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An acoustic reflectivity method is proposed for measuring flow resistivity of porous materials

having rigid frame. The flow resistivity of porous material is defined as the ratio between the

pressure difference across a sample and the velocity of flow of air through that sample per unit cube.

It is important as one of the several parameters required by acoustical theory to characterize porous

materials like plastic foams and fibrous or granular materials. The proposed method is based on a

temporal model of the direct and inverse scattering problem for the diffusion of transient

low-frequency waves in a homogeneous isotropic slab of porous material having a rigid frame. This

time domain model of wave propagation was initially introduced by the authors �Z.E.A. Fellah and

C. Depollier, J. Acoust. Soc. Am. 107, 683 �2000��. The viscous losses of the medium are described

by the model devised by Johnson et al. �D. L. Johnson, J. Koplik, and R. Dashen, J. Fluid. Mech.

176, 379 �1987��. Reflection and transmission scattering operators for a slab of porous material are

derived from the responses of the medium to an incident acoustic pulse. The flow resistivity is

determined from the expression of the reflection operator. Experimental and numerical validation

results of this method are presented. A guide �pipe� is used in the experiment for obtaining a plane

wave. This method has the advantage of being simple, rapid, and efficient. © 2005 American

Institute of Physics. �DOI: 10.1063/1.2099510�

I. INTRODUCTION

The propagation of sound in fluid-saturated porous me-

dia with rigid solid frames is of great interest for a wide

range of industrial applications. With air as the pore fluid,
1–5

applications can be found in noise control, nondestructive

material characterization, thermoacoustically controlled heat

transfer, etc.

The determination of the properties of a medium using

waves that have been reflected by or transmitted through the

medium is a classical inverse scattering problem.
6,7

Such

problems are often approached by taking a physical model of

the scattering process, generating a synthetic response for a

number of assumed values for the parameters, and adjusting

these parameters until a reasonable level of correspondence

is attained between the synthetic response and the data ob-

served.

One important parameter which appears in theories of

sound propagation in porous materials at low-frequency

range
3

is the flow resistivity. This parameter intervenes in the

description of the viscous coupling between the fluid and the

structure. As such, in studies of acoustical properties of po-

rous materials, it is extremely useful to be able to measure

this parameter. The flow resistance
8–16

of porous material is

defined as the ratio between the pressure difference across a

sample and the velocity of flow of air through that sample;

the flows being considered are steady and nonpulsating. This

is quite analogous to the definition of electrical resistance as

the ratio between voltage drop and current. The flow resis-

tivity � of a porous material is defined as the flow resistance

per unit cube.

Many methods have been proposed in the past in the

fluid mechanics field, developing instrumentation to measure

accurately various properties of fluids.
17

Systems for the

measurement of flow resistance are largely based on this

technology, making use of techniques for measuring flow

rates of fluids and pressure differences.a�
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Among the various systems that have been developed for

the measurement of flow resistance, a distinction can be

made between direct and comparative methods. With direct

methods, the pressure drop across a sample and the rate of air

flow through the porous sample are determined separately

and the flow resistance is computed as the ratio of the two

quantities. One example of this type of system has been

given by Morse et al.
14

and Brown and Bolt.
11

Air is drawn

into a container after passing through a sample. Pressure dif-

ferences are measured across the sample using a water na-

nometer, and air flows are obtained from the rate at which

water siphons out of the container. Leonard
12

adapted an

analytical beam balance to enable small pressure differences

to be measured with considerably improved resolution. This

technique, because of its simplicity and accuracy, is now

widely used for the measurement of flow resistance. Bies and

Hansen
9

have improved upon the configuration of Morse et

al.
14

using a “barocell” and digital nanometer to make pre-

cise measurements of pressure differences.

With comparative methods, a calibrated flow resistance

is placed in series with the porous sample. The ratio of pres-

sure drops across each element is the same as the ratio of the

values of flow resistance, since the volumetric flow of air in

the line is constant. This method has been developed by

Gemant,
18

in which capillary tubes have been used as known

flow resistances. Stinson and Daigle
13

have used a laminar

flow element as known flow resistance.

