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The control of many cell functions including growth, migration and mechanotransduction, depends
crucially on stress-induced mechanical changes in cell shape and cytoskeleton (CSK) structure.
Quantitative studies have been carried out on 6-bar tensegrity models to analyse several mechanical
parameters involved in the mechanical responses of adherent cells (i.e. strain hardening, internal stress
and scale effects). In the present study, we attempt to generalize some characteristic mechanical laws
governing spherical tensegrity structures, with a view of evaluating the mechanical behaviour of the
hierarchical multi-modular CSK-structure. The numerical results obtained by studying four different
tensegrity models are presented in terms of power laws and point to the existence of unique and constant
relationships between the overall structural stiffness and the local properties (length, number and
internal stress) of the constitutive components.
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INTRODUCTION

Mechanical cellular responses play a fundamental role in

tissue development and adaptation: for example, bone

modelling and remodelling involve a multi-step process of

cellular mechanotransduction. During these processes,

bone cells detect mechanical signals which are integrated

and result in the occurrence of appropriate changes in the

bone architecture [19]. At the cellular scale, the

mechanical forces exerted through the extracellular matrix

are balanced by internal forces exerted by the cytoskeleton

(CSK) [6]. This force balance appears to be crucial to

many cell functions such as the control of cell shape,

growth and differentiation [7,8,21]. Basically, cell

deformability and mechanical responses depend on

several interactive processes between factors such as the

structural CSK-architecture and cell/cell and cell/extra-

cellular matrix attachment. Moreover, there exists a

growing amount of experimental evidence that the main

cellular functions are controlled via multiple transmission

pathways involving a hierarchical organisation of multi-

modular CSK substructures from the molecular to the

overall cellular scale. Each of these substructures is

regulated by specific mechanical responses associated to

specific biological functions [5,7,9,13,22,23].

Various models for the CSK based on structural

mechanics have been proposed to describe the relation-

ships between external and internal forces as well as

between cell deformation and stiffness. Satcher and

Dewey [16] have estimated the mechanical response of the

endothelial cell CSK, theoretically, based on the

distributed cytoplasmic structural actin (DCSA) alone,

without taking the other CSK filamentous networks (e.g.

stress fibres, microtubules and intermediate filaments) into

account. In this study using the classical foam theory, the

authors suggested that the overall cell deformation might

result from the bending of individual DCSA-filaments in

response to the mechanical stresses exerted on the cell.

However, this foam model takes into account neither the

cellular prestress nor the specific mechanical and

geometrical properties of the various types of CSK-

filaments. Some recently developed structural models

based on the tensegrity concept have several features

which are consistent with the mechanical behaviour

observed in adherent cells, e.g. the strain-hardening and

the prestress dependency of the cells’ mechanical

responses. These complex mechanical responses have

been closely correlated with the mechanical properties of

the spatial CSK-filamentous network and with its

structural reorganization [2,4,17,28,30].

Tensegrity structures develop an intrinsic stabilising

tension balanced by compression, which is called the

prestress. When subjected to a local mechanical stress, the

constitutive components of the tensegrity structures

undergo a complete spatial reorganization and thus

maintain a balance between the internal and external
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forces. A tensegrity model has been proposed by Ingber

[7] to account for the deformability of adherent cells,

taking the CSK to be a network of interconnected stress-

bearing components (e.g. actin filaments, stress fibres) and

isolated compression-bearing components (e.g. micro-

tubules associated with intermediate filaments). Quanti-

tative analytical and numerical studies based on this

hypothesis were carried out on a 6-bar tensegrity structure

with a view of describing the non linear stress–strain

relationships and the scale effects as well as the internal

stress dependence of the overall stiffness of in vitro

endothelial cell cultures [2,18,20,30]. However, it has not

been established so far (i) whether this 6-bar tensegrity

model is representative of tensegrity structures in general

or (ii) how more complex tensegrity structures could be

used to predict the mechanical behaviour of the cells,

taking into account the hierarchical organisation of the

multi-modular assemblies which constitute the CSK-

structure.

