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Abstract. For unidirectional ply laminates, the great diversity of the damage mechanisms and their 
patterns of evolution make it extremely difficult to estimate the strength margins. In the case of woven 
ply laminates, the number of damage mechanisms is fairly small (no transverse rupture occurs and the 
material has a greater resistance to delamination) and the behaviour of the material is fairly simple to 
model up to rupture. In this study, a numerical model for woven ply laminated composite structures 
up to rupture is developed. The implementation is performed in a Euler Backward scheme and the 
consistent tangent stiffness matrix is calculated. Comparison with some experiments on structures 
are made and the model predicts these experiments well.

Key words: woven composite, finite element, rupture, damage.

1. Introduction

When unidirectional (UD) ply laminates are subjected to severe loading up to 
rupture, many mechanisms responsible for the damage and rupture occur on differ-

ent scales: matrix micro-cracking, fibre/matrix debonding, transverse rupture, fibre 
rupture, delamination, rupture of the plies and the laminate [1]. The great diver-

sity of the damage mechanisms and their patterns of evolution make it extremely 
difficult to estimate the strength margins.

In the case of woven ply laminates, the number of damage mechanisms is fairly 
small (no transverse rupture occurs and the material has a greater resistance to 
delamination) and the behaviour of the material is fairly simple to model up to 
rupture [2]. A finite element calculation in terms of plane stresses which includes 
the plastic elastic damage behaviour of the woven ply laminates makes it possible 
to describe the rupture of a structure. A prototype code was carried out on the 
Matlab software and a comparison with an experimental test on perforated plate 
made it possible to validate this assumption [3].

The behaviour of this material is strongly non-linear (damage, anelastic strain, 
rupture) and the prototype software constructed on Matlab is not adapted to use in 
engineering and design department for structure optimization. The purpose of this 
paper is to integrate the behaviour in high-efficiency numerical tools in order to
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optimize structure components. Optimization needs low time computation in order

to search for an effective solution.

The numerical implementation of combined damage and elastic-plastic behav-

iour is not a simple task. Some algorithms coupling damage and plasticity are

present in plane stress models [4] and [5], in implicit schemes. Here, the imple-

mentation of an elastic plastic damage model with some orthotropic characteristics

is developed.

The behaviour of the woven ply is then implemented in the commercial software

Abaqus via a user subroutine umat. The two important points in the computation

are the local algorithm and the consistent tangent matrix [6]. Again, comparisons

are made between the results of experimental tests and those of finite element

simulations involving a plate with a hole subjected to tensile tests.

To save time, the local algorithm is linearized, and a consistent tangent operator

is implemented.

2. Woven Ply Laminates

Woven ply laminates have weaker mechanical characteristics and are more expen-

sive than UD ply laminates. However, they are used in industry, for example, to

make helicopter blade skins because they are not subjected to transverse rupture. In

addition, these materials are more resistant to delamination. The number of damage

mechanisms liable to occur is thus reduced and the behaviour of the material is

easier to model up to rupture. A finite element calculation in terms of the plane

stresses, which includes the plastic elastic damage behaviour of the woven ply

material, can be used to describe the rupture of a structure of this kind. In general,

the rupture of a ply leads to the rupture of the laminate in the case of woven plies.

The structure of the woven ply is shown in Figure 1.

The structure of the material is periodic. The macroscopic model sees the ma-

terial as a continuum.

