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Direct and inverse scattering problem in air filled porous materials is solved. A simple ultrasonic reflectivity method is 
proposed for measuring the porosity of porous materials having a rigid frame. The proposed method is based on a temporal 
model of the direct and inverse scattering problem for the propagation of transient ultrasonic waves in a homogeneous isotropic 
slab of porous material having a rigid frame. This time domain model of wave propagation was initially introduced by the 
authors @Z. E. A. Fellah and C. Depollier, J. Acoust. Soc. Am. 107, 683 ~2000!#. The viscous and thermal losses of the medium 
are described by the model devised by Johnson et al. @D. L. Johnson, J. Koplik, and R. Dashen, J. Fluid. Mech. 176, 379 
~1987!# and J. F. Allard ~Chapman and Hall, London, 1993!# modified by a fractional calculus-based method applied in the 
time domain. The reflected acoustic wave by air filled porous media can be approximated by the reflected wave at the first 
interface. The expression of the reflection coefficient is reduced to a simple expression depending on porosity, tortuosity, and 
incidence angle. An expression of the porosity function of the tortuosity and incidence angle is obtained by solving the inverse 
problem. Experimental and numerical validation results of this method are presented. This method has the advantage of being 
rapid and efficient. 

I. INTRODUCTION

Porous media filled with air, such as fibrous mats, plastic

foams, and various felts, are heavily used in the automotive,

aeronautical, and building industries to attenuate sound

waves. In the recent past, low-frequency ~i.e., in the range

20–600 kHz! ultrasonic techniques have amply proven to be

a powerful tool to probe the acoustical properties of these

materials. The determination of the properties of a medium

using waves that have been reflected by or transmitted

through the medium is a classical inverse scattering problem.

Such problems are often approached by taking a physical

model of the scattering process, generating a synthetic re-

sponse for a number of assumed values for the parameters,

and adjusting these parameters until a reasonable level of

correspondence is attained between the synthetic response

and the data observed.

One important parameter which appears in theories of

sound propagation in porous materials1–13 is porosity. Poros-

ity is the relative fraction, by volume, of the air contained

within the material. Unlike other parameters included in the

description of different various phenomena occurring in the

acoustical propagation of porous media at high-frequency

range such as tortuosity,11 viscous characteristic length,5 and

thermal characteristic length,12 or at low-frequency range

such as flow resistivity11 and thermal permeability,13 porosity

is a key parameter that plays an important role in propaga-

tion at all frequencies. As such, in studies of acoustical prop-

erties of porous materials, it is extremely useful to be able to

measure this parameter.

Beranek10 described an apparatus ~porosimeter! used to

measure the porosity of porous materials. This device was

based on the equation of state for ideal gases at a constant

temperature ~i.e., Boyle’s law!. Porosity can be determined

by measuring the change in air pressure occurring with a

known change in volume of the chamber containing the

sample. In the Beranek apparatus, both pressure and volume

changes are monitored using a U-shaped fluid-filled manom-

eter. An alternate technique for measuring porosity is a dy-

namic method proposed by Leonard.14 Techniques that use

water as the pore-filling fluid, rather than air, are common in

geophysical studies.15,16 Mercury has been used as the pore-

filling fluid in other applications.17 However, for many ma-

terials, the introduction of liquids into the material is not

appropriate. Recently, a similar device to that of Beranek’s,

involving the use of an electronic pressure transducer, was

introduced by Champoux et al.18 This device can be used toa!Electronic mail: fellah@lyon.inserm.fr
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accurately measure very slight changes in pressure, and the

output can be recorded by a computer.

In this work, the inverse problem in porous material hav-

ing a rigid frame is solved using reflected waves data and a

simple ultrasonic method of measuring porosity by measur-

ing a wave reflected by a slab of porous material is pre-

sented. This method is based on a temporal model of the

direct and inverse scattering problem for the propagation of

transient ultrasonic waves in a homogeneous isotropic slab

of porous material having a rigid frame. This work was ini-

tially introduced by the authors of Refs. 1–4. The viscous

and thermal losses of the medium are described by the

Johnson et al.5 and Allard6 model modified by a fractional

calculus-based method in order to be used in the time do-

main. Reflection and transmission scattering operators of a

slab of porous material are derived at oblique incidence and

thus the responses of the medium to an incident acoustic

pulse are obtained.