The aim of the present study is precisely to define

general mechanical laws which are applicable to several

spherical tensegrity structures and could be used to

determine the mechanical behaviour of various still

unknown CSK patterns. For this purpose, we analysed the

influence of some local characteristic parameters such as

the internal tension, the scale and the number of

constitutive components on the overall elasticity modulus

of various spherical tensegrity structures, using two

models that differ from both the numerical and mechanical

points of view. The differences observed are analysed and

the biological relevance of the respective models is

discussed.

METHOD

Theoretical Tensegrity Model

The four elementary tensegrity structures numerically

tested are spatial systems which are arranged in apparently

spherical patterns and are composed of a discontinuous

network of quasi-rigid bars compressed by a continuous

network of pre-stretched elastic cables. The so-called

simplex, quadruplex, octahedron and cuboctahedron are

spherical tensegrity structures composed of 3 bars and 9

cables, 4 bars and 12 cables, 6 bars and 24 cables and 12

bars and 48 cables, respectively (see Fig. 1). The

constitutive cables and bars are defined in terms of their

geometrical characteristics (length Lc, Lb; cross-sectional

area Sc, Sb) and their mechanical properties (Young’s

modulus Ec, Eb). Each elastic cable behaves like a linear

extension spring which is initially stretched in the

reference state of the structure (i.e. when no external

forces are applied to the overall structure). The

particularity of the elastic cable is its unilateral

mechanical behaviour, i.e. the cable loses its rigidity

whenever its actual length Lc becomes smaller than

the resting length Loc. The resulting stretching force Tc in

the cable is defined as follows:

Tc ¼ ðESÞc
Loc

ðLc 2 LðrÞc Þ þ T ðrÞ
c ; Tc . 0

Tc ¼ 0 then Lc , Loc

8<
: ð1Þ

Let T ðrÞ
c be the positive stretching force in the reference

state defined by T ðrÞ
c ¼ ðESÞcðLðrÞc 2 LocÞ=ðLocÞ and Loc the

length of the unloaded cable (see Fig. 2A).

The mechanical behaviour of the bars is similar to that

of a classical spring and the compression force Tb in the

bar is defined as follows:

Tb ¼ ðESÞb
Lob

ðLb 2 LðrÞb Þ þ T ðrÞ
b ð2Þ

Let T ðrÞ
b be the compression force in the reference state

T ðrÞ
b ¼ ðESÞbððLðrÞb 2 LobÞ=LobÞ and Lob be the length of the

unloaded bar (see Fig. 2B). The cross-sectional area and

the Young’s modulus of both components are assumed to

be constant. In the reference state, the stable shape of the

tensegrity structure studied depends on the equilibrium

between the tension in the cables T ðrÞ
c and T ðrÞ

b the

compression in the bars.

Study Conditions and Constitutive Equations

We analysed the overall deformation of the four spherical

tensegrity structures (simplex, quadruplex, octahedron

and cuboctahedron ) subjected to extension–compression

as the result of the forces applied at the three (four in the

case of the quadruplex ) nodes (extremities of the bars)

lying in the upper plane. The structures were all assumed

to be fixed to a rigid support by spherical joints at the three

FIGURE 1 Four types of spherical tensegrity structures subjected to
extension forces: (A) Simplex: 3 bars and 9 cables; (B) Quadruplex: 4 bars
and 12 cables; (C) Octahedron: 6 bars and 24 cables and
(D) Cuboctahedron: 12 bars and 48 cables.



lower nodes (four nodes in the case of the quadruplex )

(see Fig. 1). In both models herein developed, an

incremental method was used to calculate the nodal

displacements of the tensegrity model subjected to

external forces. This method consists of applying an

incremental load and calculating a new equilibrium

configuration of the tensegrity structure at each loading

step. It was assumed that the successive states of

deformation were different from the reference state (that

which existed prior to the loading). The problem to be

solved is non linear because of the finite deformation and

the non linear “displacement–strain” relationship between

the constitutive components.

The first model, which is based on a Finite Element

Method (FEM), consists to solve the following non linear

system of equations under quasi static conditions:

{F} ¼ ½KðuÞ�{u} ð3Þ

Equation (3) describes the equilibrium between internal

and external forces applied to the nodes, using the specific

behavioural laws [see Eqs. (1) and (2)] governing each

constitutive element (bars and cables). The components of

the column vector {F} are the external forces applied to

the nodes of the structure in the three spatial directions.