Figure 1. Structure of the woven ply, satin 4.
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2.1. DAMAGE BEHAVIOUR OF BALANCED WOVEN PLIES

The behaviour of materials of this type and the modelling procedure used were

previously described in [2]. Here, the main points of the model are recalled. The

material was reinforced with a carbon fabric of the four-harness satin type with

balanced warp and fill yarns. In the fibre directions, the woven ply showed a brittle

linear elastic behaviour when subjected to tension (see Figure 2). The damage

occurring in these directions did not affect the behaviour of the ply under traction

loading. However, traction applied to the warp direction generated micro cracks in

the matrix within both the fill and warp yarns. When shear loading was applied

from a tensile test on a [45]8 laminate, a decrease in the shear modulus as well

as anelastic strains were observed (see Figure 2). The decrease in the modulus

was due to the ply shear stress, which generated some fibre/matrix decohesion and

matrix micro-cracks within the warp and fill yarns. These micro-cracks, which are

mainly located at the fibre/matrix interfaces, are assumed to run parallel to the

fill and warp directions. The anelastic strains and the loading-unloading hysteresis

observed (Figure 2) were mainly due to the slipping/friction processes occurring

between the fibres and matrix as the result of the damage.

We adapted the meso scale model developed for UD plies described in [7] to

woven ply laminates. This model was designed for dealing with woven plies with

balanced or non-balanced warp and fill yarns. The damage kinematics adopted

were based on the following three internal damage variables (d1, d2, d12) with

the brittle fracture of fibres in the warp and fill directions and the decreasing

stiffness under shear loading, respectively. The gradual development of the dam-

age d12 depends on the shear load as well as the traction load, which generates

micro-cracks.

(a) (b)

Figure 2. Tensile test performed in the fibre (a) and shear direction (b).
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Under the assumption of plane stresses and small perturbations, we can write

the strain energy of the woven ply in the form of Equation (1),

ED =
1

2

[ 〈σ1〉2
+

E0
1(1 − d1)

+
〈σ1〉2

−

E0
1

− 2
ν12

E0
1

σ1σ2 +

+
〈σ2〉2

+

E0
2(1 − d2)

+
〈σ2〉2

−

E0
2

+ σ 2
12

G12
0 (1 − d12)

]

, (1)

where 〈.〉+ is positive and 〈.〉− is negative. The tension and compression energy are

split in order to describe the unilateral features due to the opening and closing of

the micro-defects. From this potential, thermodynamic forces associated with the

tension and shear internal variables di (i = 1 and 2) and d12 are defined:

Ydi
= ∂ED

∂di

=
〈σi〉2

+

2E0
i (1 − di)

, (2)

Yd12
=

∂ED

∂d12

=
σ 2

12

2G0
12(1 − d12)

. (3)

The development of the internal variables depends on these thermodynamic

forces and more precisely on their maximum values during the history of the

loading.

In traction, the development of d1 and d2 is severe in order to represent the

brittle behaviours according to the warp and the fill directions. To take into account

the traction/shear coupling during the development of d12, we define the equivalent

thermodynamic force and the maximum value of this force during the history of

the loading:

Y = α1Yd1
+ α2Yd2

+ Yd12
, (4)

where α1 and α2 are the tension/shear coupling constants. It should be noted that

this equivalent force which governs the development of the progressive damage

variable d12 does not depend on the compression stresses in the warp and fill direc-

tions. As for the unidirectional plies, a linear law with respect to the square root of

Y is chosen to describe the damage variable development:

d12 =
√

Y −
√

Y0√
Yc −

√
Y0

, (5)

di = 0 if Ydi
< Yif else di = 1, (6)

where the constant parameters Y0 and Yc correspond to the threshold and the critical

value of the development of d12 which varies from 0 to 1. Y1f and Y2f are the

parameters which define the ultimate forces in the warp and fill directions.

After loading on a laminate [45]8 (Figure 2), anelastic strains are observed.

