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Self–inductance coefficient for toroidal thin

conductors
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Université Blaise Pascal (Clermont–Ferrand 2)

63177 Aubière cedex, France

Abstract

We consider the inductance coefficient for a thin toroidal inductor whose thickness
depends on a small parameter ε > 0. An explicit form of the singular part of the
corresponding potential uε is given. This allows to construct the limit potential u

(as ε → 0) and an approximation of the inductance coefficient Lε. We establish
some estimates of the deviation uε − u and of the error of approximation of the
inductance. The main result shows that Lε behaves asymptotically as ln ε, when
ε → 0.

Key words: Asymptotic behaviour, self inductance, eddy currents, thin domain

1 Introduction

In electrotechnical engineering, eddy current devices often involve thick con-
ductors in which a magnetic field is induced, and circuits made of thin wires or
coils, as inductors, connected to a power source generator. Mathematical mod-
elling of such devices has then to take into account the simultaneous presence
of thick conductors and thin inductors. For a two–dimensional configuration
where the magnetic field has only one nonvanishing component, it was shown
that the eddy current equation has the Kirchhoff circuit equation as a limit
problem, as the thickness of the inductor tends to zero, see [1]. For the three–
dimensional case, eddy current models require the use of a relevant quantity
that is the self–inductance of the inductor, see [2], [3]. This number has to be
evaluated a priori as a part of problem data. It is the purpose of the present
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paper to study the asymptotic behaviour of this number when the thickness
of the inductor goes to zero.

Let us consider a toroidal domain of R
3, denoted by Ωε, whose thickness

depends on a small parameter ε > 0. The geometry of Ωε will be described in
the next section. We denote by Γε the boundary of Ωε, by nε the outward unit
normal to Γε, and by Ω′

ε the complement of its closure, that is Ω′
ε = R

3 \ Ωε.
We denote by Σ a cut in the domain Ω′

ε, that is, Σ is a smooth orientable
surface such that, for any ε > 0, Ω′

ε \ Σ is simply connected.

Let now hε denote the time–harmonic and complex–valued magnetic field.
Neglecting the displacement currents, it follows from Maxwell’s equations that

curlhε = 0, div hε = 0 in Ω′
ε.

Then, by a result in [4], p. 265, hε may be written in the form

hε
|Ω′

ε
= ∇ϕε + Iε∇uε, (1)

where Iε is a complex number, ϕε ∈W 1(Ω′
ε) and satisfies

∆ϕε = 0 in Ω′
ε,

and uε is solution of :






∆uε = 0 in Ω′
ε \ Σ,

∂uε

∂n
= 0 on Γε,

[uε]Σ = 1,
[
∂uε

∂n

]

Σ

= 0.

(2)

Here W 1(Ω′
ε) is the Sobolev space

W 1(Ω′
ε) =

{
v; ρv ∈ L2(Ω′

ε), ∇v ∈ L2(Ω′
ε)
}
,

equipped with the norm

‖v‖W 1(Ω′

ε) =
(
‖ρv‖2

L2(Ω′

ε) + ‖∇v‖2
L

2(Ω′
ε)

) 1

2 , (3)

where Lp(Ω′
ε) denotes the space Lp(Ω′

ε)
3 and ρ is the weight function ρ(x) =

(1 + |x|2)−
1

2 . Let us note here, see [4], pp. 649–651, that

|v|W 1(Ω′

ε) =

(∫

Ω′

ε

|∇v|2 dx

) 1

2

2



is a norm on W 1(Ω′
ε), equivalent to (3). In (2), n is the unit normal on Σ, and

[uε]Σ (resp.
[
∂uε

∂n

]

Σ
) denotes the jump of uε (resp.

∂uε

∂n
) across Σ.

In (1), the number Iε can be interpreted as the total current flowing in the
inductor, see [3].

The inductance coefficient is then defined by the expression

Lε =
∫

Ω′

ε\Σ
|∇uε|2 dx.

