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Contact problems with friction: 
models and simulations

F. Lebon

Laboratoire Mécanique Matériaux Structures, Université Claude Bernard Lyon 1, 82, Bd Niels Bohr, 
69622 Villeurbanne Cedex, France
This article deals with the modeling and the numerical simulation of contact 
and friction problems. Some friction formulations are proposed and 
numerical methods of resolution by finite elements are presented. Two 
methods are more particularly developed. The first one is based on a 
formulation using displacements and the second one is based on a mixed 
formu-lation using displacements and contact forces. Then, some 
improvements of these two me-thods as well as a comparison of their 
respective performances are presented.
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1. Introduction

Friction is a natural occurrence that affects almost all objects in motion. The mir-

acle of fire by friction was the first manifestation of friction for our ancestors, ten

thousand years ago. In the Egyptian antiquity, people used grease in order to move

stones on inclined planes. Since then with active friction compensation for motors

and friction welding machines, extensive research has attempted to develop models

that accurately predict the friction behavior. We use the expression ‘‘friction force’’
to speak about the resisting force tangential to the interface between two bodies

when, under the action of an external force, one body moves or tends to move to

the other (two pieces of wood for the Aboriginal people of Australia, stone and

ground for Egyptians). From an industrial and technological point of view, one
E-mail address: lebon@iutal2m.univ-lyon1.fr (F. Lebon).

1



can fight against friction or take advantage of friction. On one hand, our ancestors

have used the friction in order to obtain fire. In a friction welding machine, friction is

used to generate heat and to produce a high integrity joint between similar or dis-

similar metals. The advantages are both metallurgical and physical. On the other

hand, Egyptians wanted to shift heavy stones, and nowadays, technologies have been

developed in order to moderate friction effects. For example, friction composites,

which use auto-lubrication, have been recently developed. Other techniques allow

to obtain a coating able to restore the initial geometry before friction effects on
the contact surface.

This paper outlines modeling and computational methods for studying the con-

tact between deformable solids. Indeed, many structural analysis problems are con-

cerned with frictional contact phenomena, specifically for problems concerned with

structure assembly. These problems are difficult to formulate and even more to solve

because they are characterized by non-linear relations between displacements or

rates of displacements and forces on a part of the boundary, and usually governed

by multi-valued tribological laws. Some numerical solutions can lead to problems
with non-linear constraints or non-symmetric operators. These drawbacks become

crucial for very large problems involving three dimensional discretization or/and

time evolution.

In the first part of this paper, the contact is characterized by the Signorini�s law
and the friction by the semi-empirical Coulomb�s law, which is convenient for a large

class of solids and structures.

In order to solve the problem, two families of algorithms are presented.

The first one is based on a fixed point algorithm on the implicit friction term [51].
At each iteration of the fixed point algorithm, we have to solve an optimization prob-

lem with constraints. The problem being not differentiable is classically solved by re-

laxation procedures. This algorithm has been used by the author and his

collaborators for the analysis of a complex assembly in reactor technology [36] and

for the analysis of coupling sleeves in shape memory alloys [47]. The numerical results

have been compared with experimental data and a validation of the model has been

obtained for the first application. This method is very simple to be implemented and

to be coupled with complex behaviors. It is a robust method and the convergence does
not dependmuch on the friction coefficient. Improvements of the algorithm have been

done using multi-grid methods [33]. These methods are known to be efficient and ro-

bust. To put it more precisely, a super-convergence is obtained.

The second algorithm is based on a mixed formulation and leads to non-linear

and non-differentiable problems. These problems are solved by a generalized Newton

method (GNM). The tangent matrix of the system is non-symmetric, non-positive

definite, ill-conditioned and with zeros on the diagonal. Consequently, it is necessary

to design appropriate preconditioners [5]. The improvement of this algorithm needs
the use of parallel computers and, therefore, the implementation of domain de-

composition methods. Industrial problems such a system of rolling shutters and a

leaf spring-dashpot suspension system have been analyzed in former papers [1].