The outline of this work is as follows. In Sec. II, a time

domain model is given, the connection between the frac-

tional derivatives and wave propagation in rigid porous me-

dia in the high-frequency range is established and the basic

equations are written in the time domain. Section III is de-

voted to the direct problem and to the expressions of the

reflection and transmission kernels in the time domain and

numerical results are given. Section IV deals with the inverse

problem and an expression of porosity based on the incident

and reflected waves from a slab of porous materials is estab-

lished. Finally, in Sec. V, the experimental results are given

to validate this method.

II. MODEL

In the acoustics of porous materials, a distinction can be

made between two situations depending on whether or not

the frame is moving. In the first case, the dynamics of the

waves due to the coupling between the solid frame and the

fluid are clearly described by the Biot theory.7,8 In air-

saturated porous media, the structure is generally motionless

and the waves propagate only in the fluid. This case is de-

scribed by the model of equivalent fluid which is a particular

case in the Biot model, in which the interactions between the

fluid and the structure are taken into account in two fre-

quency response factors: The dynamic tortuosity of the me-

dium a~v! given by Johnson et al.5 and the dynamic com-

pressibility of the air included in the porous material b~v!
given by Allard.6 In the frequency domain, these factors mul-

tiply the density of the fluid and its compressibility, respec-

tively, and represent the deviation from the behavior of the

fluid in free space as the frequency increases. In the time

domain, they act as operators, and in the high-frequency ap-

proximation their expressions are given by Fellah and

Depollier1,2 and Fellah, Depollier, and Fellah3,4 as

ã~ t !5a`S d~ t !1

2

L S h

pr f
D 1/2

t21/2D , ~1!

b̃~ t !5S d~ t !1

2~g21 !

L8
S h

pPrr f
D 1/2

t21/2D . ~2!

In Eqs. ~1! and ~2!, d(t) is the Dirac function, Pr is the

Prandtl number, h and r f are the fluid viscosity and the fluid

density, respectively, and g is the adiabatic constant. The

relevant physical parameters of the model are the tortuosity

of the medium a` initially introduced by Zwikker and

Kosten11 and the viscous and the thermal characteristic

lengths L and L8 introduced by Johnson et al.5 and Allard.6

In this model, the time convolution of t21/2 with a function is

interpreted as a semiderivative operator following the defini-

tion of the fractional derivative of order n given in Samko

et al.,19

Dn@x~ t !#5

1

G~2n !
E

0

t

~ t2u !2n21x~u !du , ~3!

where G(x) is the gamma function.

In this framework, the basic equations of our model can

be expressed as

r f ã~ t !*
]v i

]t
52¹ip

and

b̃~ t !

Ka
*

]p

]t
52¹•v , ~4!

where * denotes the time convolution operation, p is the

acoustic pressure, v is the particle velocity and Ka is the bulk

modulus of the air. The first equation is the Euler equation,

and the second is a constitutive equation obtained from the

equation of mass conservation associated with the behavior

~or adiabatic! equation.

For a wave propagating at oblique incidence in the plan

~xoz! and making an angle u along the x axis, these equations

become:

r fa`

]vx~x ,z ,t !

]t
1

2r fa`

L S h

pr f
D 1/2E

0

t ]v~x ,z ,t !/dt8

At2t8
dt8

52

]p~x ,z ,t !

]x
,

r fa`

]vx~x ,z ,t !

]t
1

2r fa`

L S h

pr f
D 1/2E

0

t ]v~x ,z ,t !/dt8

At2t8
dt8

52

]p~x ,z ,t !

]z
, ~5!

1

Ka

]p~x ,z ,t !

]t
1

2~g21 !

KaL8
S h

pr f Pr
D 1/2E

0

t ]p~x ,z ,t !/dt8

At2t8
dt8

52

]v~x ,z ,t !

]x
2

]v~x ,z ,t !

]z
,

where vx , vz are the components of the particle velocity

along the axis ox and oz.