In this work, we present a simple acoustical method of

measuring specific flow resistivity by measuring a diffusive

wave reflected by a slab of porous material having a high

porosity in a guide �pipe�. The guide �pipe� is used in the

experiment for obtaining a plane wave. This method is based

on a temporal model of the direct and inverse scattering

problem for the diffusion of transient low-frequency waves

in a homogeneous isotropic slab of porous material having a

rigid frame. This work was initially introduced by the au-

thors of Ref. 3. The viscous and thermal losses of the me-

dium are described by the models of Johnson et al.
19

and

Allard
1

used in the time domain. Reflection and transmission

scattering operators of a slab of porous material are derived

and thus the responses of the medium to an incident acoustic

pulse are obtained.

The outline of this work is as follows. Section II recalls

a time domain model and the basic equations of wave diffu-

sion in porous material. Section III is devoted to the direct

problem and to the expression of the reflection scattering

operator in the time domain. In Sec. IV, the sensitivity of the

porosity and the specific flow resistivity are discussed, show-

ing the effect of each parameter on the reflected wave by the

porous slab. Section V deals with the inverse problem and

the appropriate procedure, based on the least-square method,

which is used to estimate the specific flow resistivity. Finally

in Sec. VI, experimental validation using low-frequency

acoustic measurement is discussed for air-saturated industrial

plastic foams.

II. POROUS MATERIALS HAVING A RIGID FRAME

In the acoustics of porous materials, one distinguishes

two situations according to whether the frame is moving or

not. In the first case, the dynamics of the waves due to the

coupling between the solid skeleton and the fluid is well

described by the Biot theory.
20

In air-saturated porous media,

the structure is generally motionless and the waves propagate

only in fluid. This case is described by the model of

equivalent
21

fluid which is a particular case of the Biot

model.

A. Equivalent fluid model

Let a homogeneous isotropic porous material with po-

rosity � be saturated with a compressible and viscous fluid

of density � and viscosity �. It is assumed that the frame of

this porous solid is not deformable when it is subjected to an

acoustic wave. It is the case, for example, for a porous me-

dium which has a large skeleton density or very large elastic

modulus or weak fluid-structure coupling. To apply the re-

sults of continuum mechanics it is required that the wave-

length of sound should be much larger than the sizes of the

pores or grains in the medium. In such a porous material,

acoustic waves propagate only in the fluid so, it can be seen

as an equivalent fluid, the density and the bulk modulus of

which are “renormalized” by the fluid-structure interactions.

A prediction of the acoustic comportment of the porous ma-

terial requires the determination of the dynamic tortuosity

���� and the dynamic compressibility ����. These functions

depend on the physical characteristics of the fluid in the pore

space of the medium and are independent of the dynamic

characteristics of the structure. The basic equations of the

model of equivalent fluid are

�����i��i = − �ip, i
����

Ka

p = − � · v . �1�

In these relations, v and p are the particle velocity and the

acoustic pressure and Ka is the compressibility modulus of

the fluid. The first equation is the Euler equation, and the

second one is a constitutive equation obtained from the equa-

tion of mass conservation associated with the behavior �or

adiabatic� equation. ���� and ���� are the dynamic tortuos-

ity of the medium and the dynamic compressibility of the air

included in the porous material. These two factors are com-

plex functions which heavily depend on the frequency f

=� /2	. Their theoretical expressions are given by Johnson

et al.,
19

Allard,
1

and Lafarge et al.,
22

���� = �
�1 +
��

i��
� f

�1 + i
4�


2 �� f�

�2�2�2 � , �2�

���� = � − �� − 1��1 +
��

i�� fk0�Pr

�1 + i
4k0�

2� f�Pr

��2��
2 �−1

, �3�

where i2=−1, � represents the adiabatic constant, Pr the

Prandtl number, �
 the tortuosity, � the flow resistivity, k0�

the thermal permeability,
22

and � and �� the viscous and

thermal characteristic lengths.
1,19

This model was initially

developed by Johnson et al.
19

and completed by Allard
1

by

adding the description of thermal effects. Later on, Lafarge et

al.
22

introduced the parameter k0� which describes the addi-

tional damping of sound waves due to the thermal exchanges
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between fluid and structure at the surface of the pores.

The functions ���� and ���� express the viscous and

thermal exchanges between the air and the structure which

are responsible for the sound damping in acoustic materials.

