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The unitary gas in an isotropic harmonic trap: symmetry properties and applications

Félix Werner and Yvan Castin
Laboratoire Kastler Brossel, École Normale Supérieure,

24 rue Lhomond, 75231 Paris Cedex 05, France

(Dated: July 31, 2006)

We consider N atoms trapped in an isotropic harmonic potential, with s-wave interactions of
infinite scattering length. In the zero-range limit, we obtain several exact analytical results: mapping
between the trapped problem and the free-space zero-energy problem, separability in hyperspherical
coordinates, SO(2, 1) hidden symmetry, and relations between the moments of the trapping potential
energy and the moments of the total energy.

PACS numbers: 03.75.Ss, 05.30.Jp

Strongly interacting degenerate Fermi gases with two
spin components are studied in present experiments with
ultra-cold atoms [1]: by tuning the interaction strength
between the atoms of different spin states via a Feshbach
resonance, one can even reach the so-called unitary limit
[2] where the interaction strength in the s-wave chan-
nel reaches the maximal amplitude allowed by quantum
mechanics in a gas. More precisely, this means that the s-
wave scattering amplitude between two particles reaches
the value

fk = −
1

ik
(1)

for the relative momenta k that are relevant in the gas,
in particular for k of the order of the Fermi momentum
kF of the particles. This implies that the s-wave scatter-
ing length a is set to infinity (which is done in practice
by tuning an external magnetic field). This also implies
that k|re| ≪ 1, where re is the effective range of the in-
teraction potential, a condition well satisfied in present
experiments on broad Feshbach resonances.

The maximally-interacting gas defined by these con-
ditions is called the unitary quantum gas [2]. It has
universal properties since all the details of the interac-
tion have dropped out of the problem. Theoretically, for
spin 1/2 fermions with equal populations in the two spin
states, equilibrium properties have been calculated in the
thermodynamical limit in the spatially homogeneous case
using Monte-Carlo methods; at finite temperature [3, 4],
and at zero temperature with a fixed node approximation
[5]. In practice, the unitary gases produced experimen-
tally are stored in essentially harmonic traps, which rises
the question of the effect of such an external potential.
In this paper, we consider a specific aspect of this ques-
tion: restricting to perfectly isotropic harmonic traps,
but with no constraint on the relative spin populations,
we show that the unitary quantum gas admits interesting
symmetry properties that have measurable consequences
on its spectrum and on the many-body wavefunctions.
These properties imply that there is a mapping between
the N -body eigenfunctions in a trap and the zero-energy
N -body eigenfunctions in free space; the N -body prob-
lem is separable in hyperspherical coordinates; and there
exist relations between the moments of the trapping po-

tential energy and those of the total energy at thermal
equilibrium.

A unitary Bose gas was not produced yet. This is re-
lated to the Efimov effect [6]: when three bosons interact
with a short range potential of infinite scattering length,
an effective three-body attraction takes place, leading in
free space to the existence of weakly bound trimers. This
effective attraction generates high values of k so that the
unitarity condition Eq.(1) is violated. It also gives a short
lifetime to the gas by activating three-body losses due to
the formation of deeply bound molecules [7, 8, 9]. In an
isotropic harmonic trap, for three bosons, there exist efi-
movian states [10, 11], but there also exist eigenstates not
experiencing the Efimov effect [10, 12]. These last states
are universal (in the sense that they depend only on h̄,
the mass m and the trapping frequency ω) and they are
predicted to be long-lived [12]. The results of the present
paper apply to all universal states, fermionic or bosonic,
but do not apply to the efimovian states.