In Eq. ~5!, the convolutions express the dispersive nature

of the porous material. They take into account the memory

effects due to the fact that the response of the medium to the

wave excitation is not instantaneous but needs more time to

take effect. The retarding force is no longer proportional to
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the time derivative of the acoustic velocity but is found to be

proportional to the fractional derivative of order 1/2 of this

quantity. This occurs because the volume of fluid involved in

the motion is not throughout the whole length of the signal as

it is in the case of a fully developed steady flow. The phe-

nomenon may be understood by considering such a volume

of fluid in a pore to be in harmonic motion. At high frequen-

cies, only a thin layer of fluid is excited and so the average

shear stress is high. At a lower frequency, the same ampli-

tude of fluid motion allows a thicker layer of fluid to partici-

pate in the motion and, consequently, the shear stress is

lower. The penetration distance of the viscous forces and,

therefore, the excitation of the fluid depends on frequency. In

the time domain, such a dependence is associated with a

fractional derivative.

III. DIRECT PROBLEM

The direct scattering problem is that of determining the

scattered field, as well as the internal field, that arises when a

known incident field impinges on the porous material with

known physical properties. To compute the solution of the

direct problem, it is necessary to know the reflection and/or

the transmission scattering operators which depends on the

Green3 function of the porous medium. In that case, the re-

flected field is given by the convolution of the reflection

operator with the incident field, and the transmitted field is

given by the convolution of the transmission operator by the

incident field.

Consider a homogeneous slab of porous material which

occupies the region 0<x<L . The geometry of the problem

is shown in Fig. 1. This medium is assumed to be isotropic

and to have a rigid frame. A short sound pulse impinges at

oblique incidence on the medium from the left-hand side. It

gives rise to an acoustic pressure field p(x ,t) and an acoustic

velocity field v(x ,t) within the material, which satisfies the

propagation equation1–4

]2p~x ,z ,t !

]x2 2A
]2p~x ,z ,t !

]t2 2B
]3/2p~x ,z ,t !

]t3/2

2C
]p~x ,z ,t !

]t
50, ~6!

where the coefficients A, B, and C are constants, respectively,

given by

A5

1

c0
2 ~a`2sin2 u !, B5

2a`

Ka

Ar fh

p

3S 1

L
1

g21

APrL8
D , C5

4a`~g21 !h

KaLL8APr
. ~7!

The first one is related to the velocity of the projected wave

along the x axis c5c0 /Aa`2sin2 u. The other coefficients

are essentially dependent of the characteristic lengths L and

FIG. 1. Geometry of the problem.

FIG. 2. Transmitted simulated signals for f50.98 ~solid line! and for f
50.49 ~dashed line!.

FIG. 3. Numerical simulations of the reflections contributions at the first

interface ~solid line! and second interface ~dashed line!.

FIG. 4. Reflected wave at the interface x50 ~solid line! and the total re-

flected wave ~dashed line!.
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L8 and express the viscous and thermal interactions between

the fluid and the structure. The constant B governs the

spreading of the signal while C is responsible for the attenu-

ation of the wave. Obviously, a knowledge of these three

coefficients allows the determination of the parameters a` ,

L, and L8. One way to solve Eq. ~7! with suitable initial and

boundary conditions is by using the Laplace transform. The

approach is quite simple although the inverse Laplace trans-

form requires tedious calculus.3 A suitable setting for the

introduction of the time domain solution of the modified

wave propagation @Eq. ~6!# is provided by the following

model.

To derive the reflection and transmission scattering op-

erators, it is assumed that the pressure field and the flow

velocity are continuous at the boundary of the material

p~01,t !5p~02,t !, p~L2,t !5p~L1,t !,

~8!
v~02,t !5fv~01,t !, v~L1,t !5fv~L2,t !,

where f is the porosity of the medium and 6 superscripts

denotes the limit from the left- and the right-hand side, re-

spectively. The initials conditions are given by

p~x ,t !u t5050,
]p

]t
U

t50

50, ~9!

which means that the medium is idle for t50.

