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This paper deals with the numerical solution of two-dimensional unilateral contact problems with friction between a linearly elastic body 
and a rigid obstacle. The contact is modeled by Signorini’s law and the friction by Coulomb’s law. A discrete dual formulation condensed on 
the contact zone is introduced and the contact forces are obtained either by relaxation or by block-relaxation procedures. A comparison is 
presented between these two techniques.
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1. Introduction

The aim of this paper is to present numerical methods to

solve unilateral contact discrete plane problems with dry

friction. Unilateral contact and friction are respectively

modeled by Signorini’s and Coulomb’s laws, which

constitute a simple and useful framework for the analysis

of unilateral frictional contact problems of a linearly elastic

body with a rigid support [5]. It seems useful, from a

mechanical point of view, to develop techniques based on

dual formulations, in order to directly compute stresses,

which are the quantities of primary interest. The continuous

and discrete dual formulations of the contact problem lead

to quasi-variational inequalities, whose unknowns, after

condensation, are the normal and tangential contact forces at

points/nodes of the initial contact area [1,3,4,6–8]. New

numerical solution methods, based on iterative relaxation

and block-relaxation techniques, are proposed [4,9]. The

relaxation procedure is a succession of local minimizations

in given convexes. The definition of the convex of

constraints, which is a cylinder, varies for tangential or

normal components. This algorithm turns out to be very

robust. At the typical step of the block-relaxation iteration,

two sub-problems are solved one after the other: the former

is a problem of friction with given normal forces, and the

latter is a problem of unilateral contact with prescribed

tangential forces. Both of them are standard problems of

quadratic programming. This method is the dual version of

the famous PANA algorithm [2], and, for sufficiently small

friction coefficients, the typical step of the block iteration is

a contraction [4]. The contraction principle implies the well-

posedness of the discrete dual condensed formulation, the

convergence of the proposed algorithm, and an estimate of

the convergence rate. Both these procedures are applied

here to various examples, in the case of elastic and piezo-

electric bodies in contact with rigid foundations [3,4], in

order to evaluate their efficiency and robustness.

2. Formulation of the problem

2.1. Notations and strong formulation

Let R3 be the Euclidian point space, and ðO; x1; x2; x3Þ a

Cartesian frame whose unit vectors are e1; e2; e3: Cartesian

components are denoted by subscript indices. Einstein’s

summation convention is adopted. The inner and vector

products are denoted by the symbols (·) and ( £ ),

respectively. The length of a vector is denoted by l·l:
Differentiation with respect to xi is denoted by ð·Þ;i: Let

the regular bounded region V , R3 be the reference

configuration of a deformable body, whose boundary is

denoted by G; and let n be the outward normal unit vector to

G: The body is subjected to volume forces F and to surface* Corresponding author.
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forces f on Gf , G: On Gd , G=Gf the displacement uo is

given. The remaining part Gc ¼ G=ðGf < GdÞ of the

boundary G is in receding contact with a rigid support,

modelled according to the Signorini unilateral contact law

and the Coulomb dry friction law. The body is comprised of

a linearly elastic material, whose elasticity A and compli-

ance S fourth-order tensors are assumed to be positive

definite and uniformly bounded in V: The contact problem

is studied in the framework of the quasi-static small

deformation theory, under monotonic loads. The unknowns

are the displacement field u and the stress field s in V; and

the governing equations are

sij;j þ Fi ¼ 0 in V; sij ¼ sji in V;

sij ¼ AijkleklðuÞ in V; e ijðuÞ ¼
1

2
ðui;j þ uj;iÞ in V;

sijnj ¼ fi on Gf ; u ¼ uo on Gd;

sN # 0; uN # 0; uNsN ¼ 0 on Gc;

lsT l # 2msN ; ’l $ 0 : uT

¼ 2lsT ; ðlsT lþ msNÞuT ¼ 0 on Gc;

ð1Þ

where m $ 0 is the friction coefficient and the normal and

tangential displacement and traction components are, as

usual, defined by

sN ¼ sn·n; sT ¼ sn 2 sNn; uN ¼ u·n;

uT ¼ u 2 uNn:

ð2Þ

2.2. Variational formulations

2.2.1. Primal formulation

The primal variational formulation of the contact

problem consists of the implicit variational inequality:

Find u [ Kd such that ;v [ Kd

aðu; v 2 uÞ þ jðu; vÞ2 jðu; uÞ2 Lðv 2 uÞ $ 0; ð3Þ

where

aðu; vÞ ¼
ð
V

Aijkle ijðuÞeklðvÞ dV;

LðvÞ ¼
ð
V

Fivi dVþ
ð
Gf

fividG;

jðu; vÞ ¼ 2
ð
Gc

msNðuÞlvT ldG:

ð4Þ

and where

V ¼ {v [ ðH1ðVÞÞ3; gv ¼ uo on Gd};

Kd ¼ {v [ V ; vN # 0 on Gc}:

ð5Þ

Here Kd is the convex set of kinematically admissible fields

and g is the trace operator on the boundary G from ðH1ðVÞÞ3

to ðHð1=2ÞðGÞÞ3: Moreover, A is positive definite, A [ L1ðVÞ;

m [ L1ðGcÞ; m $ 0; F [ ðL2ðVÞÞ3 and f [ ðL2ðGÞÞ3: Clas-

sically, this problem is equivalent to a fixed point problem

coupled with a convex and non-differentiable minimization

problem [1]. Existence and uniqueness results are available

for small friction coefficients [11].

2.2.2. Dual formulation

The dual formulation of the contact problem consists of

the quasi-variational inequality [6]:

Find s [ KCð2sN Þ
such that ;t [ KCð2sN Þ

bðs; t2 sÞ2 lðt2 sÞ $ 0; ð6Þ

where

bðs; tÞ ¼
ð
V

Sijklsijtkl dV; lðtÞ ¼
ð
Gd

tijnjuoi dG; ð7Þ

and where

H ¼ {t [ L2ðV;MÞ; tij;j þ Fi ¼ 0 in V; tn ¼ f on Gf }

KCðhÞ ¼ {t [ H; tN # 0 on Gc; ltT l # mh on Gc}:

ð8Þ

Here M is the space of second order symmetric tensors and

KCð2sN Þ
; the convex set of statically admissible stress

fields, depends on the solution s: Moreover, S is

positive definite, Sijkl [ L1ðVÞ; 1 # i; j; k; l # 3; m [
L1ðGcÞ; m $ 0; uo [ ðHð1=2ÞðGÞÞ3: In the following, Ku

the local convex subset of ðH2ð1=2ÞðGcÞÞ
3 is introduced

Ku ¼ {t [ ðH2ð1=2ÞðGcÞÞ
3; tN # 0; ltT l # mu}: ð9Þ

3. Condensed dual formulation

3.1. Continuous formulation

The aim of this section is to present the dual formulation

condensed on the contact zone. This formulation, etablished

by Telega [6], is based on the Mosco duality ([12], see also

Ref. [13]). The primal formulation is re-written in the

following form

Find u [ V such that ;v [ V

aðu; uÞ þ IKd
ðuÞ þ jðu; uÞ2 LðuÞ

# aðu; vÞ þ IKd
ðvÞ þ jðu; vÞ2 LðvÞ; ð10Þ

where IKd
is the indicator function of the set Kd: In the

following, we define the two functionals g and f by

gðv;wÞ ¼ aðv;wÞ2 LðwÞ; fðv;wÞ ¼ IKd
ðwÞ þ jðv;wÞ: ð11Þ

The problem is then written

Find u [ V such that ;v [ V

gðu; uÞ þ fðu; uÞ # gðu; vÞ þ fðu; vÞ: ð12Þ
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With a slight abuse of notation, the functional f is regarded

as defined on ðH2ð1=2ÞðGcÞÞ
2: We denote by fp the Fenchel

conjugate of the functional f with respect to the second

variable, fpðv;2wpÞ ¼ sup{k2 wp;wl2 fðv;wÞ;w [
Hð1=2ÞðGcÞ}: Here k·; ·l is the duality pairing between