I. OUR MODEL FOR THE UNITARY GAS

The physical system considered in this paper is a set
of N particles of equal mass m (an extension to dif-
ferent masses is given in Appendix A). The particles
are of arbitrary spin and follow arbitrary statistics; the
Hamiltonian is supposed to be spin-independent so that
the N -body wavefunction ψ that we shall consider corre-
sponds to a given spin configuration [13]. The particles
are trapped by the same isotropic harmonic potential of
frequency ω. We collect all the positions ~ri of the parti-
cles in a single 3N component vector:

~X ≡ (~r1, . . . , ~rN ). (2)

Its norm

X = ‖ ~X‖ =

√

√

√

√

N
∑

i=1

r2i (3)

is called the hyperradius. We will also use the unit vector

~n ≡ ~X/X (4)
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(which may be parametrized by 3N−1 hyperangles). The
coordinates (X,~n) are called hyperspherical coordinates
[14]. The total trapping potential energy simply writes

Htrap =
1

2
mω2X2. (5)

The interaction between the particles is assumed to
be at the unitary limit defined in Eq.(1); one can then
replace the interaction by contact conditions on the N -
body wavefunction (see e. g. [15, 16] and references
therein): when the distance rij = ‖~rj − ~ri‖ between par-
ticles i and j tends to zero, there exists a function A such
that

ψ( ~X ) =
rij→0

A(~Rij , {~rk : k 6= i, j})

rij
+O(rij) (6)

where ~Rij = (~ri + ~rj)/2 is the fixed center-of-mass posi-
tion of particles i and j, and {~rk : k 6= i, j} are the po-
sitions of the other particles. When none of the particle
positions coincide, the stationary wavefunction ψ solves
Schrödinger’s equation, Hψ = Eψ, with the Hamiltonian

H = −
h̄2

2m
∆ ~X +

1

2
mω2X2. (7)

This model is expected to be exact for universal states in
the limit of a zero range of the interaction potential [15].

II. SCALING PROPERTIES OF THE TRAPPED
UNITARY GAS

A. What is scale invariance ?

A fundamental property of the contact conditions
Eq.(6) is their invariance by a rescaling of the spatial
coordinates. More precisely, we define a rescaled wave-
function ψλ by

ψλ( ~X ) ≡ ψ( ~X/λ) (8)

where λ > 0 is the scaling factor. Then, if ψ obeys
the contact conditions, so does ψλ for any λ. Note that
this property holds only because the scattering length is
infinite (for a finite value of a, 1/rij in Eq.(6) would be
replaced by 1/rij − 1/a, which breaks scale invariance).

In free space (that is for ω = 0), the scale invariance
implies the following property: if ψ is an eigenstate of
energy E, then ψλ is an eigenstate of energy E/λ2 for any
λ [17]. This implies the absence of bound states in free
space: otherwise the scaling transform would generate
a continuum of states which are square integrable (after
elimination of the center of mass variables), and this is
forbidden for a Hermitian problem [18].

When E = 0, one finds (see Appendix B) that the free
space eigenstates can be assumed to be scale-invariant,
i.e. there exists an exponent ν such that

ψλ( ~X ) = λ−νψ( ~X). (9)

Taking the derivative of this relation with respect to λ in
λ = 1, this shows that ψ is an eigenstate of the dilatation
operator,

D̂ ≡ ~X · ∂ ~X , (10)

with the eigenvalue ν. This result is interesting for sec-
tion III.

The presence of a harmonic trap introduces the har-
monic oscillator length scale aho =

√

h̄/mω, so that the
eigenstates cannot be scale-invariant as in Eq.(9). How-
ever, if ψ obeys the contact condition, so do the ψλ’s: as
we shall see, this allows to identify general properties of
the eigenstates in the trap.

B. Scaling solution in a time dependent trap

We now assume that the trap frequency ω, while keep-
ing a fixed value ω(0) for all times t < 0, has an arbitrary
time dependence at positive times. Let us assume that,
at t ≤ 0, the system is in a stationary state of energy
E. Then at positive times the wavefunction of the sys-
tem will be deduced from the t = 0 wavefunction by the
combination of gauge and scaling transform [19]:

ψ( ~X, t) =
e−iEτ(t)/h̄

λ(t)3N/2
eimX2λ̇(t)/2h̄λ(t)ψ( ~X/λ(t), 0) (11)

where the time dependent scaling parameter obeys the
Newton-like equation

λ̈ =
ω2(0)

λ3
− ω2(t)λ (12)

with the initial conditions λ(0) = 1, λ̇(0) = 0. We also
introduced an effective time τ given by

τ(t) =

∫ t

0

dt′

λ2(t′)
. (13)

This result may be extended to an arbitrary initial
state as follows:

ψ( ~X, t) =
1

λ(t)3N/2
eimX2λ̇(t)/2h̄λ(t)ψ̃( ~X/λ(t), τ(t)).

