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Abstract. Acoustic waves scattering from a rigid air-saturated porous medium is studied in the time domain. The medium is one 
dimensional and its physical parameters are depth dependent, i.e., the medium is layered. The loss and dispersion properties of the 
medium are due to the fluid-structure interaction induced by wave propagation. They are modeled by generalized susceptibility 
functions which express the memory effects in the propagation process. The wave equation is then a fractional telegraphist’s 
equation. The two relevant quantities are the scattering operators – transmission and reflection operators – which give the 
scattered fields from the incident wave. They are obtained from Volterra equations which are fractional equations for the scattering 
operators.
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1. Introduction

When a sound wave travels in a rigid air-saturated porous medium, the dispersive effects are due to the 
frequency dependence of the complex functions of the physical parameters of the medium thereafter 
referred to as the generalized susceptibilities which describe the fluid-structure interactions. The analysis 
of the propagation of transient waves in such media raises two different problems: the direct and the 
inverse scattering problems. The direct scattering problem is that of determining the scattered fields that 
arise when a known incident field impinges on a scattering medium with known physical properties. 
The inverse scattering problem consists of the problem of determining the physical properties from 
the scattered fields produced by a known incident wave. In most cases, the determination of medium 
parameters is done in the frequency domain. The reflection and transmission coefficients which contain 
the information on the physical parameters of the medium are obtained from the Fourier transform of the 
scattered signals divided by the Fourier transform of the incident signal. Unfortunately, the coefficients 
of the wave equation are nonlinear functions of the parameters of the medium which are to be solved 
to achieve the right values of the generalized susceptibilities. Such solution obtained from the Fourier 
transform procedure might not reproduce important qualitative features of the solutions and produce 
results which may be difficult to use in applications. So, the frequency domain methods are limited in 
probing the inhomogeneous media when parameters are depth dependent.

In the present paper a time domain method is presented for finding the dispersion relation from a time 
domain experiment. The advantages of time domain methods over frequency domain methods are their 
ability: (i) to solve the inverse scattering problem; (ii) to give causal solution to the direct scattering 
problem.
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In time domain, a dispersive medium is characterized by susceptibility kernels which are the Fourier 
transforms of the generalized susceptibilities. They act as memory functions on modeling the relaxation 
processes which develop in the medium: the viscous and the thermal effects.

The time domain method presented in this paper is only approximate [1]. In the time domain, the 
full wave equation in a dispersive and lossy medium is difficult to be solved. So, we deal with wave 
equations simpler than the full one that retain the most significant features of the underlaying physics 
and remain analytically tractable.

Two of us (Z.E.A. F. and C.D.) have developed a model of memory functions which describe the 
loss and the dispersion properties of the medium on a relevant frequency interval [1]. In high frequency 
range, dispersion and attenuation of waves are well described by a fractional power of the frequency. 
So, by Fourier transform, we have shown that the behavior of the waves is determined by a Fractional 
Telegraph Equation (FTE). To investigate the wave scattering by a layered medium, the relevant quan-

tities are the operators which map the incident wave in the reflected and transmitted ones. Reflection 
and transmission operators are defined by their kernels which are the solutions of differential equations. 
In a inhomogeneous porous medium, we show that the scattering kernels satisfy coupled fractional 
differential equations. The paper is organized as follows. In Section 2 the basic elements of the physical 
derivation of the FTE are presented. The fluid equivalent model of the propagation in porous media 
is introduced and the FTE is derived. Section 3 describes the layered porous medium and the wave 
splitting. In Section 4 the scattering operators are defined and their fractional differential equations are 
worked out.

2. Derivation of the FTE

2.1. THE FLUID EQUIVALENT MODEL OF POROUS MEDIA

We consider a slab of homogeneous porous material which occupies the region between x = 0 and 
x = l (x is the Cartesian coordinate in the direction perpendicular to the slab interfaces). In our model 
the slab is characterized by constant parameters. The incident wave is planar and normally incident. It 
propagates in the positive x direction and impinges the slab at x = 0.