If the incident sound wave is launched in the region x

<0, then the general solution of Eq. ~6! in the region to the

left-hand side of the material is the sum of the incident and

reflected field

p1~x ,t !5p iS t2
x cos u

c0
D1prS t1

x cos u

c0
D , x,0.

~10!

FIG. 5. Experimental setup of the ultrasonic measurements in reflected

mode. PG: pulse generator; HFF-PA: high-frequency filtering-preamplifier;

DO: digital oscilloscope; C: computer; T: transducer; and S: sample.

FIG. 6. ~a! Experimental incident signal (u517°). ~b! Experimental re-

flected signal by the plastic foam M2 (u517°).

FIG. 7. ~a! Experimental incident signal (u553°). ~b! Experimental re-

flected signal by the plastic foam M2 (u553°).
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Here, p1(x ,t) is the field in the region x,0, p i and pr denote

the incident and the reflected field, respectively. In addition,

a transmitted field is produced in the region to the right-hand

side of the material. This has the form

p3~x ,t !5p tS t2
L

c
2

~x2L !cos u

c0
D , x.L , ~11!

where p3(x ,t) is the field in the region x.L and p t is the

transmitted field.

The incident and scattered fields are related by the scat-

tering operators ~i.e., reflection and transmission operators!
for the material. These are integral operators represented by

pr~x ,t !5E
0

t

R̃~t !p iS t2t1

x

c0
D dt

5R̃~ t !*p i~ t !*dS t1
x cos u

c0
D , ~12!

p t~x ,t !5E
0

t

T̃~t !p iS t2t2

L

c
2

~x2L !

c0
D dt

5T̃~ t !*p i~ t !*dS t-
L

c
2

~x2L !cos u

c0
D . ~13!

In Eqs. ~12! and ~13!, the functions R̃ and T̃ are the

reflection and the transmission kernels, respectively, for in-

cidence of waves from the left-hand side. Note that the lower

limit of integration in Eqs. ~12! and ~13! is set to 0, which is

equivalent to assuming that the incident wave front first im-

pinges on the material at t50. The scattering operators given

in Eqs. ~12! and ~13! are independent of the incident field

used in the scattering experiment and depend only on the

properties of the materials. Using Eqs. ~4!, ~6!, ~8!, ~12!, and

~13! and Laplace transform calculus, we can derive the re-

flection and transmission scattering operators given by

R̃~ t !5S a` cos u2fAa`2sin2 u

a` cos u1fAa`2sin2 u
D

3 (
n>0

S a` cos u2fAa`2sin2 u

a` cos u1fAa`2sin2 u
D 2n

3FFS t ,2n
L

c
D2FS t ,~2n12 !

L

c
D G , ~14!

FIG. 8. ~a! Spectrum of the incident signal (u517°). ~b! Spectrum of the

reflected signal (u517°).

FIG. 9. ~a! Spectrum of the incident signal (u553°). ~b! Spectrum of the

reflected signal (u553°).

TABLE I. Optimized values of the porosity calculated by solving the in-

verse problem for the plastic foam M2.

Incidence angle u ~degrees! 0 17 23 35 53.5

Porosity f 0.969 0.969 0.971 0.973 0.969

5



T̃~ t !5

4f cos uAa`2sin2 u

S Aa` cos u1fA12

sin2 u

a`
D

2

3 (
n>0

S a` cos u2fAa`2sin2 u

a` cos u1fAa`2sin2 u
D 2n

3FS t1
L

c0

,~2n11 !
L

c
D . ~15!

These expressions takes into account the n-multiple reflec-

tions in the material. For a positive constant k ,F(t ,k) is the

Green function of the porous material given in Ref. 3 ~Ap-

pendix!.

In most cases, for porous materials saturated by air, the

multiple reflection effects are negligible because of the high

attenuation of sound waves in this kind of media. So, by

taking into account only the reflections at the interfaces x

50 and x5L , the kernel of transmission is given by

T̃~ t !5

4f cos uAa`2sin2 u

S Aa` cos u1fA12

sin2 u

a`
D 2

FS t1
L

c
,

L

c
D ,

~16!

and the kernel of reflection by

R̃~ t !5r~ t !1R~ t !, ~17!

with

r~ t !5S a` cos u2fAa`2sin2 u

a` cos u1fAa`2sin2 u
D ~18!

and

FIG. 10. Comparison between experimental reflected signal ~solid line! and

simulated reflected signal ~dashed line! for M2 (u517°).