The components of the unknown columnvector {u} are the

resulting nodal displacements in the three directions. The

matrix [K(u)], which is the so-called rigidity matrix of

the overall tensegrity structure, is updated at each loading

step. Due to the FEM used, the computation failed as

soon as the tension in one cable dropped to zero [see

Eq. (1)].

To avoid this problem, we then used the second model,

based on the Non Smooth Contact Dynamics (NSCD)

Method which was developed to study short contact

dynamic problems [10]. In this model, the tensegrity

structures are taken to be a set of isolated material points

that are connected to each other by so-called interaction

laws. These material points are the nodes of the structure

which are assumed to have a non zero mass. The

interaction laws between the material nodes describe the

geometrical and mechanical properties of the components

(bars and cables) as well as the unilateral mechanical

behaviour of the elastic cables (see Fig. 2). The overall

deformation of the tensegrity structure is deduced by

solving the following system of equations under dynamic

conditions:

½MðuÞ�{ €u} ¼ {F}þ {rðuÞ} ð4Þ

where [M(u)] is the mass matrix of the overall structure

(material points of the structure) and {r(u)} the column

vector of the interaction forces between the material nodes

satisfying unilateral conditions as far as the cables are

concerned.

Definition of the Tensegrity Model Stiffness

The tensegrity model response was analysed in terms of

the apparent elasticity modulus deduced from the overall

stress–strain relationship. The equivalent stress s was

defined by the ratio between the norm of the external force

vector and the mean cross-sectional area S0 of the overall

structure:

s ¼ k{F}k
S0

ð5Þ

S0 corresponds to the area of a circumscribed circle which

is normal to the direction of the external forces applied

and located in the intermediate plane of the structure in the

reference state (Fig. 1).

The apparent strain 1 of the overall structure was

defined along the loading axis as follows:

1 ¼ DL

L0
ð6Þ

where L0 is the distance between the lower and upper

planes in the reference state (Fig. 1). The apparent

elasticity modulus E of the tensegrity model was defined

by the stress/strain ratio at 10% deformation of the whole

structure.

FIGURE 2 Definition of the constitutive equations of (A) the cable
under unilateral conditions (Tc ¼ 0 then DU # DUo) and (B) the bar.
DU gives the relative elongation ðLp 2 LopÞ of the components p (bar or
cable). By convention, Tb is taken to be negative and Tc is taken to be
positive.



Non Dimensional Parameters of the Tensegrity Model

The tensegrity model is characterised by (i) the length of

the constitutive bars (LðrÞb ) which defines the overall

structural scale, (ii) the internal tension defined by the

initial cable tension T ðrÞ
c as well as by (iii) the number of

bars (N ). In order to analyse the overall elasticity modulus

given by the tensegrity model at the cellular level, the bar

length LðrÞb , the pre-stretching force T ðrÞ
c of the tensegrity

structures in the reference state and the apparent elasticity

modulus E were normalised using two constant material

characteristics, namely the Young’s modulus Ec and the

radius rc of the cable.

T* ¼ T ðrÞ
c

EcSc
ð7Þ

L* ¼ LðrÞb
rc

ð8Þ

E* ¼ E

Ec

: ð9Þ

The normalised overall elasticity modulus E* was

expressed as a function of the normalised elastic tension

T*, the normalised length L* [Eqs. (7) and (8)] and the

number of constitutive components (bars) N, thus yielding

an expression for the proportional overall structural

stiffness in relation to the properties of the individual

components.

RESULTS

The normalised elasticity modulus given by the numerical

solution of the constitutive equations obtained in the

framework of both the non smooth contact dynamic model

and the finite element model are presented in Figs. 3–5 as

a function of three main parameters of the tensegrity

structures, i.e. the normalised length of the constitutive

bars L*, which is characteristic of the size of the structure,

the normalised internal tension T*, which corresponds to

the initial extension of the cables in the reference state

and the number of bars N, which differs between the four

tensegrity structures (simplex, octahedron, quadruplex

and cuboctahedron ) tested.