The last part of the paper is devoted to a comparison between the methods pre-

sented above. The academic example of a composite long bar in contact with a rigid
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obstacle is treated. This problem has the advantage to present complex contact zones

and very ill-conditioned stiffness matrices. An analysis of efficiency and robustness of

the two algorithms is given. Note that the two algorithms have been implemented

in the finite element software Modulef [11] and computations have been done on

various types of platforms (IBM SP2, Sun station, Windows PC).
2. Formulations

2.1. Friction modeling

One can consider that the first attempt of interfaces modeling is due to Amontons

[8] in 1699, analysis resumed by Coulomb [17] in 1785. In these works, the real in-

terface is untidy and only the surfaces in contact are considered. This law called

Coulomb�s law, saying that a sliding appears when the module of the tangential force

is proportional to the normal force of contact, even nowadays is subjected to intense
researches for the theoretical level and for the numerical level [18,20,29,49,58]. It is

generally taken into account in a small satisfactory way in industrial computer codes.

Note (see [30,42], and references therein) that nowadays different types of simulation

methods are used (finite element methods, boundary element method,. . .) and

numerous types of problems are treated (rolling contact, impact and dynamics, insta-

bilities, oscillations, waves,. . .). Furthermore, during the last decades, the law of

Coulomb knew attempts of improvement and modification (let us quote the laws

of compliance [44] or the laws of adhesion [54]).
Another approach, much more recent, consists in trying to precisely take into ac-

count the microstructures of the interfaces, that one generally qualifies as laws of the

third body. In the same order of idea, a glue between two substrata can also be con-

sidered as a third body having mechanical and physical characteristics very different

from both others. It is the same for the interfaces between the various constituents of

a composite. The problem seems to be very difficult; for example, the question of the

real dimensions of the interface as well as the determination of its mechanical charac-

teristics are complex problems. Another difficulty appears when these interfaces
are taken into account in a design by finite elements. The size of the interface being

generally very weak according to the structures dimensions, numerically, two funda-

mental problems in scientific computation appear: the cost and the precision of the

computations. The cost becomes very high not only due to the non-linearities of the

problem but also due to a very high number of degrees of freedom, due to the small

size of the interface. This aspect becomes major for problems of structures assembly

for which the interfaces are very numerous. From the economical point of view, the

costs can seem too important. The other aspect, which concerns the precision, can
turn out catastrophic in a strictly mechanical point of view and can question the de-

sign. To the size of the problems, it adds the very strong variations of the physical

characteristics of materials. These variations pull what numericians call a bad con-

ditioning of the calculations. Indeed, in practice, weak variations of the data, that

are difficult to obtain experimentally, can lead to very strong variations of the results.
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In a theoretical way, one can show that these variations are strongly stressed by the

size of the calculations. Such or such characteristic, such or such criterion of ruin or

collapse can be perfectly under or overestimated in a considerable way after long

days (month) of calculation.

At the end of the 1980s, another strategy has appeared [55]. This strategy consists

in noticing that the size of the interface is small and that one can consider it as ‘‘a

small parameter’’. From the mathematical point of view the framework is perfectly

identified. One proceeds that one calls an asymptotic study [9,19,52]; the small para-
meter (the thickness), eventually the small parameters, aim towards zero, and the

limit problem is studied. In a general way, the interface disappears from a geomet-

rical point of view but is kept in the form of a mechanical constraint (we will call

it law of interface) through a surface energy. In this case, a condition between the

two bodies appears on this surface. Usually, this condition connects the stress vector

rn to the jump of displacements ½u�, where r is the stress tensor. Numerous studies

have been devoted to this subject [21,24,31,34,35,37–39,45,46,55,59,60].
2.2. Generalities and notations

In the following parts of the paper, we use the classical terminology; a problem is

qualified as primal if it involves displacements, dual if it involves forces and mixed if

it involves both displacements and forces. The term ‘‘condensed’’ will be added to

precise that the unknowns (displacements or forces) are researched on the contact

boundary. Considering the classical duality schema presented in Fig. 2 [27,28], we

recall that two different duality products are defined, in the volume and on the
boundary. Two operators from the volume to the boundary and from the boundary

to the volume are necessary. The particularity of a contact problem is to mix vari-

ables on the boundary and variables in the domain.