H2ð1=2ÞðGcÞ and Hð1=2ÞðGcÞ: By definition of f; we obtain

fpðv;2wpÞ ¼ sup{k2 wp
N ;wNl2 IKd

ðwÞ}

þ sup{k2 wp
T ;wT l2 jðv;wÞ} ¼ IK2sN ðvÞ

ðwpÞ

ð13Þ

In the Mosco duality theory, it is assumed that

(A) V is a real reflexive space and Vp its dual space,

(B) ;v [ V ; w ! fðv;wÞ is a real valued proper convex

function on V ;

(C) ;v [ V ; w ! gðv;wÞ is a real valued convex function

on V ; which is continuous when w ¼ v;

(D) ;v [ V ; w ! gðv;wÞ has a Gateaux derivative with

respect to w;Dgðv;wÞ; in w ¼ v; such that ;wp [ Vp

the set {v [ V;Dgðv; vÞ ¼ wp} contains at most one

element denoted ðDgÞ21ðwpÞ:

Then the dual problem of Eq. (12) is [15]

Find up [ Vp such that ;wp [ Vp

fpððDgÞ21ð2upÞ; upÞ2 kup; ðDgÞ21ð2upÞl

# fpððDgÞ21ð2upÞ;wpÞ2 kwp
; ðDgÞ21ð2upÞl ð14Þ

In the present case

gðv;wÞ ¼ aðv;wÞ2 LðwÞ ¼ kAv 2 f ;wl

Dgðu; uÞ ¼ Au 2 f

ð15Þ

Thus,

ðDgÞ21ðupÞ ¼ u ¼ A21up þ A21f ð16Þ

Let A21up þ A21f ¼ Gup þ g; G is the Green’s operator for

the boundary value problem of linear elasticity. The dual

problem is written

Find up ¼ ðN;TÞ [ K2N such that ;wp [ K2N

kwp 2 up
; Gup þ gl $ 0: ð17Þ

where N and T are the normal and tangential components of

the contact force up: It is emphasized that Eq. (17) involves

only unknowns defined on the contact boundary. Hence, it

can be regarded as the condensed version of the dual

problem defined in Section 2. It is proved in Ref. [14], that u

is a solution of the primal problem if and only if up is a

solution of the condensed dual problem. Thus, in the

following, we focus on the numerical solution of the

condensed dual problem.

3.2. Discretized formulation

The discretization of Eq. (17) requires the internal

discretization of the cone K2N and the construction of an

approximation of the Green’s operator G: These tasks can be

achieved by building a triangulation Th of the domain V

consistant with the partition of boundary in Gc; Gf and Gd

and by approximating the displacement field in piecewise-

polynomial functions. In other words, an approximation of

the Green’s operator can be built from the inversion of

the condensed (on the contact boundary) stiffness matrix.

The discretized formulation, using standard notations, is

written as:

Find up [ Kh
2N such that ;wp [ Kh

2N

kwp 2 up
; Ghup þ ghl $ 0: ð18Þ

An alternative method useful to obtain a discretized version

of Eq. (17), i.e. Eq. (18) could be based on the discretization

of the dual formulation followed by the condensation on the

contact boundary. From a numerical point of view, in this

variant, is less expensive to build the stiffness matrix.

4. Numerical procedures

4.1. First method: D-PANA algorithm

In this section, a numerical algorithm to solve, in the

plane case, the condensed dual problem is presented. The

idea of the algorithm, based on a block-relaxation

technique, consists in a sequence of solutions of two sub-

problems: at the k-th step, a problem of friction with given

normal forces is solved, and then a problem of unilateral

contact with prescribed tangential forces is solved, too. This

algorithm is named D-PANA, since it is the dual version of

the PANA classical algorithm due to P.D. Panagiotopoulos

[2]. The symmetric positive definite compliance matrix Gh

is decomposed in four blocks as follows

Gh ¼
GNN ðGTNÞt

GTN GTT

!
; ð19Þ

where GNN (resp. GTT ) is the sub-matrix corresponding to

the normal (resp. tangential) degrees of freedom. Analo-

gously, the generalized displacement vector gh is decom-

posed in two blocks

gh ¼
gN

gT

 !
; ð20Þ

where gN (resp. gT ) corresponds to the normal (resp.

tangential) degrees of freedom.