Figure 3 gives the ðE* 2 T* Þ relationships curve-fitted
by a power-law equation on the logarithmic scale. The

physical properties obtained (length, radius and Young’s

modulus of the components) are similar with all four

tensegrity structures tested. The structural stiffness

increases with the internal stress; i.e. the slope of the

curve was þ0.4 with the octahedron (Fig. 3C), þ0.54

with the simplex (Fig. 3A), þ0.67 with the cuboctahedron

(Fig. 3D) and þ0.79 with the quadruplex (Fig. 3B).

However, the slopes of the logarithmic ðE* 2 T* Þ curves
vary non linearly with the tensegrity structure (i.e. with the

number of bars, N ). To explain these discrepancies, we

analysed the influence of the number of constitutive bars

on the overall structural stiffness. It can be seen from Fig. 4

that a decrease in the overall normalised elasticity

modulus occurred when the number of bars increased. It

is worth noting that regardless of L*, E* was found to

exhibit a negative dependence on N (i.e. the slope

< 2 2.7 on the logE* 2 logN curve, see Fig. 4). This

result means that increasing the number of interconnected

components in a spherical tensegrity structure tends to

soften the structure. In addition, we noted that the

normalised apparent elasticity modulus E* decreases

proportionally to the inverse of the square of L* (slope22

of the curve) in all the tensegrity structures studied, i.e.

whatever the number of constitutive components. In other

words, the structural stiffness decreases as the size of the

structures tested increases. A similar L*
22-dependency

was previously observed with a 16-component tensegrity

model [29] and when the octahedron was subjected to

other conditions of attachment to a rigid base and external

forces of other kinds were applied [2,28].

Based on all these dependencies on the overall elasticity

modulus of the tensegrity structures tested, we deduced

the following unique non dimensional parameter:

R ¼ ðT* Þ0;5
N 2;7·ðL* Þ2 ð10Þ

The parameter R was determined and used to estimate

the normalised elasticity modulus E* of a large variety of

tensegrity structures defined in terms of the triplex (L*, T*,

N ). It is worth mentioning that the stiffness of the

tensegrity structure could be balanced by the number of

constitutive components (N ) and the size of the structure

(component length L*). A large number of short

components yields approximately the same structural

apparent elasticity modulus. In addition, we have

observed for the four types of spherical tensegrity

structures tested that the elasticity modulus in the

perpendicular direction (i.e. apparent shear modulus) is

not equivalent to 1/3 of the apparent elasticity modulus,

ratio which is characteristic of an equivalent isotropic

elastic medium (results not shown). A more detailed study

has already been performed on the octahedron model (see

Ref. [28]). Moreover, in a recent study, we have shown

that the Poisson’s ratio of a highly deformed 30-element

tensegrity model is not constant and always greater than

the standard Poisson’s ratio n of a continuous medium, i.e.

n . 0:5 (see Ref. [2]).

DISCUSSION

Multi Factorial Mechanical Behaviour of Tensegrity
Structures

The present study was the first attempt made so far to

generalise the laws governing the relationships between

the elasticity modulus (E*) with which the tensegrity cell



model deals and local properties such as (i) the internal

tension T*, which corresponds to the cable strain in the

reference state (before loading), (ii) the number of

constitutive components N and (iii) the normalised

component length L*, which characterises the size of the

overall structure. The use of non dimensional expressions

to describe the mechanical response of the tensegrity

model makes it possible to show the existence of a

constant proportionality between the components and the

overall mechanical properties. In fact, the mechanical

behaviour of tensegrity structures is multi factorial and

depends strongly on the local physical properties (internal

tension, size, number of components, etc.) as well as on

the type of nodal attachment to the rigid support and the

external loading conditions. It was observed that

increasing the number and increasing the length of the

constitutive components both soften the spherical

tensegrity model to a similar extent (slope 22 of the

ðlogE* 2 log L* Þ curve versus slope 22.7 of the

ðlogE* 2 logNÞ curve); whereas the four tensegrity

models tested become stiffer when the internal tension is

increased. These dependencies could be expressed in a

single constant number R [see Eq. (10)], which may be

representative of a large variety of spherical tensegrity

structures. The mechanical behaviour of more complex

structures (e.g. those having a larger number of

components, greater internal tension, etc.) is therefore

comparable to that of an elementary simplified tensegrity

structure with a similar number R. This number could be

defined by several triplexes of the three main parameters

FIGURE 5 Numerical “stress–strain” relationships obtained on a
30-element tensegrity structure (L* ¼ 100; T* ¼ 0:01%) subjected to
extension with the FEM and the NSCD Model.