Our goal is to study the asymptotic behaviour of uε and Lε as ε goes to zero.
We first give an explicit form of the singular part of the potential uε which
allows to construct the limit potential u (as ε → 0) and an approximation of
the inductance Lε. We then prove that the deviation ‖uε − u‖W 1(Ω′

ε) and the

error of approximation of Lε are of order O(ε
5

6
−η) for every η > 0. Finally we

show that the inductance coefficient Lε behaves asymptotically as ln ε, when
ε→ 0, and we thus recover the result stated (without proof) in [5], p. 137.

Let us outline the organization of this paper. In Section 2 we specify the
geometry of the inductor, assuming that it is a toroidal neighborhood of a
closed curve, the internal radius of the torus being proportional to a small
positive number ε. Section 3 states the main result and gives the main steps
in its proof. Let us note here that an extended version of this paper with
detailed proofs can be consulted in [6].

2 Geometry of the domain

We consider a toroidal domain, with a small cross section. This domain may
be defined as a tubular neighborhood of a closed curve. Let γ denote a closed
Jordan arc of class C3 in R

3, with a parametric representation defined by a
function g : [0, 1] → R

3 satisfying

g(0) = g(1), g′(0) = g′(1), |g′(s)| ≥ C0 > 0. (4)

For each s ∈ (0, 1] we denote by (t(s),ν(s), b(s)) the Serret–Frénet coordinates
at the point g(s), i.e., t(s),ν(s), b(s) are respectively the unit tangent vector
to γ, the principal normal and the binormal, given by

t =
g′

|g′|
, ν =

t′

|t′|
, b = t × ν,

and by κ and τ respectively the curvature and the torsion of the arc γ.
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Let Ω̂ = (0, 1)2 × (0, 2π) and let δ denote a positive number to be chosen in a
convenient way. We define, for any ε, 0 ≤ ε < δ, the mapping F ε : Ω̂ → R

3 by

F ε(s, ξ, θ) = g(s) + rε(ξ)(cos θ ν(s) + sin θ b(s)),

where rε(ξ) = (δ − ε)ξ + ε. The jacobian of F ε is therefore given by

Jε(s, ξ, θ) = (δ − ε)aε(s, ξ, θ)rε(ξ),

where
aε(s, ξ, θ) = |g′(s)| − rε(ξ)κ(s) cos θ.

According to (4), if δ is chosen such that

δ|κ(s)| < |g′(s)|, 0 ≤ s ≤ 1,

then
0 < C1 ≤ aε ≤ C2,

and the mapping F ε is a C1–diffeomorphism from Ω̂ into Λδ
ε = F ε(Ω̂).

Here and in the sequel, the quantities C,C1, C2, . . . denote generic positive
numbers that do not depend on ε.

We now set, for any 0 < ε < δ,

Ωδ = Λδ
0 = F 0(Ω̂), Ω′

δ = R
3 \ Ωδ, Ω′

ε = Int(Ω
′
δ ∪ Λ

δ

ε), Ωε = R
3 \ Ω

′
ε.

For technical reasons, we choose in the sequel 0 < ε ≤ δ
2
.

Given a function v on Λδ
ε, we define the function v̂ on Ω̂ by v̂ = v ◦ F ε. If

v ∈ Lp(Λδ
ε), 1 ≤ p ≤ ∞, then v̂ ∈ Lp(Ω̂) and we have

∫

Λδ
ε

v dx =
∫

Ω̂
v̂ (δ − ε) aεrε dx̂.

Moreover, for u and v in H1(Λδ
ε), we have

∫

Λδ
ε

∇u.∇v dx = (δ − ε)
∫

Ω̂

(
rε

aε

∂û

∂s

∂v̂

∂s
+

rεaε

(δ − ε)2

∂û

∂ξ

∂v̂

∂ξ

+

(
aε

rε

+
τ 2rε

aε

)
∂û

∂θ

∂v̂

∂θ

−
rετ

aε

(
∂û

∂s

∂v̂

∂θ
+
∂û

∂θ

∂v̂

∂s

))
dx̂.

We also define the set Γ̂ = (0, 1) × (0, 2π) and the mapping Gε : Γ̂ → R
3 by

Gε(s, θ) = g(s) + ε(cos θ ν(s) + sin θ b(s)).
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The boundary of Ω′
ε is then represented by Γε = Gε(Γ̂). If w ∈ L2(Γε), we

define ŵ ∈ L2(Γ̂) by ŵ = w ◦ Gε, and we have
∫

Γε

w dσ =
∫

Γ̂
ŵ ε(|g′| − εκ cos θ) dσ̂.

