
.
of
re
ch
-

a
-
ges
e

e
e

e

-
n
is

i-
-
;

i-

l-

ce

form. This is not a drawback for sound synthesis applicatio
because, only the behavior of the string at the bridge is
interest in most stringed instruments. Moreover, physica
accurate outputs from additional points along the string
easily added to a digital-waveguide simulation at the price
one small digital filter each.

A set of experimental data measured from a grand pi
was used in order to calibrate the PDE model parame
over the entire keyboard range. String vibration was m
sured at the bridge through the use of an accelerometer
each note on the piano, and for an average hammer velo
The piano employed was equipped with sensors to prov
hammer velocity data; from these measurements, all the
rameters relating to the relevant PDE model were estima
Given that the model itself is not completely physical—th
is, the various loss mechanisms, interstring coupling, as w
as energy transfer to the soundboard are modelled, for s
plicity, as internal to the string itself—these parameters m
be considered as those describing an ‘‘equivalent’’ stri
under fixed termination. The equivalent parameters, a
however, sufficient for the resynthesis of piano tones to
high degree of fidelity, when a digital waveguide is em
ployed. The digital waveguide model was also extended
order to directly take into account the effects of interstri
coupling, through the use of two or three coupl
waveguides.

The modeling of the excitation mechanism for the pia
string ~i.e., the hammer!is also of great importance, an
must be carried out with some care; we have not addres
this issue here. As has been shown in the work of Chai
and Askenfelt, it is possible to design a nonlinear hamm
which, when applied to a stiff string with frequency
dependent loss, produces signals quite similar to those m
sured on a real piano. The problem of extracting hamm
parameters from measured data is also worthy of future
search.
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APPENDIX: THE PIANO STRING MODEL OF
CHAIGNE AND ASKENFELT

The results in this section have appeared, in a sim
form, in the thesis of Ruiz.9 We have added various com
ments regarding well-posedness and numerical stability.

The stiff string model in the thesis of Ruiz9 and in the
papers by Chaigne and Askenfelt3,5 is described by the fol-
lowing equation:

]2y

]t2
5c2

]2y

]x2
2k2

]4y

]x4
22b1

]y

]t
12b3

]3y

]t3
. ~A1!

This model differs from Eq.~6! only by the replacement o
the term 2b2(]3y/]x2]t) by 2b3(]3y/]t3); this model also
allows for frequency-dependent loss, but the system itse
of a quite different character, due to the increased degre
the equation with respect to the time variable. We spen

f
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little time here explaining the significance of the differenc
which has a radical effect on the analysis of the system
whole.

We can examine the well posedness of the system
inserting a solution of the formy(x,t)5est1j bx into Eq.
~A1!, in order to obtain a dispersion relation,

22b3s31s212b1s1c2b21k2b450. ~A2!

This is a cubic in the variables @the quantity on the left-hand
side is referred to as thesymbol7 of Eq. ~A1!#, and again, as
discussed in Sec. II, a necessary condition for the system
Eq. ~A1! to be well posedis that the roots of this equatio
have real partbounded from aboveas a function of spatia
frequencyb. It is simple to see that the real part of at lea
one root of Eq.~A2! will be positive and unbounded as
function of wave number. As this is a third-degree polyn
mial equation with real coefficients, one root will always
real, and the two others occur as a complex conjugate
~or perhaps as two other real roots!. Consider Eq.~A2! asubu
becomes large. In this case, the three roots will behave

22b3s31k2b4'0

and will be evenly distributed over a circle of radiu
(k2b4/(2b3))1/3. If b3.0 ~as suggested in the numeric
experiments in the papers by Chaigne and Askenfelt4!, then
there will be one positive real root of the magnitude me
tioned above, clearly unbounded as a function of wave nu
ber b. ~If b3,0, there will two roots in the right half plane
of this same magnitude, at an angle approaching660 de-
grees with respect to the positive real axis.! We have thus
shown that the initial value problem corresponding to
system of Eq.~A1! is, formally speaking, ill-posed.

We can extract some more detailed information by a
ing under what conditions the roots of Eq.~A2! have positive
real part. A straightforward application of theRouth–Hurwitz
stability criterion34 to Eq. ~A2! shows that in fact, ifb3.0,
there is always exactly one real positive root, regardles
the value of the wave numberb.