FIGURE 4 Numerical relationships between the normalised elasticity
modulus and the number of elements on the logarithmic scale, based on
three different pairs of values (the normalised length L* and the
normalised internal tension T*).

FIGURE 3 Normalised elasticity modulus E* of (A) the simplex
(3 bars), (B) the quadruplex (4 bars), (C) the octahedron (6 bars) and (D)
the cuboctahedron (12 bars) subjected to extension, plotted versus the
normalised internal tension T*. The linear equation was obtained from
the curve-fitting procedure performed with the numerical results obtained
with each type of tensegrity structure.



(L*, T*, N ). These results confirm the previously proposed

hypothesis that simplified tensegrity structures may in fact

be representative of more complex tensegrity structures

[11]. These theoretical results also confirm the finding that

the main features, such as the L* and T* effects of the

various tensegrity models studied under several attach-

ment and loading conditions do not differ fundamentally

[1,30].

FEM versus NSCD Model

The FEM based on a standard finite element analysis with

bars and cables as the basic components, was used to study

the mechanical behaviour of tensegrity structures.

Although this model is easy to apply and involves fast

computation rates, it can only be used for studying

tensegrity structures under quasi static conditions with

small deformations. Indeed, the FEM failed when one

constitutive elastic cable was released during the overall

deformation of the tensegrity structure tested. Moreover,

in the case of tensegrity structures with a weak internal

tension T*, the slackening of some constitutive elastic

cables occurs when there is only a slight deformation of

the overall tensegrity structure tested (see Fig. 5). To

analyse tensegrity model deformations with a large range

of T* ( ¼ [0.001–0.1]), we therefore developed a

numerical model in which the NSCD method was applied

to the tensegrity concept, taking the unilateral mechanical

behaviour of the elastic cable into account. The most

original feature of this model is that it can be used in both

static and dynamic studies on an infinite range of

tensegrity structures involving various spatial distri-

butions of the constitutive components. However, since

the number and the spatial organization of the constitutive

components are unlimited, there are still many difficulties

to be overcome before we can define and develop a more

complex structure in the framework of the tensegrity

structure concept.

Biological Interpretation

The cellular overall deformation is closely related to the

microenvironmental mechanical conditions (e.g. external

applied stress, cell/cell or cell/extracellular matrix

attachment conditions) and results from a spatial

rearrangement of the CSK filamentous network [21,24].

Moreover, many authors have explained in terms of their

common tensegrity nature, the prestress and the non linear

responses (stress-hardening) observed in the CSK of living

adherent cells [12,24,25]. Authors of previous studies on

tensegrity structures have established that living cells

and tensegrity models interestingly share a great number

of common structural and mechanical features

[4,18,26,27].