(14)

where ψ̃ evolves with the t < 0 Hamiltonian (i.e. in the
unperturbed trap of frequency ω(0)).

As shown by Rosch and Pitaevskii [20], the existence
of such a scaling and gauge time dependent solution is
related to a SO(2,1) hidden symmetry of the problem.
This we rederive in the next subsection.

C. Raising and lowering operators, and SO(2,1)
hidden symmetry

We consider the following gedanken experiment: one
perturbs the gas in an infinitesimal way by modifying the
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trap frequency in a time interval 0 < t < tf . After the
excitation period (t > tf ), the trap frequency assumes its
initial value ω(0). The scaling parameter then slightly
deviates from unity, λ(t) = 1 + δλ(t) with |δλ| ≪ 1.
Linearizing the equation of motion Eq.(12) in δλ, one
finds that δλ oscillates as

δλ(t) = ǫe−2iωt + ǫ∗e2iωt, (15)

where we set ω = ω(0) to simplify the notation. The
gedanken experiment has therefore excited an undamped
breathing mode of frequency 2ω [20].

We now interpret this undamped oscillation in terms
of a property of the N -body spectrum of the system.
Expanding Eq.(11) to first order in δλ(t) leads to

ψ( ~X, t) = eiα
[

e−iEt/h̄ − ǫe−i(E+2h̄ω)t/h̄L+

+ ǫ∗e−i(E−2h̄ω)t/h̄L−

]

ψ( ~X, 0) +O(ǫ2)(16)

(the phase α depends on the details of the excitation pro-
cedure). This reveals that the initial stationary state E
was coupled by the excitation procedure to other station-
ary states of energies E ± 2h̄ω. Remarkably, the wave-
function of these other states can be obtained from the
initial one by the action of raising and lowering operators:

L+ = +
3N

2
+ D̂ +

H

h̄ω
−mωX2/h̄ (17)

L− = −
3N

2
− D̂ +

H

h̄ω
−mωX2/h̄. (18)

Repeated action of L+ and L− will thus generate a ladder
of eigenstates with regular energy spacing 2h̄ω.

The hidden SO(2,1) symmetry of the problem then re-
sults from the fact that H , L+ and L− have commutation
relations equal (up to numerical factors) to the ones of
the Lie algebra of the SO(2,1) group, as was checked in
[20]:

[H,L+] = 2h̄ωL+ (19)

[H,L−] = −2h̄ωL− (20)

[L+, L−] = −4
H

h̄ω
(21)

From the general theory of Lie algebras, one may form
the so-called Casimir operator which commutes with all
the elements of the algebra, that is with H and L±; it is
given by [20]:

Ĉ = H2 −
1

2
(h̄ω)2(L+L− + L−L+). (22)

Consider a ladder of eigenstates; as we will show later,
the hermiticity of H implies that this ladder has a ground
energy step, of value E0. Within this ladder, the Casimir
invariant assumes a constant value,

C = E0(E0 − 2h̄ω). (23)

D. Virial theorem

Another application of the existence of raising and
lowering operators is the virial theorem for the unitary
gas. For a given eigenstate of H of energy E and real
wavefunction ψ, L−|ψ〉 is either zero (if ψ is the ground
step of a ladder) or an eigenstate of H with a differ-
ent energy. Assuming that H is hermitian, this implies
〈ψ|L−|ψ〉 = 0, and leads to [21]:

〈ψ|H |ψ〉 = 2 〈ψ|Htrap|ψ〉 . (24)

At thermodynamical equilibrium, one thus has

〈H〉 = 2 〈Htrap〉 , (25)

that is the total energy is twice the mean trapping po-
tential energy.