Clearly, Ωε and its complement Ω′
ε are connected domains but they are not

simply connected. To define a cut in Ω′
ε, we denote by Σ0 the set F 0((0, 1)2×

{0}) and ∂Σ0 = F 0((0, 1)×{1}×{0}). Let Σ′ denote a smooth simple surface
that has ∂Σ0 as a boundary and such that the surface Σ = Σ′ ∪Σ0 is oriented
and of class C1 (cf. [7]). We denote by Σ+ (resp. Σ−) the oriented surface with
positive (resp. negative) orientation, and by n the unit normal on Σ directed
from Σ+ to Σ−. If w ∈ W 1(R3 \ Σ), we denote by [w]Σ the jump of w across
Σ in the direction of n, i.e.

[w]Σ = w|Σ+ − w|Σ−.

3 Formulation of the problem and statement of the result

We consider the boundary value problem






∆uε = 0 in Ω′
ε \ Σ,

∂uε

∂nε

= 0 on Γε,

[uε]Σ = 1,
[
∂uε

∂n

]

Σ

= 0,

(5)

where nε denotes the unit normal on Γε pointing outward Ω′
ε and n is the

unit normal on Σ oriented from Σ+ toward Σ−. The inductance coefficient is
defined by

Lε =
∫

Ω′

ε\Σ
|∇uε|2 dx. (6)

We want to describe the asymptotic behaviour of uε and Lε as ε → 0.

We first exhibit a function that has the same singularity as might be expected
for the solution of Problem (5) (as ε→ 0). Let us define

v̂(s, ξ, θ) =
θ

2π
ϕ̂(ξ), (s, ξ, θ) ∈ Ω̂,

where ϕ̂ ∈ C2(R) and such that

ϕ̂(ξ) = 1 for 0 ≤ ξ ≤
1

2
, ϕ̂(ξ) = 0 for ξ ≥

3

4
.
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We then define v : R
3 → R by :

v(x) =




v̂(F−1

0 (x)) if x ∈ Ωδ,

0 if x ∈ Ω′
δ.

Let us also define

f̂(s, ξ, θ) =
1

2πa0

(
κ sin θ

δξ
−
τ 2 δ ξ κ sin θ

a2
0

−
∂

∂s

(
τ

a0

))
ϕ̂

+
θ

2π a0 δ2 ξ
(2a0 − |g′|) ϕ̂′ +

θ

2π δ2
ϕ̂′′, (s, ξ, θ) ∈ Ω̂,

f(x) =




f̂(F−1

0 (x)) if x ∈ Ωδ,

0 if x ∈ Ω′
δ,

ϕ(x) =





ϕ̂(ξ) if x ∈ Ωδ, with (s, ξ, θ) = F−1

0 (x),

0 if x ∈ Ω′
δ.

By straightforward calculations, we see that function v is solution of





∆v = f in R
3 \ Σ,

[v]Σ = ϕ,
[
∂v

∂n

]

Σ

= 0.

(7)

Moreover, it satisfies
∂v

∂nε

= 0 on Γε.

Furthermore, we have for any 1 ≤ p < 2,

f ∈ Lp(R3), v ∈ L∞(R3) ∩W 1,p(R3 \ Σ).

We note here that v /∈ H1(R3 \ Σ). However, for any ε, v ∈ H1(Ω′
ε \ Σ).

Let us now set wε = uε − v. We have by subtracting (7) from (5),






− ∆wε = f in Ω′
ε \ Σ,

∂wε

∂nε

= 0 on Γε,

[wε]Σ = 1 − ϕ,
[
∂wε

∂n

]

Σ

= 0.

(8)

We note here that Problem (8) differs from (5) by the value of the jump of
the solution across Σ and by the presence of a right-hand side f . However, we
notice that 1−ϕ vanishes in a neighborhood of ∂Σ and then, for Problem (8),
the jump of wε vanishes in a neighborhood of ∂Σ.