These exchanges are due on the one hand to the fluid-

structure relative motion and on the other hand to the air

compression dilatations produced by the wave motion. The

parts of the fluid affected by these exchanges can be esti-

mated by the ratio of a microscopic characteristic length of

the media, as, for example, the sizes of the pores, to the

viscous and thermal skin depth thickness = �2� /��0�1/2 and

�= �2� /��0Pr�
1/2. For the viscous effects this domain cor-

responds to the region of the fluid in which the velocity

distribution is perturbed by the frictional forces at the inter-

face between the viscous fluid and motionless structure. For

the thermal effects, it corresponds to the fluid volume af-

fected by the heat exchange between the two phases of the

porous medium. In this model, the sound propagation is

completely determined by the six following parameters: �,

�
, �, k0�, �, and ��.

B. Viscous domain

In this domain, the viscous forces are important every-

where in the fluid, the compression-dilatation cycle in the

porous material is slow enough to favor the thermal ex-

change between fluid and structure. At the same time the

temperature of the frame is practically unchanged by the pas-

sage of the sound wave because of the high value of its

specific heat: the frame acts as a thermostat. In this case the

isothermal compressibility is directly applicable. This do-

main corresponds to the range of frequencies such that vis-

cous skin thickness = �2� /��0�1/2 is much larger than the

radius of the pores r,



r
� 1. �4�

This is called the low-frequency range. For these frequen-

cies, We consider the low-frequency approximations of the

response factor ���� and ����. When �→0, Eqs. �2� and

�3�, respectively, become

���� =
��

i��
, �5�

���� = � . �6�

For a wave traveling along the direction x, the generalized

forms of the basic equations �1� in the time domain are now

��V = −
�p

�x
and

�

Ka

�p

�t
= −

��

�x
, �7�

where the Euler equation is reduced to Darcy’s law which

defines the static flow resistivity �=� /k0. The wave equation

in time domain is given by

�2p

�x2
+ ����

Ka

� �p

�t
= 0. �8�

The fields which are varying in time, the pressure, the acous-

tic velocity, etc., follow a diffusion equation with the diffu-

sion constant

D =
Ka

���
. �9�

A quite similar result is given by Jonhson.
23

However,

the adiabatic constant � does not appear in Johnson’s model

in which the thermal expansion is neglected. The diffusion

constant D is connected to Darcy’s constant k0 �called also

the viscous permeability� by the relation

D =
Kak0

���
, �10�

where � the fluid viscosity.

III. DIRECT PROBLEM

The direct scattering problem is that of determining the

scattered field as well as the internal field, that arises when a

known incident field impinges on the porous material with

known physical properties.

In this section some notation is introduced. The problem

geometry is given in Fig. 1. A homogeneous porous material

occupies the region 0�x�L. This medium is assumed to be

isotropic and to have a rigid frame. A short sound pulse

impinges normally on the medium from the left. It generates

an acoustic pressure field p�x , t� and an acoustic velocity

field ��x , t� within the material, which satisfy Eq. �8�.
To derive the reflection and transmission scattering op-

erators, it is assumed that the pressure field and flow velocity

are continuous at the material boundary.

p�0+,t� = p�0−,t�, p�L−,t� = p�L+,t� ,

�11�
��0−,t� = ���0+,t�, ��L+,t� = ���L−,t� ,

where � is the porosity of the medium and � superscript

denotes the limit from left and right, respectively. Assumed

initial conditions are

p��x,t��t=0 = 0 and 	 �p

�t
	

t=0

= 0, �12�

which means that the medium is idle for t=0.

If the incident sound wave is generated in the region x

�0, then the expression of the acoustic field in the region to

the left of the material is the sum of the incident and re-

flected fields,

FIG. 1. Geometry of the problem.
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p1�x,t� = pi�t −
x

c0

� + pr�t +
x

c0

�, x � 0. �13�

Here, p1�x , t� is the field in the region x�0 and pi and pr

denotes the incident and reflected fields respectively. In ad-

dition, a transmitted field is produced in the region to the

right of the material. This has the form

p3�x,t� = pt
t −
�x − L�

c0

�, x � L . �14�

�p3�x , t� is the field in the region x�L and pt is the transmit-

ted field.�
The incident and scattered fields are related by scattering

operators �i.e., reflection and transmission operators� for the

material. These are integral operators represented by

pr�x,t� = �
0

t

R̃���pi�t − � +
x

c0

�d�

= R̃�t� � pi�t� � �t +
x

c0

� , �15�

pt�x,t� = �
0

t

T̃���pi
t − � −
�x − L�

c0

�d�

= T̃�t� � pi�t� � 
t −
�x − L�

c0

� . �16�

In Eqs. �15� and �16� functions R̃ and T̃ are the reflection and

transmission kernels, respectively, for incidence from the

left. Note that the lower limit of integration in �15� and �16�
is given as 0, which is equivalent to assuming that the inci-