More recently, authors have shown the heterogeneity of

the mechanical properties at work within the cytoplasm of

living adherent cells, stressing the need to perform multi-

modular analyses on the mechanical cell responses

[13,15,31]. In particular, Laurent et al. have performed

3D-reconstructions of low and high density actin filament

networks which revealed two compartments; (i) the

cortical actin network constitutes a thin mantle every-

where in the cell and may contain a large number of short,

low-density actin filaments, (ii) the cytosolic actin

network is organised in large stress fibres through the

whole cell coupled to other highly polymerised CSK-

filaments (i.e. the microtubules associated to the

intermediate filaments) and may contain a smaller number

of high-density, thick, long F-actin stress fibers [13]. The

cortical actin network is the faster, softer, more fluidified

compartment and the cytosolic actin network which is

responsible for the stability of the cell and its anchorage to

the substrate via a process of focal adhesion, is a slower,

stiffer, more solidified compartment [3,13]. Moreover,

bead twisting measurements on living adherent cells

showed that the CSK response may be advantageously

partitioned into a slightly tensed, easily deformable

cortical CSK compartment and a highly tensed, largely

rigid 3D-internal cytosolic CSK network [14]. In addition,

these two compartments, especially the cytosolic one,

exhibit a stress-hardening response. The cellular L* and N

values obtained in our theoretical studies on tensegrity

structures confirm the hypothesis put forward by Laurent

et al. [13] that the normalised constitutive length L* is 1

order of magnitude smaller and the number of components

N about 2 orders of magnitude greater in cortical than in

cytosolic CSK microstructures. The structural stiffness of

cortical CSK is probably lower than that of the cytosolic

CSK, as observed experimentally. Moreover, the tense-

grity stiffness (E*) was found to increase slightly with the

internal tension (T*) in all four models. A rough estimate

of the prestress values in elastic fibres and filaments in

each of the two CSK compartment suggests that the T*
values may be about 2 orders of magnitude smaller in

the cortical than the cytosolic CSK, which would

also contribute to decreasing the structural cortical

stiffness.

Although tensegrity models are still greatly over-

simplified in comparison with biological reality, the

tensegrity concept, nevertheless, provides a useful

approach for investigating how each of the CSK

substructures located at different points in the cytoplasm

and/or at various scales may be involved in the

mechanical responses of living cells during biological

processes.
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Créteil, France, Cellular Biophysics and Biomechanics

Laboratory, Swiss Federal Institute of Technology.)

Professor M. Jean and M. Villautreix for their contri-

butions. This study was supported by Centre National pour

la Recherche Scientifique (Programme Matériaux, 2001).



References
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modèle de tenségrité”, C.R. Acad. Sci. Série. IIb(328), 97–104.

[30] Wendling, S., et al. (2000) “Role of cellular tone and
microenvironmental conditions on cytoskeleton stiffness assessed
by tensegrity model”, Eur. Phys. J. AP 9, 51–62.

[31] Yamada, S., Wirtz, D. and Kuo, S.C. (2000) “Mechanics of living
cells measured by laser tracking microrheology”, Biophysical
Journal 78, 1736–1747.

APPENDIX

The FEM consists to solve the non linear system of

equations ð{F} ¼ ½KðuÞ�{u}Þ under quasi static conditions
using the quasi-static implicit Newton Raphson method of

integration (Standard quasi-static implicit version of

ABAQUS). The finite elements used to define the

constitutive elements (bars and cables) of the tensegrity

structure tested, are nonlinear axial springs. The

constitutive equations of the elements (cables and bars)

are done by the ðDU 2 TpÞ relationships shown in Fig. 2.

DU gives the relative elongation ðLp 2 LopÞ of the

components p (bar or cable) and T the stretching or

compression force as defined in Eqs. (1) and (2).

By convention, Tb is taken to be negative and Tc is

taken to be positive. It is to notice that the cables work

only in extension and this unilateral condition is defined

by Tc ¼ 0 then DU # DUo (with DUo the relative resting

length of the cables before assembly in the structure).

When the tensegrity structure is submitted to external

applied stress, some cables become lack and the

computation failed as soon as the tension in one cable

dropped to zero due to the unilateral condition in the

constitutive equation of the cables.

In the NSCD model, the constitutive elements of the

tensegrity structure are considered as a set of material

points which interact together. The interaction laws

between the material nodes describe the geometrical and

mechanical properties of the rigid bars as well as the

geometrical and unilateral mechanical behaviour of the

elastic cables. These interaction laws between specific

material points are defined as follows:

�u $ 0

R $ 0

�u·R ¼ 0

8>><
>>:



with

u ¼ l2 l0

�u ¼ 2uþ 1
k
R

8<
: ;

l (respectively l0) are the actual (respect. resting) length of

the element; k, the rigidity of the element and R the

interaction force between neighboring points.

The unknowns of these conditions of complimentarily

(�u; R ) are taken into account in the problem [Eq. (4)] to

resolve. This problem which is written at each increment

of re-equilibrium in the form of a system of linear

equations with constraints, could be directly resolved by

algorithms used for unilateral contact problems. The

details of the resolution methods of such problems are

proposed in Ref. [10].