These strains can be linked to the slipping/friction phenomena between the fibres

and matrix as a consequence of the damage. Because of the warp and fill fibre

4



Acc
ep

te
d 

M
an

us
cr

ip
t

directions, which prevent traction anelastic strains, only the shear anelastic strains

are significant. We described these strains by a plastic hardening model. The cou-

pling between the damage and plasticity is taken into account by using the effective

stress and strain, which are defined as:

σ̃12
˙̃εp

12 = σ12ε̇
p

12, (7)

σ̃12 = σ12

1 − d12

, (8)

˙̃εp

12 = ε̇
p

12(1 − d12). (9)

It is assumed that the stresses σ1 and σ2 do not influence the elastic field defined

by:

f (σ̃12, p) = |σ̃12| − R(p) + R0, (10)

where R0 represents the initial threshold for the anelastic strain and R(p) is the

hardening function of the accumulated anelastic strain p chosen such as:

R(p) = Kpγ , (11)

where K is the power law coefficient and γ is the power law exponent. Here p is

defined by:

ṗ = (1 − d12)|γ̇12|. (12)

The loading-unloading hysteresis, which is mainly due to the slipping/friction phe-

nomena between the fibres and matrix, is not modelled.

3. A Previous Study

A previous work studied the possibility of using such a model to predict the behav-

iour of a structure up to rupture [3]. It was tested on a woven ply laminated plate

[+45,−45]s with a hole.

To evaluate the prediction of the model more precisely, local measures were

performed with the help of strain gauges. The strain gauges are located as shown

in Figure 3.

In Figure 4, the experimental results was shown that the level of strength resis-

tance was well predicted by the simulation. This prototype code was implemented

in Matlab to show the feasibility of the coding.

In this study, an efficient numerical model is developped and implemented in

Abaqus software.

4. Numerical Implementation

The numerical implementation is developed here. In the case of an implicit reso-

lution of the virtual work principle, the two main points are (i) the computation of
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Figure 3. Location of strain gauge measurements.

Figure 4. Comparison of measurements and simulation for [+45, −45]s laminate.

the stresses in the local algorithm and (ii) the computation of the consistent tangent

operator in order to maintain the second order rate of convergence.

The model introduced different non-linearities which were induced by the dam-

age and anelastic strain. The fact that woven plies can not support anelastic strains

in the direction of the fibres simplifies the algorithm.

In the first section, the previous woven plies model is described in an incre-

mental framework for the local algorithm. Following this, the way to obtain the

consistent matrix is then deduced.
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Table I. The unknown

state dependent vari-

ables.

Unknown variables

σn+1, d12n+1
, pn+1

4.1. INCREMENTAL MODEL

The notations are such that n+1 represents the values of the variables at the end of

the time step. The upper-script e is for elastic strain and p is plastic (or anelastic)

strain.

The incremental model is developed in a Euler Backward scheme. The Euler

Backward is chosen for its high stability. The unknown variables of the model are

listed in Table I.

All these variables need to be updated for a time step. Variables di are not

treated because the material does not damage in the direction of the fibre until

brittle fracture occurs, although a criterion is developped for the rupture in the

direction of the fibre.

The stresses are ordered in the Voigt notation (ε1 = ε11, ε2 = ε22, γ12 = 2ε12).

In the direction of the fibre the stresses are given by:

σi = cijεi for i = 1, 2. (13)

In this study, non-linear elasticity in compression due to micro buckling or align-

ment of the fibre is not taken into account. The shear stresses are determined with

the help of the elastic relationship:

σ12n+1
= G0

12(1 − d12n+1
)γ e

12n+1
. (14)

The different elastic strains are obtained by:

εe
1n+1

= εe
1n

+ �ε1, (15)

εe
2n+1

= εe
2n

+ �ε2, (16)

γ e
12n+1

= γ e
12n

+ �γ e
12. (17)

The two main strains are obtained by the summation of total incremental strains

as long as no damage or no anelastic strain are possible until rupture. The elastic

shear strain is obtained by computing the difference of the total strain and the

plastic strain:

�γ e
12 = �γ12 − �γ

p

12. (18)
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The main features in computing stresses are the values of the damage at the

end of the increment and of the incremental plastic strain. Damage is given by the

equation:

d12n+1
=

√
Yn+1 −

√
Y0√

Yc −
√

Y0

, (19)

where

Yn+1 = sup

(

G0
12

2
(γ e

12n+1
)2 + α1Yd1

+ α2Yd2
, Yn

)

. (20)

If the first term is greater than Yn, then damage will evolve.