6



Now, to study the asymptotic behaviour of wε and Lε as ε → 0 we consider
the following decomposition. Let w1 denote the solution of





∆w1 = 0 in R
3 \ Σ,

[w1]Σ = 1 − ϕ,
[
∂w1

∂n

]

Σ

= 0,

w1(x) = O(|x|−1) |x| → ∞.

(9)

Using [4], p. 654, and the fact that 1 − ϕ vanishes in a neighborhood of ∂Σ,
we see that Problem (9) has a unique solution in W 1(R3 \ Σ) given by

w1(x) =
1

4π

∫

Σ
(1 − ϕ(y))

n(y) · (x − y)

|x − y|3
dσ(y), x ∈ R

3 \ Σ.

Then we write wε = w1 +wε
2, where the function wε

2 is the unique solution, in
W 1(Ω′

ε), of the exterior Neumann problem





− ∆wε
2 = f in Ω′

ε,

∂wε
2

∂nε

= −
∂w1

∂nε

on Γε,

wε
2(x) = O(|x|−1) |x| → ∞.

(10)

Finally, let w2 denote the unique solution in W 1(R3) of

{
− ∆w2 = f in R

3,

w2(x) = O(|x|−1), |x| → ∞.
(11)

As it is classical (see [8] for instance) the function w2 is given by

w2(x) =
1

4π

∫

R3

f(y)

|x − y|
dy, x ∈ R

3.

Summarizing the decomposition process of the solution to Problem (5), we
have

uε = v + w1 + wε
2 in Ω′

ε \ Σ,

where v, w1 and wε
2 are solutions of (7), (9) and (10) respectively.

We now state our main result.

Theorem 3.1 Let uε be the solution of Problem (5) and let Lε be the in-

ductance coefficient defined by (6). Let u be the function defined in R
3 \ Σ

by u = v + w1 + w2, where v, w1 and w2 are solutions of (7), (9) and (11)

7



respectively. Then, for every η > 0,

‖u− uε‖W 1(Ω′
ε) = O(ε

5

6
−η),

Lε = −
ℓγ
2π

ln ε+ L′ −
∫

R3

f(w1 + w2) dx

+
∫

Σ
(1 − ϕ)

(
∂w1

∂n
+
∂w2

∂n
+ 2

∂v

∂n

)
dσ +O(ε

5

6
−η),

where ℓγ is the length of the curve γ and

L′ =
ℓγ
2π

ln
δ

2
+

1

4π2

∫

Ω̂

(
a0ξθ

2(ϕ̂′)2 +
δ2ξτ 2

a0
ϕ̂2

)
dx̂ + ℓγ

∫ 1

1

2

ϕ̂2

2πξ
dξ.

The next section is devoted to the proof of this result.

3.1 Proof of error estimate

Let w̃ε
2 = wε

2 − w2. Clearly w̃ε
2 = uε − u, w̃ε

2 ∈W 1(Ω′
ε) and it satisfies






∆w̃ε
2 = 0 in Ω′

ε,

∂w̃ε
2

∂nε

= −
∂w1

∂nε

−
∂w2

∂nε

on Γε,

w̃ε
2(x) = O(|x|−1), |x| → +∞.

(12)

To estimate the solution of Problem (12), we need the following result.

Lemma 3.1 There is a constant C, independent of ε, such that :

‖ψ‖L2(Γε) ≤ Cε
1

2 | ln ε|
1

2 ‖ψ‖W 1(Ω′
ε) for all ψ ∈W 1(Ω′

ε), (13)

‖ψ‖L2(Γε) ≤ C
(
ε

1

2 ‖ψ‖W 1,p(Ω′

ε) + ε
4

3
− 2

p ‖∇ψ‖L
p(Λδ

ε)

)

for all ψ ∈W 1,p(Ω′
ε) with compact support,

3

2
< p < 2. (14)

For the proof we refer to [6].
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Using the variational formulation associated with (12), Cauchy–Schwarz in-
equality and Estimate (13), we deduce

∫

Ω′

ε

|∇w̃ε
2|

2 dx =
∫

Γε

(
∂w1

∂nε

+
∂w2

∂nε

)
w̃ε

2 dσ

≤

∥∥∥∥∥
∂w1

∂nε

+
∂w2

∂nε

∥∥∥∥∥
L2(Γε)

‖w̃ε
2‖L2(Γε)

≤ C ε
1

2 | ln ε|
1

2




∥∥∥∥∥
∂w1

∂nε

∥∥∥∥∥
L2(Γε)

+

∥∥∥∥∥
∂w2

∂nε

∥∥∥∥∥
L2(Γε)



 ‖∇w̃ε
2‖L

2(Ω′

ε)
.