In air saturated porous media, the structure is assumed to be motionless: the acoustic waves travel 
only in the fluid filling the pores. The wave propagation is described by the equivalent fluid model 
which is a particular case of the Biot’s theory. In this model, the interactions between the fluid and the 
structure are taken into account in two frequency dependent response factors which are the generalized 
susceptibilities: the dynamical tortuosity of the medium α(ω) [2] and the dynamical compressibility 
of the air included in the medium β(ω) [3]. These two response factors are complex functions which 
heavily depend on the frequency f = ω/2π . These functions represent the deviation from the behavior 
of the fluid in the free space as the frequency increases. Their theoretical expressions are given by 
Johnson [2], Allard [3] and Lafarge [4]:

α(ω) = α∞



1 +
ηφ

jωα∞ρ f k0

√

1 + j
4α2

∞k2
0ρ f ω

η�2φ2



 , (1)

β(ω) = γ − (γ − 1)



1 +
ηφ

jωρ f k ′
0 Pr

√

1 + j
4k ′2

0 ρ f ωPr

ηφ2�′2





−1/2

, (2)
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where j2 = −1, γ represents the adiabatic constant, Pr the Prandtl number, α∞ the tortuosity, k0 the

static permeability, k ′
0 the thermal permeability and � and �′ the viscous and thermal characteristic

lengths [5, 6]. This model was initially developed by Johnson, Koplik and Dashen [5], and completed by

Champoux and Allard by adding the description of thermal effects [6]. Later on, Lafarge has introduced

the parameter k ′
0 which describes the additional damping of sound waves due to the thermal exchanges

between fluid and structure at the surface of the pores [4].

The functions α(ω) and β(ω) express the viscous and thermal exchanges between the air and the

structure which are responsible of the sound damping in acoustic materials. These exchanges are due

on the one hand to the fluid-structure relative motion and on the other hand to the air compressions-

dilatations produced by the wave motion. The part of the fluid affected by these exchanges can be

estimated by the ratio of a microscopic characteristic length of the media, as for example the sizes of the

pores, to the viscous and thermal skin depth thickness δ = (2η/ωρ0)1/2 and δ′ = (2η/ωρ0 Pr )1/2. For the

viscous effects this domain corresponds to the region of the fluid in which the velocity distribution is

perturbed by the frictional forces at the interface between the viscous fluid and the motionless structure.

For the thermal effects, it is the fluid volume affected by the heat exchanges between the two phases of

the porous medium, the solid skeleton being seen as a thermostat.

2.2. THE FRACTIONAL TELEGRAPH EQUATION

The high frequency approximations of α(ω) and β(ω) (ω → ∞) are given by the relations:

α(ω) ≈ α∞

(

1 +
2

�

(

η

jωρ f

)1/2
)

, (3)

β(ω) ≈ 1 +
2(γ − 1)

�′

(

η

jωPrρ f

)1/2

. (4)

In these equations, the factor ( jω)−1/2, expresses in the frequency domain the semiintegral operator

defined as [7]

I 1/2ψ(x) =
1

√
π

∫ t

a

ψ(τ )
√

t − τ
dτ, (5)

where a is real valued In the time domain, the susceptibilities are operators [7] and their asymptotic

expressions are given in [1] as:

α̃(t) = α∞δ(t) +
2α∞

�

(

η

ρ f

)1/2

t−1/2, (6)

β̃(t) = δ(t) +
2(γ − 1)

�′

(

η

Prρ f

)1/2

t−1/2. (7)

In each of these equations the first term in the right hand side is the instantaneous response of the medium

while the second term is the memory function. In electromagnetism, the instantaneous response is called

optical response. It describes all the processes which cannot be resolved by the signal. In this framework,
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the basic equations of the acoustic waves propagation along the ox axis are:

ρ f α̃(t) ∗
∂vx

∂t
= −

∂p

∂x
(8)

β̃(t)

Ka

∗
∂p

∂t
= −

∂vx

∂x
, (9)

where Ka is the bulk modulus of the air, p is the acoustic pressure and v the particle velocity. ∗ is the

shorthand notation for the time convolution

( f ∗ g)(t) =
∫ t

0

f (t − t ′)g(t ′)dt ′. (10)

For a causal function v(x, t), the wave equation is deduced from these equations as the FTE:

∂2v

∂x2
−

1

c2

∂2v

∂t2
+ A

∫ t

0

∂2v/∂t2

√
t − t ′

dt ′ − B
∂v

∂t
= 0, (11)

where A and B are the following constants:

A =
2α∞

Ka

√

ρrη

π

(

1

�
+

γ − 1
√

Pr�′

)

(12)

B =
4α∞(γ − 1)η

Ka��′
√

Pr
(13)

c is the velocity c = c0/
√

α∞ in the porous medium, and c0 =
√

ρ f /Ka is the wave velocity in the

free space. The other coefficients govern the spreading and the attenuation of the waves. During the

last decade, FTE has been investigated by many authors [8, 9]. Fractional differential equations appear

more and more frequently in different research areas and engineering applications. They are derived

by the generalization of classical equations and they seem to be an essential complementary tool in the

description of a lot of phenomena.

3. Layered Slab of Porous Material

3.1. THE BASIC EQUATION

We consider now a slab of inhomogeneous porous material between x = 0 and x = l. The slab

parameters are x-dependent, i.e., the medium is layered. However, in 0 < x < l, it is assumed that the

parameters of the medium are continuous to avoid jump discontinuities in the operators kernels. In a

layered medium, the coefficients A, B and c of Equation (11) are no more constant. They are written

as A = a(x), B = b(x) and c = c(x). Then the FTE has the following form

(

∂2
x − c(x)−2∂2

t − b(x)∂t − a(x)∂
3/2
t

)

v(x, t) = 0, (14)

where ∂xv(x, t) = ∂v(x, t)/∂x . . .
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3.2. WAVE SPLITTING

To split the wave, we put the Equation (14) in the matrix form:

∂x

(

v(x, t)

∂xv(x, t)

)

=

(

0 1

c−2(x)∂2
t 0

) (

v(x, t)

∂xv(x, t)

)

+

(

0 0

b(x)∂t + a(x)∂
3/2
t 0

) (

v(x, t)

∂xv(x, t)

)

(15)

Equation (15) describes the evolution of vector (v, ∂xv)t (t denotes the transpose) when x varies on

the direction of propagation. Since v(x, t) and ∂xv(x, t) are linearly independent quantities, they form

a basis of a two-dimensional space from which any propagating wave can be generated. In the wave

splitting, quantities of interest are two independent linear combinations of v(x, t) and ∂xv(x, t): i) which

form a new basis of the space; ii)which are convenient for physical interpretations. A particular choice

is {v+, v−} defined by the transformation:

(

v+(x, t)

v−(x, t)

)

= S

(

v(x, t)

∂xv(x, t)

)

where S =

(

1 −c−1(x)∂−1
t

1 c−1(x)∂−1
t

)

.

v±(x, t) are the split fields which satisfy the relation v(x, t) = v+(x, t) + v−(x, t). The dynamical

equations for these fields are deduced from Equation (15) in the following form:

∂x

(

v+(x, t)

v−(x, t)

)

= M

(

v+(x, t)

v−(x, t)

)

, (16)

where

M= SMS−1 − S(∂x S−1) + SNS−1, (17)

M =

(

0 1

c−2(x)∂2
t 0

)

, (18)

N =

(

0 0

b(x)∂t + a(x)
√

π∂
3/2
t 0

)

. (19)

The wave splitting converts the matrix M into diagonal form. So, during their travel through the

material, the split fields are mixed by the S(∂x S−1) and SNS−1 matrices i.e., by the losses and dispersion

processes:

SMS−1 =
∂

c∂t

(

−1 0

0 1

)

(20)

S(∂x S−1) = −S−1(∂x S)

=
1

2

c′(x)

c(x)

(

1 −1

−1 1

)

(21)

SNS−1 =
c(x)

2

[

b(x) + a(x)
√

π∂
1/2
t

]

(

−1 −1

1 1

)

(22)
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So, the dynamic equation of the split fields is

∂

∂x

(

v+

v−

)

=









− ∂t

c(x)
− 1

2
c(x)a(x)

√
π∂

1/2
t − 1

2
c(x)a(x)

√
π∂

1/2
t

1
2
c(x)a(x)