If this set of equations is expressed in a displacement based problem, the solu-

tion is function of incremental strains. When plasticity is involved, the shear strain

increment is then decomposed as in Equation (18) and the only unknown variable

is �γ
p

12. When plasticity occurs, the overall set of equations must be linearised with

respect to the unknown variable (more details of the linearisation can be found in

Appendix).

The first search is to establish whether or not plasticity occurs due to a predictor

step at fixed internal variables (d12n
, pn). If plasticity occurs the equation has to be

solved for the unknown variable �γ
p

12 and a Newton method developed. The stress

state has to be on the yield surface at the end of the time step determined by:

fn+1 = |σ̃12n+1
| − R0 − Kp

γ

n+1, (21)

where the equivalent plastic strain is computed by

�p = (1 − d12n+β
)|�γ

p

12|, (22)

where the value of the damage variable is calculated as

d12n+β
= (1 − β)d12n

+ βd12n+1
. (23)

To find the unknown variable, Equation (21) is linearised so that

∂f = Jdp(∂σ̃12n+1
) − Kγp

γ−1

n+1 ∂p, (24)

where Jdp is an indicator of the sign of the effective stress (Jdp = 1 if σ̃12 > 0,

Jdp = −1 otherwise) and where the variation of effective stress (Equation (8)) is

expressed as:

∂σ̃12n+1
= G0

12∂(γ e
12n

+ �γ e
12). (25)

The elastic strain variation is expressed with relation to the plastic incremental

strain

∂γ e
n+1 = ∂�γ e = −∂�γ p (26)
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for a total fixed incremental strain. The damage variation gives:

∂d = 1

2

1
√

Y(
√

Yc −
√

Y0)
∂Yd12

(27)

as long as total strains are fixed (∂Yd1
= ∂Yd2

= 0 in the local algorithm), when

damage evolves. If no evolution of damage occurs then:

∂d = 0. (28)

With the definition of
√

Y expressed by the elastic shear strain, we write:

∂Yd12 = G0
12γ

e
12n+1

∂γ e
12n+1

. (29)

To finish the linearisation, the equivalent plastic strain has to be linearised:

∂p = Jep∂γ
p

12(1 − d12n+β
) − |�γ

p

12|∂d12n+β
(30)

where Jep is an indicator of the sign of �γ
p

12 and with

∂d12n+β
= β∂d12n+1

Jd (31)

where Jd is an indicator of damage. If damage evolves then Jd = 1 otherwise

Jd = 0. The function to be solved is such that:

∂f

∂γ p
= −JdpG

0
12 − Kγpγ−1

(

Jep(1 − d12n+β
) +

+ |�ε
p

12|
β

2
Jd

G0
12γ

e
12n+1√

Yn+1(
√

Yc −
√

Y0)

)

. (32)

The correction is found by:

cp = −f/(∂f/∂γ p). (33)

The scheme is iterated until the solution is found: fn+1 = 0. The scheme is

summarised in Table II.

4.2. RUPTURE CRITERION

Two types of rupture are observed with the developed model. The first one is due

to the progressive loss of rigidity of the material in the shear direction. The second

one is due to brittle rupture in the direction of the fibres. From the point of view of

implementation, the first one does not need any criteria but the second one has to

be expressed in terms of rupture criteria. At this point, a criterion in a maximum

conjugate damage variable is chosen and, because no damage is involved before

rupture, it is equivalent to a stress criterion.
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Table II. Local algorithm.

1. Elastic predictor

σ el = σn + C : �ε.

2. Test the rupture criterion in the direction of the fibre.

If criterion overlapps: New time step = .5× old time step and go to 6.

3. test = f (σ el, pn, d12n
).

4. Check if plasticity occurs: test > tolor then

(a) compute
∂f
∂εp ,

(b) calculate cp ,

(c) update internal variables pn+1 and dn+1,

(d) update stress: σn+1 = σn + C : (�ε − �εp),

(e) calculate test = fn+1 and go to 4.