dent wave front first impinges on the material at t=0. The

operators R̃ and T̃ are independent of the incident field used

in the scattering experiment and depend only on the proper-

ties of the materials.

Equation �8� is solved by the Laplace transform method

by taking into account the conditions �11� and �12�. We note

P�x ,z� the Laplace transform of p�x , t� defined by

P�x,z� = L�p�x,t�� = �
0




exp�− zt�p�x,t�dt . �17�

Using the following relations:

L��t�� = 1 and L�H�t�� =
1

z
, �18�

the Laplace transform of the diffusive equation �8� satisfying

the initials conditions �12� becomes

�2P2�x,z�

�x2
− DzP2�x,z� = 0, �19�

where P2�x ,z� is the Laplace transform of the acoustic pres-

sure p2�x , t� inside the porous material for 0�x�L.

The Laplace transform of the field outside the materials

is given by

P1�x,z� = 
exp�− z
x

c0

� + R�z�exp�z
x

c0

����z�, x � 0,

�20�

P3�x,z� = T�z�exp
−
�x − L�

c0

z���z�, x � L . �21�

Here P1�x ,z� and P3�x ,z� are, respectively, the Laplace

transforms, of the field at the left and the right sides of the

material, ��z� denotes the Laplace transform of the incident

field pi�t�, and finally R�z� and T�z� are the Laplace trans-

forms of the reflection and transmission kernels, respectively.

The Laplace transform of the continuous conditions �11�
are written as

P2�0+,z� = P1�0−,z� and P2�L−,z� = P3�L+,z� , �22�

where P1�0− ,z� and P3�L+ ,z� are the Laplace transforms of

p1�x , t� and p3�x , t�, respectively, given by

P1�0−,z� = �1 − R�z����z� and P3�L−,z� = T�z���z� .

�23�

To derive the reflection and transmission coefficients the

boundary-condition flow velocity at the interfaces x=0 and

x=L are needed.

The equation of the flow continuity at x=0 is written as

�1�x,t� = ��2�x,t� , �24�

where � is the porosity of the medium.

The Euler equation is written in the regions �1� �x�0�
and �2� �0�x�L� as

� f	 ��1�x,t�

�t
	

x=0

= − 	 �p1�x,t�

�x
	

x=0

, x � 0, �25�

� f�̃�t� � 	 ��2�x,t�

�t
	

x=0

= − 	 �p2�x,t�

�x
	

x=0

, 0 � x � L ,

�26�

where �1�x , t� and �2�x , t� are the acoustic velocity field in the

regions �1� and �2�, respectively. In the free space �region

�1��, the tortuosity operator is equal to 1. From �24�, �25�,
and �26� it is easy to write

�̃�t� � 	 �p1�x,t�

�x
	

x=0

= �	 �p2�x,t�

�x
	

x=0

, �27�

with

	 �p1�x,t�

�x
	

x=0

=
1

c0

�− �t� + R̃�t�� �

�pi�t�

�t
. �28�

The Laplace transform of Eq. �27� gives a relation between

the reflection and transmission coefficients,

�R�z� − 1�sinh�L�Dz� = ��0c0

�Dz

z��z�
T�z�

− �1 + R�z��cosh�L�Dz�� , �29�

where ��z� is the Laplace transform of �̃�t�.
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At the interface x=L, the continuity of the flow velocity

leads to the relation

�3�L+,t� = ��2�L−,t� . �30�

At x=L, the Euler equation is written in the two regions �2�
and �3� �x�L� as

� f�̃�t� � 	 ��2�x,t�

�t
	

x=L−

= − 	 �p2�x,t�

�t
	

x=L−

,

�31�

� f	 ��3�x,t�

�t
	

x=L+

= − 	 �p3�x,t�

�x
	

x=L+

.