This virial theorem is actually also valid for an
anisotropic harmonic trap (this result is due to Frédéric
Chevy). One uses the Ritz theorem, stating that an
eigenstate of a hermitian Hamiltonian is a stationary
point of the mean energy. As a consequence, the function
of λ

E(λ) ≡
〈ψλ|H |ψλ〉

〈ψλ|ψλ〉

= λ−2 〈ψ|H −Htrap|ψ〉 + λ2 〈ψ|Htrap|ψ〉 (26)

satisfies (dE/dλ)(λ = 1) = 0, which leads to the virial
theorem. This relies simply on the scaling properties of
the harmonic potential, irrespective of its isotropy.

The proportionality between 〈H〉 and 〈Htrap〉 resulting
from the virial theorem was checked experimentally [22].

III. MAPPING TO ZERO-ENERGY
FREE-SPACE EIGENSTATES

Usually, the presence of a harmonic trap in the exper-
iment makes the theoretical analysis more difficult than
in homogenenous systems. Here we show that, remark-
ably, the case of an isotropic trap for the unitary gas can
be mapped exactly to the zero-energy free-space prob-
lem (which remains, of course, an unsolved many-body
problem).

More precisely, all the universal N -body eigenstates
can be put in the unnormalized form:

|ψν,q〉 = (L+)q e−X̂2/2a2

ho |ψ0
ν〉 (27)

and have an energy

Eν,q = (ν + 2q + 3N/2)h̄ω (28)

where q is a non-negative integer, L+ is the raising opera-
tor defined in Eq.(17), and ψ0

ν is a zero-energy eigenstate
of the free-space problem which is scale-invariant:

ψ0
ν( ~X/λ) = ψ0

ν( ~X )/λν (29)
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for all real scaling parameter λ, ν being the real scaling
exponent [23].

We also show that the reciprocal is true, that is each
zero-energy free-space eigenstate which is scale-invariant
with a real exponent ν generates a semi-infinite ladder of
eigenstates in the trap, according to Eq.(27,28).

We note that Eq.(28) generalizes to excited states a
relation obtained in [24] for the many-body ground state.

A. From a trap eigenstate to a free-space
eigenstate

We start with an arbitrary eigenstate in the trap. By
repeated action of L− on this eigenstate, we produce a
sequence of eigenstates of decreasing energies. According
to the virial theorem Eq.(24), the total energy of a univer-
sal state is positive, since the trapping potential energy is
positive. This means that the sequence produced above
terminates. We call ψ the last non-zero wavefunction
of the sequence, an eigenstate of H with energy E that
satisfies L−|ψ〉 = 0. To integrate this equation, we use
the hyperspherical coordinates (X,~n) defined in Eq.(3,4).

Noting that the dilatation operator is simply D̂ = X ·∂X

in hyperspherical coordinates, we obtain:

ψ( ~X ) = e−X2/2a2

ho XE/(h̄ω)−3N/2f(~n). (30)

Then one defines

ψ0( ~X) ≡ eX2/2a2

hoψ( ~X ). (31)

One checks that this wavefunction obeys the contact con-
ditions Eq.(6), since X2 varies quadratically with rij at

fixed ~Rij and {~rk, k 6= i, j}. ψ0 is then found to be
a zero-energy eigenstate in free space, by direct inser-
tion into Schrödinger’s equation. But one has also from
Eq.(30,31):

ψ0( ~X) = XE/(h̄ω)−3N/2f(~n), (32)

so that ψ0 is scale-invariant, with a real exponent ν re-
lated to the energy E by Eq.(28). This demonstrates
Eq.(27,28) for q = 0, that is for the ground step of each
ladder.

One just has to apply a repeated action of the raising
operator L+ on the ground step wavefunction to generate
a semi-infinite ladder of eigenstates: this corresponds to
q > 0 in Eq.(27,28). Note that the repeated action of
L+ cannot terminate since L+|ψ〉 = 0 for a non-zero ψ
implies that ψ is not square-integrable.