5. Update internal variables.

6. Compute consistent tangent matrix.

7. End of the computation.

From the point of view of the Euler Backward, the time step has to be recom-

puted each time the criterion is overlapped:

Ydi
> Yif . (34)

As long as the stresses shut down to zero when rupture (brittle fracture) is en-

countered the calculus is stopped due to loss of convergence of the iterative scheme.

In this model, it is assumed that when one ply reaches the critical stress then the

whole laminate is ruptured.

It is important to note that the overall behaviour that of brittle fracture plus shear

damage is embedded in the model.

4.3. CONSISTENT TANGENT

Simo and Taylor [6] have shown that to keep good computational efficiency, namely

good rate of convergence with the principle of virtual work, the incremental con-

sistent matrix must be computed: ∂�σ
∂�ε

. In most cases (anisotropic behavior, large

number of internal variables, . . .), this computation is not an easy task. In our

specific case, the difficulties arise from the thermodynamic conjugate force of the

damage Ydi
. For the sake of simplicity, the computation of the consistent matrix is

calculated in the case of an elastic damage behaviour and then it is applied to our

plasticity model.
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4.3.1. Elastic Damage Behaviour

The first part of the consistent tangent is obtained for the main strains and stresses.

From Equation (13), the component of the tangent matrix is obtained by:

(

∂σ

∂ε

)

ij

= cij (35)

with i and j going from 1 to 2. If j is equal to 3, it means that it is the shear

component in the plane of stresses:

(

∂σ

∂ε

)

ij

= 0. (36)

The influence on the shear stress is then investigateded. The linearisation is per-

formed but with respect to the total incremental strain (�ε1,�ε2,�γ12). The basic

equation is without plasticity.

∂σ12 = −G0
12∂d12n+1

γ e
12n+1

+ G0
12(1 − d12n+1

)∂γ e
12n+1

(37)

with the variation of damage given by 27, but with

∂Y = ∂Yd12
+ α1∂Yd1

+ α2∂Yd2
(38)

with

∂Ydi
=

σi

E0
i

∂σiIi, (39)

where Ii depends on the sign of the stress (Ii = +1 if σi > 0 else Ii = 0 if σi < 0).

∂d =
1

2

1
√

Yn+1(
√

Yc −
√

Y0)
(A31∂ε11 + A32∂ε22 + A33∂ε12), (40)

where the different coefficients can be found in Appendix. Then, the variation of

the shear stress is found in respect to the different strains:

∂σ12 = −G0
12γ

e
12n+1

1

2

1
√

Yn+1(
√

Yc −
√

Y0)
(A31∂ε11 +

+A32∂ε22 + A33∂γ12) + G0
12(1 − d12n+1

)∂γ e
12. (41)

It has to be emphasised that it is valid for carbon fibre. In the case of glass fi-

bre, progressive damage in the direction of the fibre can occur. It is still possible,

although more difficult, to express the consistent tangent operator.
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4.3.2. Elastic Plastic Damage Behaviour

The scheme is modified when plasticity is considered. Firstly, the influence of the

incremental is introduced via (21) and (30), so when:

∂γ e
12 = ∂γ12 − ∂γ

p

12 (42)

then the variation of the damage is reconsidered:

∂d12 =
1

2

1
√

Yn+1(
√

Yc −
√

Y0)
(A31∂ε11 + A32∂ε22 + A33(∂γ12 − ∂γ

p

12)). (43)

With the consistency condition ∂f = 0, we obtain:

JdpG
0
12(∂γ12 − ∂γ

p

12) − Kγpγ−1∂p = 0 (44)

and in this particular case:

∂p = Jep∂γ
p

12(1 − d12n+β
) − β|�γ

p

12|∂d (45)

with these two equations, the variation of damage can be expressed by the function

of strain variation, so that:

∂γ
p

12

(

JdpG
0
12 − Jep(1 − d12n+β

)Kγpγ−1 + β|�γ
p

12| ×

×
1

2

1
√

Yn+1(
√

Yc −
√

Y0)
A33

)

= JdpG
0
12∂γ12 + Kγpγ−1β|�γ

p

12| ×

×
1

2

1
√

Yn+1(
√

Yc −
√

Y0)
(A31∂ε11 + A32∂ε22 + A33∂γ12) (46)

with

∂γ
p

12 = B1∂ε11 + B2∂ε22 + B3γ12. (47)

The variation of the shear stress with respect to the strain can be expressed by the

following equation:

∂σ12 = C31∂ε11 + C32∂ε22 + C33∂γ12 (48)

so that the consistent tangent matrix is computed. In this context, namely a one-

dimensional plastic variable, it can be emphasised that this type of implementation

can be used for carbon fibre UD ply with transverse anelastic strain. The variable

�ε
p

T must be introduced in addition to a new equation corresponding to:

�ε
p

T

∂f

∂σ12

− �γ
p

12

∂f

∂σT

= 0.

This equation results from the elimination of the plastic multiplier.
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4.4. IMPLEMENTATION IN ABAQUS

The following model was implemented in Abaqus Standard via a user subroutine

umat. For orthotropic behaviour, Abaqus rotates at the time step of concern, all the

variables, namely stresses and strains, in the direction of orthotropy. It means that

the computation has to be performed in the direction of the ply. Evolution of the

orthotropy frame is not considered and perturbation analysis is performed.

One important point concerning the performance of the resolution is the time

step. Abaqus auto adapts the time step. If the convergence is less than three iter-

ations in the time step, then the next time step will be increased automatically. If

convergence is poor, between three and ten iterations (values by default), then the

time step is kept constant. If convergence is really poor, more than ten iterations,

then Abaqus reduces the time step in question. It is possible for the user to modify

the time step if:

– poor convergence is encountered in the local algorithm;

– brittle fracture occurs in order to catch the onset of rupture.

5. A Structure: Plate with Hole

The model is tested on a structure. Several assumptions have to be made relating

to on numerical and experimental standpoints. The final purpose is to see if the

developed model can predict the rupture of the sructure.

5.1. THE EXPERIMENTAL TEST

A 1 mm thick plate (135 × 50 mm) with a hole of 7 mm radius is stretched be-

tween two dies. Several orientations are tested: [+40,−40]s, [+30,−30]s, [+22.5,

−22.5]s (quasi isotropic). A tensile monotonic test is performed. Several mea-

surements are made: the force and the relative displacement are measured every

second.

This tensile test is performed on the plate with hole under INSTRON. The main

difficulties come from the estimation of boundary conditions. One of the dies is

clamped in the machine while the other one is hinged to avoid problems due to

misalignment.

5.2. NUMERICAL MODEL

In this part, the geometry is presented as well as the material parameters needed for

our model. The whole plate is modelled by a linear quadrilateral element. The ma-

terial data are given in Table III. To identify the model, tensile tests were performed

with different orientations. Some loadings/unloadings were performed in order to

identify damage. Once damage was identified, then plasticity could be identified.

The method is quite straightforward.
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Table III. Identified values for the wo-

ven fabric G939/M18.

Material parameter Values

E11 = E22 55000 MPa

ν12 0.03

G0
12

3800 MPa
√

Yc 4.01
√

MPa
√

Y0 0.075
√

MPa

α1 = α2 0.16

γ 0.39

R0 30 MPa

K 600 MPa

Yif 6.45 MPa

Figure 5. Spatial discretisation of the plate with hole.

The numerical discretised model for the geometry is shown in Figure 5. The

boundary conditions are clamped on one side and simply strained on the other.

Rigid body motions are avoided by clamping certain degrees of freedom.

To model the laminate, different elements are connected to the same nodes. As

a consequence, each element with different material properties is submitted to the

same displacement and strains.

5.3. COMPARISON

In this part, the comparison between the numerical results and the experimental

measurements will be shown.