FIG. 11. Comparison between experimental reflected signal ~solid line! and

simulated reflected signal ~dashed line! for M2 (u553°).

FIG. 12. Experimental incident signal ~dashed line! and experimental re-

flected signal ~solid line! by the material M3 for u513°.

FIG. 13. Experimental incident signal ~dashed line! and experimental re-

flected signal ~solid line! by the material M3 for u539°.
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R~ t !5 2

4f cos uAa`2sin2 uS Aa` cos u2fA12

sin2 u

a`
D

S Aa` cos u1fA12

sin2 u

a`
D

FS t ,
2L

c
D , ~19!

in the case of a semi-infinite medium when L→`;

F(t ,2L/c)→0, and R̃(t)→r(t) ~Appendix!. This means that

r(t) is equivalent to the reflection at the interface x50 and

that R(t) is equivalent to reflection at the interface x5L ,

which is the bulk contribution to the reflection. The part of

the wave corresponding to r(t) is not subjected to the dis-

persion but it is simply multiplied by the factor (a` cos u
2fAa`2sin2 u/a` cos u1fAa`2sin2 u). This shows that

although tortuosity is a bulk parameter, it may be evaluated

from the wave reflected at the first interface when the poros-

ity is known and vice versa. Although generally speaking, it

is easy to evaluate the tortuosity from transmitted

waves,3,4,20,21 this is not the case for porosity because of its

weak sensitivity in transmitted mode. Figure 2 shows two

simulated transmitted signals for a plastic foam M1, the first

one ~solid line! corresponds to the value of porosity f1

50.98 and the second one ~dashed line! corresponds to f2

50.49. The parameters of the plastic foam M1 ~thickness 1.1

cm, a`51.25, L550 mm, and L85150 mm) have been de-

termined using conventional methods.3,4,20,21 Readers can see

the slight difference between the two curves for a 50% dif-

ference in porosity values, which is due to the dispersion

phenomenon that is governed by viscous, thermal, and iner-

tial effects contributed by a` , L and L8, and plays a more

important role in the Green function F(t ,k) than f.

Figure 3 shows the two contributions to the reflection:

r(t) ~solid line! and R(t) ~dashed line! for a plastic foam M1

at normal incidence (u50). The contribution of R(t) to the

reflection is negligible when it is compared to the contribu-

tion of r(t). In Fig. 4 we show, by numerical simulation, the

difference between the reflected wave at the first interface

and the total reflected wave. The difference between the two

curves is slight. This means that the wave reflected by the

slab may be approximated by the reflected wave by the first

interface r(t) with a good level of accuracy. It easy to verify

that this approximation is valid for any incidence angle u. In

Sec. IV, we will show by solving the inverse problem how it

is the possible to measure the porosity by measuring the

reflected wave by a slab of porous material.

IV. INVERSE PROBLEM

A porous material having a rigid frame is characterized

by four parameters in the high-frequency range, namely, po-

rosity f, tortuosity a` , the viscous characteristic length L,

and the thermal characteristic length L8. These values are

crucial for the behavior of the sound waves in such materials.

So, it is therefore fairly important to work out new experi-

mental methods and efficient tools to assess them. Therefore,

a basic inverse problem associated with the slab may be

stated as follows: To find the values of the parameters of the

medium from the measurements of the transmitted and/or

reflected signals outside the slab. As shown in Sec. III, the

solution to the direct problem is the system of two operators

expressed as functions on f, a` , L, and L8. The inversion

algorithm for finding the values of the parameters of the slab

is based on a fitting procedure. To find the values of the

parameters f, a` , L, and L8 such that the transmitted and

reflected signal describes the scattering problem in the best

possible way ~e.g., in the least-squares sense!. Solving the

inverse problem using experimental data from transmitted

waves is treated3,4 and an estimation of a` , L, and L8 has

been given with a good level of correspondence from ultra-

sonic measurements. Here, we will try to solve the inverse

problem using experimental reflected wave data for different

FIG. 14. Spectrum of experimental incident signal ~dashed line! and spec-

trum of experimental reflected signal ~solid line! for u513°.