B. From a free-space eigenstate to a trap eigenstate

The reciprocal of the previous subsection is also true:
starting from an arbitrary zero-energy free-space eigen-
state that is scale-invariant, one multiplies it by the
Gaussian factor exp(−X2/2a2

ho), and one checks that the

resulting wavefunction is an eigenstate of the Hamilto-
nian of the trapped system, obeying the contact condi-
tions [25]. Applying L+ then generates the other trap
eigenstates.

C. Separability in hyperspherical coordinates

Let us reformulate the previous mapping using the hy-
perspherical coordinates (X,~n) defined in Eq.(3,4). A
free-space scale-invariant zero-energy eigenstate takes the

form ψ0( ~X ) = Xνfν(~n ), and the universal eigenstates in
the trap have an unnormalized wavefunction

ψν,q( ~X ) = Xνe−X2/2a2

hoL(ν−1+3N/2)
q (X2/a2

ho) fν(~n ),
(33)

where L
(.)
q is the generalized Laguerre polynomial of de-

gree q. This is obtained from the repeated action of L+

in Eq.(27) and from the recurrence relation obeyed by
the Laguerre polynomials:

(q+1)L
(s)
q+1(u)−(2q+s+1−u)L(s)

q (u)+(q+s)L
(s)
q−1(u) = 0.

(34)
We have thus separated out the hyperradius X and the
hyperangles ~n. The hyperangular wavefunctions fν(~n )
and the exponents ν are not known for N ≥ 4. However,
we have obtained the hyperradial wavefunctions, i.e. the
X dependent part of the many-body wavefunction. A
more refined version of these separability results can be
obtained by first separating out the center of mass (see
Appendix C), but this is not useful for the next Section.

IV. MOMENTS OF THE TRAPPING
POTENTIAL ENERGY

A. Exact relations

As an application of the above results, we now obtain
the following exact relations on the statistical properties
of the trapping potential energy, relating its moments to
the moments of the full energy, when the gas is at thermal
equilibrium. For the definition of the trapping potential
energy, see Eq.(5).

At zero temperature, its moments as a function of the
ground state energy E0 are given by:

〈(Htrap)n〉 = E0

(

E0 + h̄ω
)

. . .
(

E0 +(n−1)h̄ω
)

/2n. (35)

At finite temperature T , the first moment is given by the
virial theorem

〈Htrap〉 = 〈H〉/2 (36)

and the second moment by

〈(Htrap)
2
〉 =

[

〈H2〉 + 〈H〉h̄ω · cotanh

(

h̄ω

kBT

)]

/4.

(37)
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B. Derivation

The zero temperature result Eq.(35) follows directly
from Eq.(33): for q = 0, the Laguerre polynomial is con-
stant so that the probability distribution of X is a power
law times a Gaussian; the moments are then given by in-
tegrals that can be expressed in terms of the Γ function.

For finite T , the idea of our derivation is the following:
the hyperradial part of the N -body wavefunction ψν,q is
known from Eq. (33); and thus the probability distribu-
tion of X in the state |ψν,q〉 is known, in terms of ν, q.
While the thermal distribution of q is simple, the one of
ν is not, but ν is related to the total energy by Eq.(28).

We will need the intermediate quantities:

Bn,p ≡

∫∞

0
du e−uus+nL

(s)
q+p(u)L

(s)
q (u)

∫∞

0 du e−uus
[

L
(s)
q (u)

]2 , (38)

where s ≥ 0; n, q are non-negative integers; and p is an
integer of arbitrary sign. These quantities can be calcu-
lated with the n = 0 ‘initial’ condition B0,p = δ0,p and
the recurrence relation

Bn+1,p = −(q + p+ 1)Bn,p+1 + [2(q + p) + s+ 1]Bn,p

−(q + p+ s)Bn,p−1 (39)

which follows from the recurrence relation Eq.(34) on La-
guerre polynomials.