The displacement and the force are measured and these variables are extracted

from the finite element model. In Figure 6, the comparison is shown.

In this figure, the prediction of the rupture is around 10% from the experimental

tests. The validity of the behaviour identified by the material test extrapolated to our

structure is quite good. From the numerical stand point, the low number of incre-

ments needed to attain the solution are observed, this means that good convergence

is assured.
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Figure 6. Comparison of the simulation and experiment for different orientations.

For the quasi isotropic structure, the stopping of the calculation is due to brittle

rupture in the fibre direction. It was observed that the experiment overpredicted

the simulation result. Currently, we are looking at introducing an internal length in

order to predict better the fibre direction rupture in the case of structure with high

gradient stresses.

For the simulations shown, the interruption of the calculation is due to the fact

that the brittle fracture criterion is encountered in the direction of the fibres.

5.4. PERFORMANCE OF THE SCHEME

In order to appreciate the performances of the scheme, two tests were carried out

on the structure. The first one corresponded to a small time step and will be seen

as the reference solution. The second one was for authorised large time steps. By

comparing the two solutions, the performance of the scheme can be appreciated on

a [+45,−45]s structure strained up to 3 mm. In Figure 7, both results are shown.

The results are seen to be close to experiments.

Because the consistent tangent operator was computed, the second order of

convergence was assured. The total number of iterations by time step were quite

small – 2 iterations for the largest increment.
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Figure 7. Comparison of the result for small and large time step.

6. Conclusion

In this paper, the numerical implementation of elastic damage plastic behavior of

woven ply laminates was carried out. The damage was seen as a lost of rigidity.

A fast and simple algorithm was presented and for the orientations shown, the

different comparisons seemed to confirm the different assumptions of the model.

The scheme showed good performance and in the particular case of woven ply

composite with carbon fibre, prediction of the rupture seemed to be coherent.

The ongoing developed model plus this numerical procedure, a Euler Backward

scheme, enables to optimize structures in an engineering and design department.

Currently, a model for woven ply laminate under fatigue loading [8] is under

developement. The next step will concern the implementation of this model in

parallel with this routine and will be continally compared to the plate with a hole

under cycle loading.

Anyone is interested in this routine can contact the authors.

Appendix: Consistent Tangent Matrix

A31 =
α1

E0
1

σ1c11I1 +
α2

E0
2

σ2c12I2, (49)

A32 =
α1

E0
1

σ1c12I1 +
α2

E0
2

σ2c22I2, (50)

A33 = G0
12γ

e
n+1, (51)

D = JdpG
0
12 − Jep(1 − d12n+β

)Kγpγ−1 +
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+ β|�γ
p

12|
1

2

1
√

Yn+1(
√

Yc −
√

Y0)
A33, (52)

B1 =
1

D
Kγpγ−1β|�γ

p

12|
1

2

1
√

Yn+1(
√

Yc −
√

Y0)
A31, (53)

B2 =
1

D
Kγpγ−1β|�γ

p

12|
1

2

1
√

Yn+1(
√

Yc −
√

Y0)
A32, (54)

B3 =
1

D

(

JdpG
0
12 + Kγpγ−1β|�γ

p

12|
1

2

1
√

Yn+1(
√

Yc −
√

Y0)
A33

)

, (55)

C31 = −G0
12(1 − d12n+1

)B1 −

− G0
12γ

e
12n+1

1

2

1
√

Yn+1(
√

Yc −
√

Y0)
(A31 − A33B1), (56)

C32 = −G0
12(1 − d12n+1

)B2 −

− G0
12γ

e
12n+1

1

2

1
√

Yn+1(
√

Yc −
√

Y0)
(A32 − A33B2), (57)

C33 = G0
12(1 − d12n+1

)(1 − B3)−

− G0
12γ

e
12n+1

1

2

1
√

Yn+1(
√

Yc −
√

Y0)
A33(1 − B3). (58)
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