In this section Coulomb�s and Signorini�s laws are precised. We work in quasi-

static and in two dimensions. Let us consider a deformable body and X the interior

of this solid where body forces F are applied. In order to simplify, the solid is

supposed to be elastic and in contact with a rigid plane on a part of the boundary

Cc (Fig. 1). For this formulation, Cc is defined as the initial real contact area and only
a loss of contact on Cc will be allowed. Nevertheless, generalizations are possible:

contact between deformable bodies, large sliding,. . .
Let us consider H 1ðXÞ the Sobolev space of order 1, H and H0 the subspaces of

ðH 1ðXÞÞ2 defined by
H ¼ fv 2 ðH 1ðXÞÞ2; cv ¼ U on Cdg;
H0 ¼ fv 2 ðH 1ðXÞÞ2; cv ¼ 0 on Cdg;

ð1Þ
c is the trace operator on the boundary C and Cd is the part of the boundary where a

displacement U is prescribed. Forces f are applied on the part of the boundary Cf .

On the part of the boundary, Cc a local referential is introduced ðn; tÞ where n is
the external unit vector to X. In this referential, the trace of displacement v and the

stress vector rn are decomposed. Let us denote vN the normal component of the dis-
4



Fig. 1. The famous patato€ııd in contact.

Fig. 2. Schema of duality: X space of displacements, x space of contact displacements, R space of stresses,

r space of contact forces.
placement, vT its tangential part and rN, rT respectively the normal and the tan-

gential component of the stress vector. We define K the convex of contact of

kinematically admissible fields K ¼ fv 2 H ; vN 6 0 on Ccg. We introduce the gener-

alized-standard-materials formalism [25]. The index r (resp. ir) indicates reversible

part (resp. irreversible) of the stress. The volume free energy, non-differentiable
(i.e. non-smooth), taking into account unilateral contact is written
W ðeÞ ¼ 1
2
eAeþ IKðvÞ; ð2Þ
where IK is the indicatrix function of convex K.

Unilateral contact conditions (Signorini�s conditions) are taken into account add-

ing this indicatrix function to the elastic energy. Using usual notations e is the strain
tensor and A the fourth-order elasticity tensor. The pseudo-potential of dissipation

associated to Coulomb�s law is written
5



with

and a

Fig. 3. Contact laws of Signorini and Coulomb.
Dð _vvTÞ ¼ ljrr
Njk _vvTk; ð3Þ
where _vv is the time derivative of displacement field v.
State laws and complementarity laws are written (o is the sub-differential operator

[14,43])
r ¼ rr ¼ AeðvÞ in X;

rN ¼ rr
N 2 oIKðuNÞ on Cc;

rT ¼ rir
T 2 oDð _uuTÞ on Cc:

ð4Þ
Eq. (4) gives the complementarity problem of Signorini and the Coulomb�s law (see

Fig. 3). Let us denote u0 the initial displacements fields. Equilibrium equations,

Signorini�s and Coulomb�s laws and behavior law lead to the variational formulation

(coupled variational inequalities [16])
u0 2 H be given; find u 2 V ¼ H 1ð0; T ;KÞ such that uð0Þ ¼ u0 in X

aðu; v� _uuÞ þ jðu; vÞ � jðu; _uuÞ6 lðv� _uuÞ; 8v 2 H0Z
Cc

rNðuÞðzN � uNÞdl6 0; 8z 2 K ð5Þ

jðu; vÞ ¼ �
Z

Cc

lrNðuÞj _vvTjdl;

lðvÞ ¼
Z

X
Fvdxþ

Z
Cf

f cvdl

ðu; vÞ ¼
Z

X
eðuÞAeðvÞdx:

ð6Þ
Using a finite difference,
_uuðtkþ1Þ ’ ukþ1 � uk

Dt
¼ Duk

Dt
;

with uk ¼ uðtkÞ, we have at time tkþ1.
Find ukþ1 ¼ uk þ Duk 2 K such that

aðukþ1; v� DukÞ þ jðukþ1; vÞ � jðukþ1;DukÞ6 lðv� DukÞ; 8v 2 K:
ð7Þ
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2.3. Fixed point method FPM

In the following sections, indices k (time) are omitted (static formulation). The

former problem is expressed as a fixed point problem on the sliding limit [15,22]
k ! �lrNðuðkÞÞ; ð8Þ
u is the solution of a variational inequation similar to the former one, where jð�; �Þ is
replaced by jð�Þ defined by
jðvÞ ¼
Z

Cc

kjvTjdl: ð9Þ
The last problem is equivalent to the minimization in K of LðvÞ ¼ 1
2
aðv; vÞ�

lðvÞ þ jðvÞ. It is possible to regularize the non-differentiable term in the minimization
problem, the absolute value is replaced by a smooth function. For example,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ �2

p

or �Lnðchðx=�ÞÞ can be chosen [33,50]. This regularization does not modify numerical

process structures. Usually, the problem is discretized by a linear interpolation

(Finite Element Method). Let h the step of discretization. The displacement leads to

a vector of dimension Nh. If Ih is the set of degrees of freedom concerned by friction,

the fixed point iteration consists in finding the vector of dimension Ih, kh, fixed point

of the discretized previous problem. The algorithm (which is convergent [40]) is

written:

• Step 0 Initialization

u0 be given

• Step 1 Fixed Point (Iteration k)

kk !�lrNðuðkk�1ÞÞ
• Step 2 Minimization (Relaxation)

� Step A Initialization uk;0 ¼ uk

� Step B Resolution (iteration n, ðaijÞ is the stiffness matrix)
For a normal component of a contact node
u
k;nþ1

2
i ¼ 1

aii
fi �

Xj¼i�1

j¼1

aiju
k;n
j �

Xj¼Nh
j¼iþ1

aiju
k;nþ1
j

!
:

If u
k;nþ1

2
i P 0 then uk;nþ1

i ¼ 0:

ð10Þ
For a tangential component of a contact node
uk;nþ1
i ¼ 1

aii
fi �

Pj¼i�1

j¼1 aiju
k;n
j �

Pj¼Nh
j¼iþ1 aiju

k;nþ1
j þ kki � u

k;nþ1
i

� �	 

:

If xP 0; �ðxÞ ¼ 1; if x6 0; �ðxÞ ¼ �1; if x ¼ 0; �ðxÞ ¼ 0:
ð11Þ
For a component of a free node (not concerned by the contact)
uk;nþ1
i ¼ 1

aii
fi �

Xj¼i�1

j¼1

aiju
k;n
j �

Xj¼Nh
j¼iþ1

aiju
k;nþ1
j

!
: ð12Þ
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� Step C Convergence test

Yes: ukþ1 ¼ uk;nþ1, Go to Step 3

No: Go to Step B

• Step 3 Convergence Test

Yes¼End; No¼Go to Step 1.

At each iteration k, we have to minimize the energy in the discretized convex Kh.

This step is done using a relaxation procedure written above. The functional being
strictly convex, the minimization process has an unique solution.
2.4. FPM: improvements and applications

The first improvement for the fixed point algorithm is the use of a diagonal pro-

cedure i.e. the internal optimization problem is only partially solved. Another im-

provement is to introduce a relaxation parameter or an Aitken procedure [50]. A

third improvement is the use of a condensation method (or Sch€uur complement). In
this case, the problem is condensed on the interface. This technique is the foundation

of a class of very efficient parallel algorithms [36,51]. The last improvement that we

have tested is the use of multigrid techniques [33]. These algorithms have been used

for the analysis of a complex assembly in reactor technology [36], for the analysis of

coupling sleeves in shape memory alloys [47] and for the study of piezoelectric sen-

sors [13]. In the first application, the numerical results has been compared with ex-

perimental data and a validation of the Coulomb�s law has been obtained. The

two other applications have shown the simplicity of coupling this method to complex
behaviors.
2.5. Generalized Newton method