Let (N0; T0) be given, the k-th iteration of the

algorithm is,

† Tkþ1 is the solution of the following friction problem

with given normal contact force

min
1

2
TtGTT T þ TtðgT þ GTNNkÞ; lT l # 2mNk

� �
ð21Þ
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† Nkþ1 is the solution of the following unilateral contact

problem with given tangential friction force

min
1

2
NtGNNN þ NtðgN þ ðGTNÞtTkþ1Þ; N # 0

� �
ð22Þ

This algorithm is based on a simple idea: if in Eq. (18),

friction forces (resp. contact forces) are given, the convex is

fixed and the problem is equivalent to a minimization

problem on the contact forces (resp. friction forces). It is

noted that minimization problems (21) and (22) have unique

solutions, since the involved functionals are strictly convex,

and the minimization sets are convex and not empty.

Moreover, these problems can be solved by efficient

quadratic programming techniques [15] or relaxation

algorithms [16]. It is possible to prove the following result

Theorem 1. For a sufficiently small friction coefficient m

the D-PANA algorithm is convergent.

The proof can be found in Ref. [4].

4.2. Second method: D-GLT algorithm

This algorithm is an adaptation of the algorithm proposed

in Ref. [16] (see also Refs. [5,10]). The idea is to minimize a

succession of one-dimensional problems, that is, for the ith-

component, the other components are fixed and we have to

minimize a convex one-dimensional problem in a convex

subset

† Ni # 0 ;i [ {1…n}, for a normal contact component,

† lTil # 2mNi ;i [ {1…n}; for a friction component.

The algorithm is given by

(N0; T0) initial solution be given, for any k . 0 (iteration

index) and for i [ {1…n} :

a ¼2 gN
i 2

Xi21

j¼1

GNN
ij Nkþ1

j 2
Xn

j¼iþ1

GNN
ij Nk

j 2
Xi21

j¼1

GTT
ij Tkþ1

j

2
Xn

j¼i

GTT
ij Tk

j ð23Þ

Nkþð1=2Þ
i ¼

a

GNN
ii

ð24Þ

if N kþð1=2Þ
i . 0 then Nkþ1

i ¼ 0

if Nkþð1=2Þ
i # 0 then Nkþ1

i ¼ Nkþð1=2Þ
i

8<
: ð25Þ

b ¼2 gT
i 2

Xi

j¼1

GNN
ij Nkþ1

j 2
Xn

j¼iþ1

GNN
ij Nk

j 2
Xi21

j¼1

GTT
ij Tkþ1

j

2
Xn

j¼iþ1

GTT
ij Tk

j ð26Þ

Tkþ1
i ¼

b

GTT
ii

ð27Þ

if Tkþð1=2Þ
i . 2mNkþ1 then Tkþ1

i ¼ 2mNkþ1

if Tkþð1=2Þ
i , mNkþ1 then Tkþ1

i ¼ mNkþ1

if lTkþð1=2Þ
i l # 2mNkþ1 then Tkþ1

i ¼ Tkþð1=2Þ
i

8>>><
>>>:

ð28Þ

Usually, this algorithm is improved introducing a relaxation

coefficient v: Nkþð1=2Þ
i (resp. Tkþð1=2

i Þ is replaced by

vNkþð1=2Þ
i þ ð1 2 vÞNk

i (resp. vTkþð1=2Þ
i þ ð1 2 vÞTk

i Þ in the

previous algorithm.

It is noted that, as classically, the stop criterion is defined

on the relative variation of the contact and friction forces.