This allows to calculate the moments of the trapping
energy in the step q of a ladder of exposant ν, using
Eq.(33):

〈ψν,q|X
2n|ψν,q〉

〈ψν,q|ψν,q〉
= Bn,0 a

2n
ho . (40)

Here we have set

s = ν − 1 + 3N/2 (41)

in accordance with Eq.(33).
Assuming thermal equilibrium in the canonical ensem-

ble, the thermal average can be performed over the sta-
tistically independent variables q and s. The moments of
q are easy to calculate, because of the ladder structure
with equidistant steps:

〈qn〉 =

∑+∞

q=0 q
ne−qh̄ω/kBT

∑+∞

q=0 e
−qh̄ω/kBT

. (42)

The moments of s are not known exactly but they can
be eliminated in terms of the moments of the total en-
ergy E and of the moments of q using the relation
E = (s + 1 + 2q)h̄ω. This leads to the exact relations
(36,37). This method in principle allows to calculate re-
lations for moments of arbitrary given order, but the al-
gebra becomes cumbersome.

V. CONCLUSION

In this paper we have derived several exact properties
of the unitary gas in an isotropic harmonic trap. The
spectrum is formed of ladders; the steps of a ladder are
spaced by an energy 2h̄ω, and linked by raising and low-
ering operators. This allows to map the trapped prob-
lem to the free-space one. The problem is separable in
hyperspherical coordinates. This allows to derive exact
relations between the moments of the trapping potential
energy and the moments of the total energy. The rela-
tion between the first moments is the virial theorem; the
relation between the second moments may be useful for
thermometry, as will be studied elsewhere.

We thank F. Chevy, J. Dalibard, S. Nascimbène, L.
Pricoupenko, J. Thomas and C.-F. Vergu for very useful
discussions. LKB is a Unité de Recherche de l’ENS et

de l’Université Paris 6, associée au CNRS. Our research
group is a member of IFRAF.

APPENDIX A: EXTENSION TO PARTICLES
WITH DIFFERENT MASSES

All our results remain valid if the particles have dif-
ferent masses m1, . . . ,mN ; provided that the trapping
frequency ω remains the same for all the particles. We
define a mean mass:

m ≡
m1 + . . .+mN

N
. (A1)

The definition of ~X and X , given by Eq.(2,3) for equal
masses, has to be generalized to:

~X ≡

(
√

m1

m
~r1, . . . ,

√

mN

m
~rN

)

. (A2)

X ≡ ‖ ~X‖ =

√

√

√

√

N
∑

i=1

mi

m
r2i . (A3)

With this new definition of X , the trapping potential
energy is still given by Eq.(5).

In the definition of the zero-range model, the con-
tact conditions Eq.(6) remain unchanged, except that the
fixed center of mass position of particles i and j is now
~Rij ≡ (mi~ri +mj ~rj)/(mi +mj).

In Appendix C, the center of mass position has to be
redefined as

~C =
(m1 ~r1 + . . .+mN ~rN )

(m1 + . . .+mN )
(A4)

and the internal hyperangular coordinates become:

R =

√

√

√

√

N
∑

i=1

mi

m
(~ri − ~C )2 (A5)

~Ω =

(

√

m1

m

~r1 − ~C

R
, . . . ,

√

mN

m

~rN − ~C

R

)

. (A6)
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With these modified definitions, all the results of this
paper remain valid.

APPENDIX B: SCALE INVARIANCE OF THE
ZERO-ENERGY FREE-SPACE EIGENSTATES

In this appendix, we show that the zero-energy free-
space eigenstates of the Hamiltonian may be chosen as
being scale-invariant, that is as eigenstates of the dilata-
tion operator D̂, under conditions ensuring the hermitic-
ity of the Hamiltonian.

Consider the zero-energy eigensubspace of the free-
space Hamiltonian. This subspace is stable under the ac-
tion of D̂. If one assumes that D̂ is diagonalizable within
this subspace, the corresponding eigenvectors form a
complete family of scale invariant zero-energy states. If
D̂ is not diagonalizable, we introduce the Jordan normal
form of D̂.