From Eqs. �30� and �31�, we have

�̃�t� � 	 �p3�x,t�

�x
	

x=L+

= �	 �p2�x,t�

�x
	

x=L−

, �32�

with

	 �p3�x,t�

�x
	

x=L+

= −
1

c0

T̃�t� � 	 �pi

�t
	

t=L/c0

, �33�

the Laplace transform of Eq. �32� gives

T�z�sinh�L�Dz� = ��0c0

�Dz

z��z�
�1 + R�z�

− T�z�cosh�L�Dz�� . �34�

By putting

B =
��0c0

�D

z��z�
=��0

3��

�k0

. �35�

The reflection and transmission coefficients are the solutions

of the system of equations �Eqs. �29� and �34��,

R�z��sinh�L/�Dz� + B�z cosh�L�Dz�� − B�zT�z�

= sinh�L�Dz� − B�z cosh�L�Dz� ,

− R�z�B�z + T�z��sinh�L�Dz� + B�z cosh�L�Dz�� = B�z .

�36�

R�z� is given by

R�z� =
�1 − B2z�sinh�L�Dz�

2B�z cosh�L�Dz� + �1 + B2z�sinh�L�Dz�
. �37�

The development of these expressions in exponential series

�Appendix� leads to the reflection coefficient,

R�z� =
1 − B�z

1 + B�z
�
n�0

�1 − B�z

1 + B�z
�2n

exp�− 2nL�Dz�

− exp�− 2�n + 1�L�Dz�� . �38�

These expressions take into account the multiple reflections

in the material.

In most cases, in porous materials saturated by air, the

multiple reflection effects are negligible because of the high

attenuation of sound waves in these media. So, by taking into

account only the first reflections at the interfaces x=0 and

x=L, the reflection coefficient in the material becomes

R�z� =
1 − B�z

1 + B�z

1 −

4B�z

�1 + B�z�2
exp�− 2L�Dz��

=
1 − B�z

1 + B�z
−

4B�z�1 − B�z�

�1 + B�z�3
exp�− 2L�Dz� . �39�

The reflection scattering operator is calculated by taking the

inverse Laplace transform of the reflection coefficient.

We infer
24

that

L
−1
 1 − B�z

�1 + B�z�
� = L

−1
− 1 +
2

B

1

�z + 1/B
� = − �t� +

2

B�	t

−
2

B2
exp�t/B2�erf��t/B� , �40�

where erf is the error function.
24

By putting

g�z� =
Bz − 1

�1 + Bz�3
=

1

B2

z − 1/B

�1/B + z�3
,

we obtain

L
−1�g�z�� = f�t� =

1

B2
L

−1
 z − 1/B

�1/B + z�3�
=

1

B2
�t − t2/B�exp�− t/B� .

Using the relation

L
−1��zg��z�� =

1

2�	

1

t3/2�
0




exp�−
u2

4t
��u2

2t
− 1� f�u�du

=
1

2�	B2

1

t3/2�
0




exp�−
u2

4t
��u2

2t
− 1�

��u −
u2

B
�exp�−

u

B
�du ,

which, with the variable change u /B=y, yields

L
−1
4B�z�B�z − 1�

�1 + B�z�3 � =
2

B�	

1

t3/2�
0




exp�−
u2

4t
��u2

2t
− 1�

��u −
u2

B
�exp�−

u

B
�du

=
2B

�	

1

t3/2�
0




exp�−
B2y2

4t
�� y2B2

2t
− 1�

��y − y2�exp�− y�dy = k�t� .

The reflection scattering operator is then given by

R̃�t� = �f�t� + k�t�� � g�t� . �41�

IV. ACOUSTIC PARAMETER SENSITIVITY

In this section, numerical simulations of waves reflected

by a slab of porous material are run by varying the indepen-

dent geometrical parameters of a porous medium described

acoustically using the theory developed in the previous sec-
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tion. A 50% variation is applied to the governing parameters

�flow resistivity � and porosity ��. The numerical values

chosen for the physical parameters correspond to quite com-

mon acoustic materials as follows: thickness L=4 cm, poros-

ity �=0.9, flow resistivity �=30 000 N m−4 s, and radius of

the pore r=70 �m. The condition of viscous domain �low-

frequency approximation� is verified if the frequencies of the

incident signal spectrum are much smaller than the charac-

teristic frequency which verify Eq. �4�. For this porous

sample the characteristic frequency is equal to 1 kHz.