The discretized problem is written as an equilibrium equation, introducing the

contact forces k, find u and k such that
� Auþ f þFðu; kÞ ¼ 0;

� 1

r
ðk �Fðu; kÞÞ ¼ 0;

ð13Þ
where Fðu; kÞ is the friction map. In the case of a node in contact with a rigid ob-

stacle, we have [3,5]
Fðu; kÞ ¼ projR�ðsNÞnþ projCðprojR� ðsNÞÞðsTÞ; ð14Þ
proj is the projection operator, CðkNÞ the Coulomb�s cone and r is a parameter. sN et

sT are given by
sN ¼ kN þ ruN; sT ¼ kT þ ruT: ð15Þ

The non-linear problem is thus written
DðxÞ þUðxÞ ¼ 0; ð16Þ
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with
DðxÞ ¼ �Auþ f
� 1

r k

� �
and UðxÞ ¼ Fðu; kÞ

1
rFðu; kÞ

� �
: ð17Þ
This system is solved by a GNM
xiþ1 ¼ xi � ðrDðxiÞ þ oUðxiÞÞ�1ðDðxiÞ þUðxiÞÞ ð18Þ

oUðxiÞ is a point of the Jacobian matrices set. The linearized system (18) is solved by

a conjugate squared method [53]. The algorithm is summed up by

• Step 0 Initialization

x0 ¼ ðu0; k0Þ be given

• Step 1 Resolution (Non-symmetric linear system)

yiþ1 ¼ ðrDðxiÞ þ oUðxiÞÞ�1ðDðxiÞ þUðxiÞÞ
• Step 2 Actualization

xiþ1 ¼ xi � yiþ1

• Step 3 Convergence Test

Yes ¼ End; No ¼ Go to Step 1.
2.6. GNM: improvements and applications

The first improvement of the GNM is the use of preconditioners as incomplete
factorization [4,5]. Coarse/fine techniques, similar to multigrid methods, have been

developed [5,23]. More recently, an element-by-element procedure has been pro-

posed. This technique consists in a factorization of the tangent matrix from the fac-

torization of the elementary matrices. The advantage of this method is to be strongly

parallel [2,10,26]. At least, domain decomposition methods have been implemented

in order to treat the problem with a large number of degrees of freedom [1]. Using

these algorithms, we have analyzed industrial problems such as a system of rolling

shutters and a leaf spring-dashpot suspension system. In the first case, the body is
a succession of slats. We have shown that friction and gaps between the slats have

a crucial importance on the structure behavior. The second application is a pile of

four beams in contact. These beams are linked by deformable bolts. We have shown

that we need to take into account dynamics effects to obtain accurate contact distri-

bution and tensions in the bolts. Note that existence results have been studied using

this formulation [7].
2.7. Remarks on dual formulations

A third approach is possible by using a dual formulation, in which the unknowns

are the tensions (the contact forces for the condensed version). The dual formulation

of the problem has been introduced by Haslinger and Panagiotopoulos in 1984 [48]

and Telega in 1988 [56,57]. This formulation is used by a poor number of authors

from a numerical point of view [12,32,41].
9



3. Comparisons

3.1. The benchmark: a stratified in contact with a rigid obstacle

This section is devoted to the comparison of the two methods presented above, the

first comparison in the literature. The problem treated in this section is a stratified

composite in contact with a rigid plan [6]. This stratified is made by a succession of

hard and soft folds. The Young�s modulus of the hard component is a hundred times
larger than the coefficient of the soft one. The layers are orthogonally oriented to the

contact area (Fig. 4). The Poisson�s ratio is equal to 0.3. For symmetry reasons, only a

half-bar is considered. This example, which is a variant of a classical benchmark [51],

is treated in plane stresses. Two kinds of elementary patterns are considered: a succes-

sion of soft and hard folds (pattern 1) and a succession of hard and soft folds (pattern

2). These two patterns give various results, both for numerical and mechanical points

of view. In our numerical applications, we consider 32 elementary patterns and 16962

degrees of freedom (64 contact nodes). This example, which is very ill-conditioned,
allows to compare the efficiency of the two algorithms FPM and GNM.