Let us start with the case of a Jordan normal form of
dimension two, written as

Mat(D̂) =

(

ν 1
0 ν

)

, (B1)

in the sub-basis |e1〉, |e2〉. The ket |e1〉 is an eigenstate of

D̂ with the eigenvalue ν. We assume that the center of
mass motion is at rest, with no loss of generality since it is
separable in free space. Using the internal hyperspherical

coordinates (R, ~Ω) defined in Appendix C, we find that

D̂ reduces to the operatorR∂R. IntegratingR∂Re1 = νe1
leads to

e1( ~X) = Rνφ1(~Ω ). (B2)

The ket |e2〉 is not an eigenstate of D̂ but obeys R∂Re2 =
νe2 + e1, which, after integration, gives

e2( ~X ) = Rν logRφ1(~Ω ) +Rνφ2(~Ω). (B3)

One can assume that φ1 and φ2 are orthogonal on the
unit sphere (by redifining e2 and φ2). It remains to
use the fact that both e1 and e2 are zero-energy free-
space eigenstates. From the form of the Laplacian in
hyperspherical coordinates in d = 3N − 3 dimensions,
see Eq.(C5), the condition ∆ ~Xe1 = 0 leads to

T~Ωφ1 = −ν(ν + d− 2)φ1. (B4)

The condition ∆ ~Xe2 = 0 then gives T~Ωφ2 = −ν(ν + d−
2)φ2 − (2ν + d− 2)φ1, which leads to the constraint [26]:

ν = 1 − d/2. (B5)

At this stage, for this ’magic’ value of ν, it seems that
there may exist non scale-invariant zero-energy eigen-
states.

To proceed further, one has to check for the hermiticity
of the free space Hamiltonian. This requires a reasoning

at arbitrary, non zero energy. We use the fact that the
following wavefunction obeys the contact conditions,

ψ( ~X ) = u(R)Rνφ1(~n ), (B6)

where u(R) is a fonction with no singularity, except
maybe in R = 0 [27]. Using again the expression of
the Laplacian in internal hyperspherical coordinates, one
finds that ψ is an eigenstate of the free-space Hamiltonian
if u(R) is an eigenstate of

ĥ = −
h̄2

2m
(∂2

R +R−1∂R). (B7)

One checks that Hermiticity of the free-space Hamilto-

nian for the wavefunction ψ implies hermiticity of ĥ for

the ‘wavefunction’ u(R). Note that ĥ is simply the free-
space Hamiltonian for 2D isotropic wavefunctions. It is
hermitian over the domain of wavefunctions u(R) with a
non-infinite limit in R = 0. Including the ket |e2〉 in the
domain of the N -body free-space Hamiltonian amounts
to allowing for ‘wavefunctions’ u(R) that diverge as log R

for R → 0: this breaks the Hermiticity of ĥ, since this
leads to a (negative energy) continuum of square inte-

grable eigenstates of ĥ,

uκ(R) = K0(κR) (B8)

with eigenenergy −h̄2κ2/2m, for all κ > 0. Here K0(x) is
a modified Bessel function of the second kind. Hermitic-
ity may be restored by a filtering of this contiunuum [29],
adding the extra contact condition u(R) = log(R/l)+o(1)
for R → 0, but the introduction of the fixed length l
breaks the universality of the problem and is beyond the
scope of this paper We thus exclude e2 from the domain
of the Hamiltonian.

This discussion may be extended to Jordan forms of
higher order. For example, a Jordan form of dimension
3 generates a ket |e3〉 such that (D̂ − ν)e3 = e2. But e2
must be excluded from the domain of the Hamiltonian
by the above reasoning. Since we want the domain to be
stable under D̂, e3 must be excluded as well.

As a conclusion, to have a free-space N -body Hamil-
tonian that is both hermitian and universal (i.e. with
a scale-invariant domain) forces to reject the non scale-
invariant zero-energy eigenstates, of the form Eq.(B3).