The following question then arises: How can we expla
the apparently stable behavior exhibited by simulations4 of
these equations? Indeed, for realistic piano string parame
the numerical integration routine provided in the paper
Chaigne and Askenfelt4 is stable, and produces piano soun
of excellent quality. A first guess might be that the abo
analysis is incomplete due to the neglect of boundary co
tions. Using the boundary conditions supplied by Chaig
however, leads to an analysis identical to that performed
Sec. II B—the modal frequencies for the string system
fined by Eq.~A1! will be given by solutions of the dispersio
relation Eq.~A2! under the replacement ofb by np/L for
integer n. For anyn, there will be exactly one modal fre
quencysn with positive real part. Thus the instability persis
even in the presence of boundary conditions.

We must then conclude that discretization has a stab
ing effect on system of Eq.~A1!. To explore this idea in
more detail, consider the discretization,4 which can be writ-
ten as
12
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n115a10ym

n 1a20ym
n211a11~ym11

n 1ym21
n !1a12~ym12

n

1ym22
n !1a21~ym11

n21 1ym21
n21 !1a30ym

n22. ~A3!

This difference scheme involves three steps of lookback,
flecting the degree of the model system of Eq.~A1!. Here,
the difference scheme coefficients are defined by

a105~222l226m21b3 /T!/D,

a205~211b1T12b3 /T!/D, a115~l214m2!/D,
~A4!

a125~b3 /T2m2!/D, a215a305~2b3 /T!/D,

where, for brevity, we have again used

l5cT/X, m5kT/X2,

as well as

D511b1T12b3 /T.

Let us now examine the characteristic polynomial, which c
be written as

z31a1~b!z21a2~b!z1a3~b!50 ~A5!

with

a1~b!52a1022a11cos~bX!22a12cos~2bX!,

a2~b!52a2022a21cos~bX!, a3~b!52a30.

The solution to the recursion will be bounded and decay
the solutions to this equation are confined to the interior
the unit circle for allbP@2p/X,p/X#. It is simple to show
that this is in fact true, for any of the choices of paramet
given in the papers by Chaigne and Askenfelt.4 This does not
mean, however, that the difference scheme can be consid
to be numerically stable in the Von Neumann sense.7 This is
a rather subtle point, and is worth elaborating.

According to the Lax–Richtmeyer equivalenc
theorem,7 if the initial-boundary value problem is well
posed, the solution to a finite difference scheme will co
verge to the solution of the model problem if it is consiste
and stable. In this case, though, the model system is not
posed, and thus no finite difference can possibly converg
a stable solutionin some limit as the time step T and the gr
spacing X approach zero. The difference scheme Eq.~A3! is
indeed consistent with~A1! to first-order accuracy~and we
note that if one does wish to use this ill-posed model syst
it is in fact possible to design second-order accurate exp
methods!, but it is possible to show~as we expect!that it
cannot be stable in the limit asT becomes small. Because th
recursion is of third order, the analysis is somewhat involv
and requires the application of the Schur–Cohn recurs
procedure7 ~the discrete time analog of the Routh–Hurwi
stability test, again allowing us to check the stability of
polynomial without explicitly calculating the roots!. Never-
theless, it is possible to show in this way that a necess
condition that the roots of the polynomial of Eq.~A5! be
inside the unit circle is that

b3 /T<l214m2<1.

~The second inequality is exactly the necessary stability c
dition given in the paper by Chaigne and Askenfelt.3! Al-
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though we have not provided all the details, we note tha
suffices to perform the Schur–Cohn test at the wave num
b5p/X in order to arrive at these conditions. Clearly, the
two conditions cannot be satisfied if

T<b3⇒Sample rate>1/b3

and thus for a small enough time step, the system poles m
cross to the exterior of the unit circle,regardless of the grid
spacing X.

It should be said, however, that becauseb3 is in general
quite small for realistic piano string models~on the order of
1029), for any reasonable sample rate in the audio range,
recursion does not exhibit this unbounded growth. On
other hand, as we have shown in this paper, it is sim
enough to dispense with the nonphysical solution and all
concomitant analysis by making use of a simpler seco
order model.
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