A numerical simulation is produced. The incident signal

used in the simulation is given in Fig. 2 �dashed line�. The

result of the simulation �reflected wave� is a signal as shown

in the same figure �Fig. 2� in solid line. Amplitude is given

by an arbitrary unit and the point number given in the ab-

scissa is proportional to time. The spectra of the incident and

transmitted signals are given in Fig. 3. From Fig. 2, we can

see that the reflected wave is just attenuated with no signifi-

cant dispersion comparing to the incident signal, the two

signals have the same spectral bandwidth �Fig. 3�.
Figure 4 shows the results obtained after reducing the

flow resistivity by 50% of its initial value. The first signal

�dashed line� corresponds to the simulated transmitted signal

for �=30 000 N m−4 s and the second one �solid line� to �

=15 000 N m−4 s. The values of the other parameters have

been kept constant �L=4 cm and porosity �=0.9�. The sen-

sitivity of the flow resistivity in reflected mode can be seen

for a 50% change. By reducing flow resistivity, the amplitude

of reflected wave decreases by 30% of its initial value. This

result can be explained by the fact that when flow resistivity

decreases, the losses due to the viscous effects become less

important in the porous material, the medium is less resis-

tive, and thus the amplitude of the reflected wave decreases.

By reducing the porosity by 50% of its initial value, no

change appears in the reflected wave. We can conclude that

there is no significant sensitivity to porosity in reflected

mode.

From this study, we can gain an insight into the sensitiv-

ity of each physical parameter used in this theory. It seems

that the flow resistivity is the most important parameter in

the description of losses in the viscous domain �low-

frequency range�. We will try to measure this parameter in

the next sections by solving the inverse problem using ex-

perimental data of reflected waves.

FIG. 5. Experimental setup of acoustic measurements.

FIG. 2. Incident signal �dashed line� and simulated transmitted signal �solid

line�.

FIG. 3. Spectrum of incident signal �dashed line� and spectrum of transmit-

ted signal �solid line�.

FIG. 4. Comparison between simulated reflected signals corresponding to

�=30 000 N m−4 s �dashed line� and �=15 000 N m−4 s �solid line�.
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V. INVERSE PROBLEM

The diffusion of acoustic waves in a slab of porous ma-

terial in the viscous domain �low frequency� is characterized

by two parameters, namely, porosity � and flow resistivity �,

the values of which are crucial for the behavior of sound

waves in such materials. It is of some importance to work

out new experimental methods and efficient tools for their

estimation. The basic inverse problem associated with the

slab may be stated as follows: from measurement of the sig-

nals reflected outside the slab, find the values of the medi-

um’s parameters. The study of the sensitivity of the porosity

�in the previous section� shows that this parameter cannot be

estimated in reflected mode at low frequencies because of its

weak sensitivity. However, the porosity was estimated in re-

flection at high frequencies.
7,21,25

It has been shown in the

previous section that the flow resistivity has a significant

sensitivity on reflected waves. We will try to determine � by

solving the inverse problem for waves reflected by the slab

of porous material. The inverse problem is to find value for

parameter � which minimizes the function

U��� = �
0

t

�pexp,z
r �x,t� − pr�x,t��2dt ,

where pexp,z
r �x , t� is the experimentally determined reflected

signal and pr�x , t� is the reflected wave predicted from Eq.

�14�. However, the analytical method of solving the inverse

problem using the conventional least-square method is te-

dious. In our case, a numerical solution of the least-square

method can be found which minimizes U��� defined by

U��� = �
i=1

i=N

�pexp,z
r �x,ti� − pr�x,ti��

2, �42�

where pexp,z
r �x , ti�i=1,2,. . .N represents the discrete set of values

of the experimental reflected signal and pr�x , ti�i=1,2,. . .N is the

discrete set of values of the simulated reflected signal. The

inverse problem is solved numerically by the least-square

method. The next section discusses the solution of the in-

verse problem based on experimental reflected data.