FIG. 15. Spectrum of experimental incident signal ~dashed line! and spec-

trum of experimental reflected signal ~solid line! for u539°.
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values of the incidence angle u, with the aim of returning to

the porosity which, because of its weak sensitivity, cannot be

characterized in transmitted mode.

The inverse problem is to find the porosity value f
which minimizes the function

U5 (
i51

i5N

~pr~ t i!2pexp
r ~ t i!!2, ~20!

where pr(t i) i51,2,...,N represents the discrete set of values of

the simulated reflected signal given by Eq. ~12! and

pexp
r (ti)i51,2,...,N is the discrete set of values of the experimen-

tal signal. In the approximation that the reflected wave is

essentially due to the reflection at the first interface x50;

R̃~ t !5r~ t !5

a21

a11
d~ t !, ~21!

where

a5

a` cos u

fAa`2sin2 u
~22!

and

pr~ t i!5

a21

a11
p i~ t i!, ~23!

where p i(t i) is the discrete set of values of the experimental

incident signal given out by the transducer. To minimize

U(a), we must have

]U

]a
50 and

]2U

]a2 .0, ~24!

]U

]a
5

]

]a (
i51

i5N S a21

a11
p i~ t i!2pexp

r ~ t i! D 2

50, ~25!

then

2 (
i51

i5N
~a11 !2~a21 !

~a11 !2 p i~ t i!S a21

a11
p i~ t i!2pexp

r ~ t i! D50

~26!

and

(
i51

i5N

p i~ t i!S a21

a11
p i~ t i!2pexp

r ~ t i! D50, ~27!

which is equivalent to

a5

( i51
i5Np i~ t i!~p i~ t i!1pexp

r ~ t i!!

( i51
i5Np i~ t i!~p i~ t i!2pexp

r ~ t i!!
5

a` cos u

fAa`2sin2 u
, ~28!

the expression of the porosity is

f5

( i51
i5Np i~ t i!~p i~ t i!2pexp

r ~ t i!!

( i51
i5Np i~ t i!~p i~ t i!1pexp

r ~ t i!! S a` cos u

Aa`2sin2 u
D . ~29!

The second derivative term:

]2U

]a2 52

8

~a11 !3 (
i51

i5N S a21

a11
~p i~ t i!!2

2pexp
r ~ t i!.p i~ t i! D

1

8

~a11 !4 (
i51

i5N

~p i~ t i!!2, ~30!

from Eq. ~26!, we have

]2U

]a2 52

2

~a11 !

]U

]a
1

8

~a11 !4 (
i51

i5N

~p i~ t i!!2, ~31!

when ]U/]a50, the condition ]2U/]a2
.0 is always veri-

fied.

Relation ~29! is the expression of the porosity as a func-

tion of the tortuosity, the incidence angle u, and the discrete

set of values of the incident and reflected signal, we will use

this relation in Sec. V to estimate the value of the porosity

from experimental incident and reflected data.

V. ULTRASONIC MEASUREMENTS

As an application of this model, some numerical simu-

lations are compared to experimental results. Experiments

are carried out in air with two broadband Ultran NCT202
FIG. 16. Comparison between experimental reflected signal ~solid line! and

simulated reflected signal ~dashed line! for M3 (u513°).

FIG. 17. Comparison between experimental reflected signal ~solid line! and

simulated reflected signal ~dashed line! for M3 (u539°).

TABLE II. Optimized values of the porosity calculated by solving the in-

verse problem for the plastic foam M3.

Incidence angle u ~degrees! 0 13 23 39 49

Porosity f 0.820 0.821 0.820 0.821 0.821
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transducers having a 190 kHz central frequency in air and a

bandwidth at 6 dB extending from 150 kHz to 230 kHz.

Pulses of 400 V are provided by a 5052PR Panametrics

pulser/receiver. The received signals are amplified up to 90

dB and filtered above 1 MHz to avoid high-frequency noise.