(15)

Using the integral representation of w1, we easily check that

∥∥∥∥∥
∂w1

∂nε

∥∥∥∥∥
L∞(Γε)

≤ C.

Therefore ∥∥∥∥∥
∂w1

∂nε

∥∥∥∥∥
L2(Γε)

≤ C (meas Γε)
1

2 ≤ C1ε
1

2 . (16)

To estimate
∂w2

∂nε

, we use standard regularity results for elliptic problems, see

[9], p. 343, to deduce, since f ∈ Lp(R3) for p < 2, that w2 ∈ W 2,p
loc (R3). Then

we apply Estimate (14) to the function u =
∂w2

∂xi

, 1 ≤ i ≤ 3 with p = 2 − η,

0 < η < 1
2
,

∥∥∥∥∥
∂w2

∂xi

∥∥∥∥∥
L2(Γε)

≤ C


ε

1

2

∥∥∥∥∥
∂w2

∂xi

∥∥∥∥∥
W 1,p(Ω′

ε)

+ ε
1

3
− η

2−η

∥∥∥∥∥
∂

∂xi

∇w2

∥∥∥∥∥
L

p(Λδ
ε)


 .

Since both norms on the right–hand side of the above inequality are uniformly
bounded and since the outward unit normal nε is uniformly bounded we obtain

∥∥∥∥∥
∂w2

∂nε

∥∥∥∥∥
L2(Γε)

≤ Cε
1

3
− η

2−η . (17)

Substituting (16) and (17) into (15) and using the inequality | ln ε| ≤ Cε−2η,
we get ∫

Ω′

ε

|∇w̃ε
2|

2 dx ≤ C1 ε
5

6
− η

2−η
−η ‖∇w̃ε

2‖L
2(Ω′

ε)
.

Therefore

‖∇w̃ε
2‖L

2(Ω′

ε) ≤ C2ε
5

6
−η for all η > 0.

2
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3.2 Proof of asymptotic expansion

Using the decomposition uε = v + wε = v + w1 + wε
2 it follows

Lε =
∫

Ω′

ε\Σ
|∇v|2 dx +

∫

Ω′

ε\Σ
|∇wε|2 dx + 2

∫

Ω′

ε\Σ
∇v · ∇wε dx.

Using Green’s formulae, we can write Lε in the form

Lε =
∫

Ω′
ε\Σ

|∇v|2 dx −
∫

Ω′
ε

fwε dx +
∫

Σ
(1 − ϕ)

(
∂wε

∂n
+ 2

∂v

∂n

)
dσ. (18)

Using the previous estimate for wε
2 and some regularity results (w2 ∈W 2,p(Ωδ),

w1 ∈ H2(Ω δ
2

)), we can estimate each term in (18), to obtain for all η > 0,

Lε =
∫

Ω′

ε\Σ
|∇v|2 dx −

∫

R3

fw dx +
∫

Σ
(1 − ϕ)

(
∂w

∂n
+ 2

∂v

∂n

)
dσ +O(ε

5

6
−η),

where w = w1 + w2.

To complete the result, an explicit calculation yields

∫

Ω′
ε\Σ

|∇v|2 dx = −
ℓγ
2π

ln ε+ L′ +O(ε),

where ℓγ is the length of the curve γ and

L′ =
ℓγ
2π

ln
δ

2
+

1

4π2

∫

Ω̂

(
a0ξθ

2(ϕ̂′)2 +
δ2ξτ 2

a0

ϕ̂2

)
dx̂ +

ℓγ
2π

∫ 1

1

2

ϕ̂2

ξ
dξ.
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