5. Numerical results

5.1. The numerical example: a classical benchmark

In order to test and validate the algorithm, we have

chosen a benchmark studied by the group ‘Validation of

computer codes’ of French Research Groupment ‘Large

Deformations and Damage’ [10].

We work in plane strains and we consider a long bar with

a rectangular section, with Young’s modulus E ¼ 130 GPa

and Poisson’s ratio n ¼ 0:2: By symmetry reasons, we

consider only a square section. The vertice lenght is equal to

40 mm. The contact zone is the line AB on Fig. 1.

The problem has been tested with different values of the

friction coefficient m and of the loading (f on AD;F on CD).

Fig. 1. The problem of the long bar in contact with a rigid plane.

Table 1

Behavior of the interface for different parameters

m F f Gap sN ¼ sT

¼ 0 (mm)

Sliding lsT l
¼ f lsN l (mm)

Stick lsT l
, f lsN l (mm)

0.2 25 10 0 40 0

0.2 215 10 0 23 17

0.2 225 10 0 3 37

1 25 10 3 18 19

1 25 15 3 25 12

4



Variations of contact status are given in Table 1 for different

parameters (the loadings are in MPa).

5.2. Agreement with primal formulation

In this section, we compare the numerical results with

thus obtained by the primal formulation [10] in order to

analyse the precision of the algorithm. In Ref. [10],

the problem is discretized by P1 linear finite element

(three nodes triangles) and the discrete problem is solved by

a fixed point method coupled with a relaxation algorithm.

The mesh is an unstructured one with 230 nodes (33 contact

nodes). In our work, we have treated the same problem with

a structured mesh with 289 nodes (17 contact nodes). The

problem is discretized by bicubic Hermite elements [17]

(four nodes quadrangles).

Fig. 2 shows that we obtain a good agreement between

the two formulations in terms of contact forces. In Fig. 3, we

observe the normal displacements for the two formulations

which could be an handicap for the development of our

method to large slidings [18]. These figures correspond to

the case m ¼ 1; F ¼ 25 MPa and f ¼ 15 MPa (fifth line in

Table 1). Note that D-PANA and D-GLT algorithms give

the same solution. The low differences between the curves

can be explained by the various approximations: P1 linear or

bicubic Hermite elements,

† the various meshes: triangles with 230 nodes or

quadrangles with 289 nodes,

† the computation of displacements and forces: by direct

computation or by duality.

5.3. Remarks on the algorithms behaviour

In Fig. 4, the influence of the relaxation parameter v on

the convergence of the D-GLT algorithm is observed for two

values of the friction coefficient (0.3 and 1.0). The optimal

value of this coefficient is found to be close to 1; therefore,

the search for an optimal v needed in the primal algorithm

Fig. 2. Contact forces: primal and dual algorithms.

Fig. 3. Normal displacements on the contact zone: primal and dual

algorithms.

Fig. 4. Evolution of the relaxation parameter.

Fig. 5. Number of iterations versus friction coefficient.
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can be avoided. As an example, in [10], the optimal value of

the relaxation coefficient is equal to 1.67 in the case

presented above and the cost to obtain this coefficient is very

high.

Fig. 5 shows the influence of the friction coefficient on

the convergence for the D-GLT algorithm. This parameter

has not a strong influence on the number of iterations (close

to 75 in this case) contrary to more classical ones [10,19,20].

6. Conclusions

In this paper, the formulation of frictional contact

problems in terms of dual unknowns (stresses) was

presented and solution methods of the problem issued

from this formulation were investigated. A condensation on

the initial contact area led to a discrete quasi-variational

inequality. In our contribution, the latter was solved by

means of two algorithms. These algorithms were

implemented in a finite element software. Efficiency and

robustness in two dimensions were shown and an excellent

agreement with the numerical results supplied by primal

formulations was obtained, both for stresses and displace-

ments. Note that the development of this methodology in

three dimensions leads to the ‘facetization’ of the Coulomb

cone as in Ref. [13]. Other numerical examples with a more

complex behaviour law were presented in Ref. [3].
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