Electronic perturbations are removed by 1000 acquisition av-

erages. The experimental setup is shown in Fig. 5. The du-

ration of the signal plays an important role, its spectrum must

verify the condition of high-frequency approximation re-

ferred to in Sec. IV.

Figures 6~a! and 6~b! show the incident and reflected

experimental signals, respectively, at the incident angle 17°

by the plastic foam M2. The parameters of the plastic foam

M2 are: thickness 4.1 cm, resistivity s53000 Nm24 s, a`

51.07, L5230 mm, and L85690 mm. Figures 7~a! and

7~b! show the incident and reflected experimental signals,

respectively, at the incident angle 53° by the plastic foam

M2.

Figures 8~a! and 8~b! show the spectra of the incident

and reflected experimental signals, respectively, at the inci-

dence angle 17°. Figures 9~a! and 9~b! show the spectra of

the incident and reflected experimental signals, respectively,

at the incident angle 53°. From the spectra of the incident

and reflected signals, the reader can see that they have the

same bandwidths which means that there is no dispersion.

This concurs with the theory which predicts that the reflected

wave from the first interface x50 is measured and simply

attenuated by the factor (a` cos u2fAa`2sin2 u/a` cos u
1fAa`2sin2 u).

Using the incident and reflected experimental data for

the foam M2 and relation ~29!, the values of the porosity

optimized by solving the inverse problem for each incidence

angle are given in Table I. The average value of the porosity

obtained is f50.97.

Figures 10 and 11 show the comparison between experi-

mental reflected signals and simulated reflected signals for

the optimized value of the porosity (f50.97), the difference

between the predicted and experimental curves are slight

which leads us to conclude that the optimized value of the

porosity is good. The value of the porosity of the foam M2

given by the porosimeter10,18 is f50.9660.02. The flow re-

sistivity of the plastic foam M2 is s53000 Nm24 s. This

value is low compared with other plastics foams, and is the

reason why the value of the porosity is very close to 1 and

thus the reflected signals by the plastic foam M2 is very

small near the incident signals.

Another plastic foam M3 is studied ~thickness 0.6 cm!.
This has a high level of flow resistivity, s
5125 000 Nm24 s and the ultrasonic parameters are a`

51.7, L523 mm, and L8569 mm. Figures 12 and 13 show

the incident and reflected signals at the incidence angles 13°

and 39°, respectively.

Figures 14 and 15 show their spectra, respectively. Here

again, we can conclude from the spectra of the incident and

reflected signals that there is no dispersion. By solving the

inverse problem from the incident and reflected data and re-

lation ~29!, the optimized values of the porosity for each

incidence angle are given in Table II. The average value of

the porosity obtained is f50.82. Figures 16 and 17 show the

comparison between simulated reflected signals obtained by

the optimized value of the porosity for each incidence angle

and the experimental signals. The readers can see the slight

difference between the experimental and simulated signals

that proves the optimized value of the porosity. The main

advantage of this method is its simplicity compared with the

porosimeter,18 which involves more complicated measure-

ment steps and a more expensive experimental setup.

APPENDIX: GREEN FUNCTION OF THE MEDIUM

The Green function of the propagation @Eq. ~6!# is given

in Ref. 3 by

F~ t ,k !5H 0 if 0<t<k

J~ t !1DE
0

t2k

h~ t ,j !dj , if t>k
,

with

J~ t !5

b8

4Ap

k

~ t2k !3/2 expS 2

b8
2k2

16~ t2k !
D ,

where h(t ,j) has the following form:

h~j ,t !52

1

4p3/2

1

A~t2j !2
2k2

1

j3/2

3E
21

1

expS 2

x~m ,t ,j !

2
D ~x~m ,t ,j !21 !

mdm

A12m2
,

and where x(m ,t ,j)5(DmA(t2j)2
2k2

1b8(t2j))2/8j ,

b85Bc0
2Ap , c85C .c0

2, and D5b8
2
24c8, when k→` , J

and h(j ,t) tend toward zero, then the Green function F(t ,k)

also tends toward zero.
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Leclaire, C. R. Acad. Sci. Paris 322, 121 ~1996!.

9