√
π∂

1/2
t

∂t

c(x)
+ 1

2
c(x)a(x)

√
π∂

1/2
t



 +
(

δ11 δ12

δ21 δ22

)





(

v+

v−

)

, (23)

with

δ11 = −δ21 = −
1

2

c′(x)

c(x)
−

b(x)c(x)

2
, (24)

δ12 = −δ22 =
1

2

c′(x)

c(x)
−

b(x)c(x)

2
. (25)

4. Scattering Operators

4.1. SCATTERING REPRESENTATION

To describe the scattering properties of the slab of porous material, the scattering operators are introduced

[10]. For a specific incidence from x < 0, the incident wave vi (x, t) which propagates in the positive

x direction, is of v+ type. In the region x < 0, there is furthermore a reflected wave vr (x, t) which

propagates in the negative x direction, i.e., which is of the v− type. vr may be interpreted as a response

of the slab to the incident wave vi . The Duhamel’s principle establishes that there exist a linear relation

between vr and vi namely vr (0, t) = R(0, l, t)vi (0, t) in the form [11].

vr (0, t) =
∫ t

−∞
R(0, l, t − t ′)vi (0, t ′)dt ′. (26)

R(0, l, t) is the reflection kernel which refers to the slab between x = 0 and x = l. In the same way we

can introduce the transmission operator T (l, t) which relates the transmitted wave vt and the incident

wave vi :

vt (l, t) = vi (0, t) +
∫ t

−∞
T (0, l, t − t ′)vi (0, t ′)dt ′, (27)

where T (0, l, t) is the kernel of T and vt (l, t) is a v+ type wave such that

vt (l, t) = v+(l, t + τ (0, l)), (28)

with τ (x1, x2) is the time it takes for the wave to travel from x = x1 to x = x2:

τ (x1, x2) =
∫ x2

x1

dx ′

c(x ′)
. (29)

The influence of the slab 0 < x < l is expressed through the arguments (0, l . . .) of the kernels R and

T . They indicate that these kernels depend of the whole slab between the two faces x = 0 and x = l.

They are interpreted as the responses of the slab to a δ-function excitation:

vi (x, t) = δ(x − c0t)
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4.2. IMBEDDING EQUATIONS FOR THE SCATTERING OPERATORS

When the slab is layered, we cannot consider just the global scattering kernels. By global kernels we 
understand functions which depend of on the whole slab. We must also determine the variations of 
the scattering kernels through the slab. For that we define the local scattering kernels R(x1, x2, t) and 
T (x1, x2, t) relative to the subslab between x = x1 and x = x2. It is assumed that the subslab is 
embedded between two half-spaces specified by their velocities c(x1) and c(x2). The global kernels are 
obtained as the limits of the local kernels when x1 and x2 approach, respectively 0 and l. Stokes was 
the first to develop this approach [12] referred as invariant imbedding method.

4.2.1. Reflection Operator

The local reflection operator is defined by the equation

v−(x, t) = R(x, t) ∗ v+(x, t). (30)

Applying ∂x to (30) leads to:

∂xv
−(x, t) = ∂x R(x, t) ∗ v+(x, t) + R(x, t) ∗ ∂xv

+(x, t). (31)

Thus, ∂xv
± are reported from the dynamic equation of the split fields to give:

0 =
1

2
a(x)c(x)

√
π∂

1/2
t [v+(x, t) + v−(x, t)] +

1

c(x)
∂tv

−(x, t)

+ δ21v
+(x, t) + δ22v

−(x, t) − ∂x R(x, t) ∗ v+(x, t) − δ11 R(x, t) ∗ v+(x, t)

− δ12 R(x, t) ∗ v−(x, t) +
1

2
a(x)c(x)

√
π R(x, t) ∗ ∂

1/2
t [v+(x, t) + v−(x, t)]

+
1

c(x)
(R(x, t) ∗ ∂tv

+(x, t)). (32)

Using the following relations:

R(x, t) ∗ ∂tv
+(x, t) = R(x, 0)v+(x, t) + ∂t R(x, t) ∗ v+(x, t) (33)

∂tv
−(x, t) = 2R(x, t) ∗ v+(x, t) + R(x, 0)v+(x, t) (34)