VI. ACOUSTIC MEASUREMENTS

In application of our model, some numerical simulations

are compared with experimental results. To verify the condi-

tion of low-frequency range for air-saturated plastic foams

having pore radii between 40 and 100 �m, the frequency

component of the experimental signals must be very small

compared to 1 kHz �Eq. �4��. Experiments are performed in a

guide �pipe� having a diameter of 5 cm and of length 50 m.

This length has been chosen for the propagation of transient

FIG. 6. Experimental incident signal �solid line� and experimental reflected

signal �dashed line�.

FIG. 7. Spectrum of experimental incident signal �solid line� and of experi-

mental reflected signal �dashed line�.

FIG. 8. Variation of the minimization function U with flow resistivity �.

FIG. 9. Comparison between experimental reflected signal �dashed line� and

simulated reflected signal �solid line� for the sample M1.
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signals at low frequency. It is not important to keep the pipe

straight, it can be rolled in order to save space without per-

turbations on experimental signals �the cutoff frequency of

the tube fc�4 kHz�.
A sound source driver unit “brand” constituted by loud-

speaker Realistic 40-9000 is used. Bursts are provided by

synthesized function generator Standford Research Systems

model DS345 30 MHz. The signals are amplified and filtered

using model SR 650-Dual channel filter, Standford Research

Systems. The signals �incident and reflected� are measured

using the same microphone �Bruel & Kjaer, 4190�. The inci-

dent signal is measured by putting a total reflector in the

same position as the porous sample. The experimental setup

is shown in Fig. 5.

Consider a cylindrical sample of plastic foam M1 of di-

ameter 5 cm and thickness 3 cm. The flow resistivity of the

sample M1 was measured using the method of Bies and

Hansen,
9

given the value �=40 000±6000 N m−4 s. Figure 6

shows the experimental incident signal �solid line� generated

by the loudspeaker in the frequency bandwidth of 35–75 Hz

and the experimental reflected signal �dashed line�. Figure 7

shows the spectra of the two signals. From the spectra of the

two signals, the reader can see that they have practically the

same bandwidth which means that there is no dispersion.

After solving the inverse problem numerically for the flow

resistivity, we find the following optimized value: �

=40 500±2000 N m−4 s. We present in Fig. 8 the variation of

the minimization function U given in Eq. �42� with the flow

resistivity �. In Fig. 9, we show a comparison between an

experimental reflected signal and a simulated reflected signal

for the optimized value of the flow resistivity. The difference

between the two curves is slight, which leads us to conclude

that the optimized value of the flow resistivity is good.

Let us now solve the inverse problem for the same

sample M1 in the frequency bandwidth of 45–100 Hz. The

experimental incident signal generated by the loudspeaker

�solid line� and the reflected one �dashed line� are given in

Fig. 10. Their spectra are given in Fig. 11; we can see in this

case that the center frequency of the signal is 70 Hz. By

solving the inverse problem and minimizing the cost func-

tion U �see Fig. 12�, we obtain the following optimized value

of the flow resistivity: �=39 500±2000 N m−4 s. Figure 13

shows a comparison between an experimental reflected sig-

nal and a simulated signal obtained by optimization from the

inverse problem. Here, again, the correlation of theoretical

prediction and experimental data is good. This study has

been carried on, in the frequency bandwidth of 80–140 Hz

and have also given good results ��
=41 500±2000 N m−4 s�. It can be seen that for the different

FIG. 10. Experimental incident signal �solid line� and experimental reflected

signal �dashed line�.

FIG. 11. Spectrum of experimental incident signal �solid line� and of ex-

perimental reflected signal �dashed line�.

FIG. 12. Variation of the minimization function U with flow resistivity �.

FIG. 13. Comparison between experimental reflected signal �dashed line�
and simulated reflected signal �solid line� for the sample M1.
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frequency bandwidths of the experimental incident signals,

the optimized values obtained using this method are close to

those produced using classical methods �Bies and Hansen
9�.

Let us consider another sample M2 less resistive, of di-

ameter 5 cm and thickness 2.66 cm. The flow resistivity of

the sample M2 was measured using the method of Bies and

Hansen,
9

given the value �=26 000±6000 N m−4 s. Differ-

ent frequency bandwidths have been investigated between 40

and 130 Hz. By solving the inverse problem for the flow

resistivity and minimizing the cost function U given by Eq.

�46�, we show the results of the inverse problem in Figs.