3.2. Operation numbers

In order to compare the two methods, we need to observe that the cost of each

method depends on the number of global iterations and on the cost of internal solv-

ers (Relaxation for FPM and Conjugate Gradient for GNM). In this paragraph, we

focus on the number of operations for the two internal solvers.
Classically, one iteration of the relaxation procedure corresponds to one product

between a sparse matrix and a vector. If Nh is the number of nodes and ch the ave-
Fig. 4. Compression of a composite on a rigid body.
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raged value of the coefficients not equal to zero for each line of the matrix, the num-

ber of operation KREL verifies
KREL � 4chNh: ð19Þ

Generalized conjugate gradient methods corresponds to two products between a

sparse matrix and a vector. Due to the mixed formulation the number of nodes is
equal to Nh þ nh, where nh is the number of contact nodes. Thus, the number of

operation KGCG for this method is given by
KGCG � 8chðNh þ nhÞ: ð20Þ

For a low number of contact nodes, the cost of the generalized conjugate gradient is

twice the one of the relaxation method.

3.3. External iterations comparisons: FPM versus GNM

On Fig. 5, we can see the evolution of the global iterations number for the two

methods in relation to the coefficient of friction. One can observe that, usually,

the GNM is more efficient than the FPM and that the two methods have the same

behavior for the two kinds of patterns. We observe a difference between 20% and

60% in the number of iterations of the two external solvers for standard values of

the friction coefficient. Nevertheless, for high level of friction coefficient, the FPM
is more robust than the other method. For large friction coefficients the convergence

of the GNM is not ensured. To conclude, the two methods are complementary. For

�small� values of friction coefficient (6 1), the GNM will be used and for larger values

of friction coefficient (P 1), the FPM will be preferred.
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3.4. Internal iterations comparisons: relaxation versus conjugate gradient

Fig. 6 shows the internal iteration number for values of the friction coefficient

lower than 1. We observe that the internal solver associated to the GNM (here

the conjugate gradient squared method) is more efficient than the internal solver as-
sociated to the FPM (relaxation procedure). Note that in this figure the number of

conjugate gradient iterations is normalized (multiplied by KGCG=KREL) to take into

account the various numbers of operations of each method. On one hand, taking

into account the fact that the conjugate gradient squared method is twice expensive

than the relaxation procedure, between 10% and 35% of difference is obtained be-

tween the two internal solvers in terms of operations. This difference decreases when

the friction coefficient increases. On the other hand, if we compare these internal

solvers, we can see that relaxation procedures seem more robust than conjugate gra-
dient methods i.e. the total number of iterations does not strongly depend on the fric-

tion coefficient. In conclusion, we can add that these methods need acceleration

procedures in order to converge. Classically, pre-conditioners associated to gradient

methods are more expensive than over-relaxation associated to relaxation procedure.
4. Conclusions and perspectives

In this paper, different models for interfaces have been presented and various for-

mulations of the Signorini–Coulomb�s problem have been introduced. Two algo-

rithms (FPM and GNM) have been described in order to numerically solve the

problem and a first comparison between these two methods dedicated to solve fric-

tional contact problems has been done.
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We have shown, that for a large class of friction coefficients, the GNM associated

to a mixed formulation is more efficient than the FPM associated to a primal formu-

lation. Nevertheless, for large values of friction coefficient the second method seems

more robust than the first one and will be preferred in this case. The computations

have been done on various platforms. The portability of these methods is very great

and the previous remarks on the respective behaviors of the two algorithms are valid

independently of the platform.

Future extensions to this work are of two kinds, numerical and theoretical. The
treatment of large sliding, the treatment of problems with a very large number of

contacts as granular materials and the implementation of other non-linear contact

laws could be studied. Another work will be a comparison between the two methods

presented above and the D-PANA algorithm associated to the dual formulation [12].
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