Equation (32) becomes:

0 =
1

2
a(x)c(x)

√
π∂

1/2
t [v+(x, t) + R(x, t) ∗ v+(x, t)]

+
2

c(x)
∂t R(x, t) ∗ v−(x, t) +

1

c(x)
R(x, 0)v+(x, t)

+ δ21v
+(x, t) + δ22v

−(x, t) − ∂x R(x, t) ∗ v+(x, t)

+
1

c(x)
R(x, 0) ∗ v+(x, t) +

1

c(x)
∂t R(x, t) ∗ v+(x, t)

+
1

2
a(x)c(x)

√
π R(x, t) ∗ ∂

1/2
t [v+(x, t) + R(x, t) ∗ v+(x, t)]

− δ11 R(x, t) ∗ v+(x, t) − δ12 R(x, t) ∗ R(x, t) ∗ v+(x, t). (35)
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In these equations the fractional derivatives ∂t
1/2

v±(x, t) can be written as the following convolutions:

∂
1/2
t v+(x, t) = −

1

2
√

π

1

t3/2
∗ v+(x, t) (36)

∂
1/2
t v−(x, t) = −

1

2
√

π

1

t3/2
∗ R(x, t) ∗ v+(x, t). (37)

A term by term identification of (35) gives:

– from the constant terms:

R(x, 0) = −
1

4
(c′(x) + b(x)c2(x)) (38)

– from the convolution terms

∂x R(x, t) −
3

c(x)
∂t R(x, t) = −

1

2

[

c′(x)

c(x)
− a(x)c(x)

]

R(x, t) ∗ R(x, t)

−
1

4
a(x)c(x)

[

1

t3/2
+

2

t3/2
∗ R(x, t) +

1

t3/2
∗ R(x, t) ∗ R(x, t)

]

+ b(x)c(x)R(x, t), (39)

with the conditions:

R(x, 0) = −
1

a
[c′(x) + b(x)c2(x)] and R(l, t) = 0. (40)

4.2.2. Transmission Operator

The transmission operator is defined by the equation

v+(x, t + τ (L , x)) = a(l, x)v+(x, t) + T (x, t) ∗ v+(x, t), (41)

where a(l, x) is the attenuation factor. The differential equation for transmission operator is determined

in the same way that the one of the reflection operator. After a straightforward calculation and the term

by term identification one finds the following equations:

– from the constant terms

∂x a(l, x) = −δ11a(l, x), (42)

or

a(l, x) =

√

c(x)

c(l)
exp

(

−
1

2

∫ l

x

b(x ′)c(x ′)dx ′
)

; (43)

– from the coefficient of ∂tv
+(x, t)

∂xτ (l, x) = −
1

c(x)
, (44)

leading to

τ (l, x) =
∫ l

x

dx ′

c(x ′)
; (45)
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– from the convolution terms

∂x T (x, t) +
1

c(x)
∂t T (x, t) = −δ11T (x, t) − δ12{a(l, x)R(x, t) + T (x, t) ∗ R(x, t)}

−
1

4

{

a(l, x)
1

t3/2
+ a(l, x)

1

t3/2
∗ R(x, t)

+
1

t3/2
∗ R(x, t) +

1

t3/2
∗ R(x, t) ∗ T (x, t)

}

(46)

with the condition T (0, t) = 0.

Note that Equations (26) and (46) which contains R and T are coupled nonlinear differential equations.

Equation (26) contains only the unknown R(x, t). They both contain fractional derivatives which model

the memory effects which develop in the porous medium when the waves propagate in it.

These equations may be solved analytically when the profiles of parameters variations are tractable

[13] or by numerical methods [14] as for example finite difference method or the method of character-

istics [15].

5. Conclusion

In this paper the fractional differential equations for the scattering operators have been established. How-

ever, they are deduced from the fractional telegraph equation which describes the transient acoustics

signals propagation in a layered porous medium. This model is well adapted to investigate the propa-

gation of ultrasonic pulses in acoustics porous materials. The model is restricted to a one-dimensional

problem to reduce the inverse scattering problem but more general situations like obliquely incident

wave may be tackled in the same way.
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