14–16. The obtained optimized values of the flow resistivity

and viscous permeability are �1=27 000±2000 N m−4 s, �2

=25 000±2000 N m−4 s, and �3=25 000±2000 N m−4 s.

The reader can see the slight difference between the opti-

mized values of the flow resistivity obtained with this

method and the other classical method �Bies and Hansen
9�.

Using these optimized values, we compare the simulated

transmitted signals and experimental signals. The results of

the comparison are shown in Figs. 17–19. The correspon-

dence between experiment and theory is good, which leads

us to conclude that this method based on the solution of the

inverse problem is appropriate for estimating the flow resis-

tivity of porous materials with rigid frame.

VII. CONCLUSION

In this article, an inverse scattering estimate of the flow

resistivity was given by solving the inverse problem for

waves reflected by a slab of air-saturated porous material.

The inverse problem is solved numerically by the least-

square method. The reconstructed values of flow resistivity is

close to those using classical methods. This method is an

alternative to the usual methods �Bies and Hansen
9� that in-

volves the use of techniques for measuring the flow rate of

fluids and pressure differences.

The direct problem is based upon the diffusion equation

in the time domain in a slab of porous material in the viscous

domain �low-frequency range�. The interaction of the sound

pulse with the fluid-saturated porous material was described

by a time domain equivalent fluid model.

The sensitivity of the porosity and flow resistivity was

studied and it showed their effect on the reflected wave by

the material. This study has demonstrated that reflection is

much more sensitive to flow resistivity than to porosity, the

effect of the porosity in reflected mode is negligible as it has

been observed in transmission mode in the asymptotic

domain
7 �high-frequency range�.

We hope, in the future, to extend this method to porous

FIG. 14. Variation of the minimization function U with flow resistivity � for

the sample M2 in the frequency bandwidth of 35–70 Hz

FIG. 15. Variation of the minimization function U with flow resistivity � for

the sample M2 in the frequency bandwidth of 45–95 Hz

FIG. 16. Variation of the minimization function U with flow resistivity � for

the sample M2 in the frequency bandwidth of 70–130 Hz

FIG. 17. Comparison between experimental reflected signal �dashed line�
and simulated reflected signal �solid line� for the sample M2 in the fre-

quency bandwidth of 35–70 Hz.
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media with elastic frame, such as cancellous bone saturated

with viscous fluid, in order to estimate other parameters

which play an important role in acoustic propagation. The

advantage of the data concept using diffusive wave is its

simple analysis and similarity to the propagative wave con-

cept which, however, is more complicated. The diffusive

wave at low frequency is not subjected to the dispersion but

is simply attenuated, its frequency and temporal bandwidth

are the same as the incident signal, and experimental detec-

tion of it is easy for resistive media compared to propagative

transmitted wave in the asymptotic domain �high-frequency

range�.

APPENDIX: EXPRESSION OF THE REFLECTION AND
TRANSMISSION COEFFICIENTS

After developing �in Eq. �37�� the hyperbolic sine and

cosine functions in exponential series, we obtain the follow-

ing expressions of the reflection coefficient R�z�:

R�z� =
�1 − B2z��exp�L�Dz� − exp�− L�Dz��

�1 + B�z�2 exp�L�Dz� − �1 − B�z�2 exp�− L�Dz�

=
1 − B�z

1 + B�z
�1 − exp�− 2L�Dz��

�
1

1 − ��1 − B�z�/�1 + B�z��2 exp�− 2L�Dz�

=
1 − B�z

1 + B�z
�1 − exp�− 2L�Dz�� �

n�0

�1 − B�z

1 + B�z
�2n

�exp�− 2nL�Dz� .

Finally, we obtain the expression of the reflection coefficient

taking into account the n-multiple reflections in the material,

R�z� =
1 − B�z

1 + B�z
�
n�0

�1 − B�z

1 + B�z
�2n

�exp�− 2nL�Dz�

− exp�− 2�n + 1�L�Dz�� .
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FIG. 18. Comparison between experimental reflected signal �dashed line�
and simulated reflected signal �solid line� for the sample M2 in the fre-

quency bandwidth of 45–95 Hz.

FIG. 19. Comparison between experimental reflected signal �dashed line�
and simulated reflected signal �solid line� for the sample M2 in the fre-

quency bandwidth of 70–130 Hz.
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