APPENDIX C: SEPARABILITY IN INTERNAL
HYPERSPHERICAL COORDINATES

We develop here a refined version of the separability
introduced in subsection III C. First, we separate out the
center of mass coordinates. Then we obtain the separa-
bility in hyperspherical coordinates relative to the inter-
nal variables of the gas, which allows to derive an effective
repulsive N − 1 force and to get a lower bound on the
energy slightly better than the one E > 0 ensuing from
the virial theorem.
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Let us introduce the following set of coordinates:

~C =

N
∑

i=1

~ri/N (C1)

is the position of the center of mass (CM);

R =

√

√

√

√

N
∑

i=1

(~ri − ~C )2 (C2)

is the internal hyperradius; and

~Ω =

(

~r1 − ~C

R
, . . . ,

~rN − ~C

R

)

(C3)

is a set of dimensionless internal coordinates that can be
parametrized by 3N − 4 internal hyperangles. In these
coordinates, the Hamiltonian decouples as H = HCM +
Hint with

HCM = −
h̄2

2Nm
∆~C +

1

2
Nmω2C2 (C4)

Hint = −
h̄2

2m

[

∂2
R +

3N − 4

R
∂R +

1

R2
T~Ω

]

+
1

2
mω2R2 (C5)

where T~Ω is the Laplacian on the unit sphere of dimen-
sion 3N − 4. The contact conditions do not break the
separability of the center of mass valid in a harmonic
trap, so that the stationary state wavefunction may be
taken of the form

ψ( ~X ) = ψCM (~C)ψint(R, ~Ω ). (C6)

One can show [30] that there is separability in internal
hyperspherical coordinates:

ψint(R, ~Ω) = Φ(R)φ(~Ω ). (C7)

This form may be injected into the internal Schrödinger
equation

Hintψint = Eintψint. (C8)

One finds that φ(~Ω ) is an eigenstate of T~Ω with an eigen-
value that we call −Λ. Note that the contact conditions
Eq.(6) put a constraint on φ(~Ω ) only [27]. The equation
for Φ(R) reads:

−
h̄2

2m

(

∂2
R +

3N − 4

R
∂R

)

Φ +

(

h̄2Λ

2mR2
+

1

2
mω2R2

)

Φ

= EintΦ. (C9)

A useful transformation of this equation is obtained by
the change of variable:

Φ(R) ≡ R(5−3N)/2F (R), (C10)

resulting in

−
h̄2

2m

(

∂2
R +

1

R
∂R

)

F +

(

h̄2s2R
2mR2

+
1

2
mω2R2

)

F

= EintF (R), (C11)

where sR is such that

s2R = Λ +

(

3N − 5

2

)2

. (C12)

Formally, the equation for F is Schrödinger’s equation
for a particle of zero angular momentum moving in 2D
in a harmonic potential plus a potential ∝ s2R/R

2.
For s2R ≥ 0, one can choose sR ≥ 0. Assuming

that there is no N -body resonance, F (R) is bounded for
R → 0 [31]. The eigenfunctions of Eq.(C11) can then be
expressed in terms of the generalized Laguerre polynomi-
als:

F (R) = RsRLsR

q [R2/a2
ho]e

−R2/2a2

ho (C13)

with the spectrum:

Eint = (sR + 1 + 2q)h̄ω. (C14)

This gives a lower bound on the energy of any universal
N -body eigenstate:

E ≥
5

2
h̄ω (C15)

for N > 2 and in the absence of a N -body resonance.
For a complex s2R, the effective 2D Hamiltonian is not

hermitian and this case has to be discarded. For s2R < 0,
Whittaker functions are square integrable solutions of the
effective 2D problem for all values Eint so that, again, the
problem is not hermitian. One may add extra boundary
conditions to filter out an orthonormal discrete subset (as
was done for N = 3 bosons [6, 10, 12, 33]) but this breaks
the scaling invariance of the domain and generates non-
universal states beyond the scope of the present paper.

To make the link with the approach of Section III, we
note that

F (R) = RsR (C16)

is a solution of the effective 2D problem (C11) for ω =
0, Eint = 0. Thus a solution of the internal problem
Eq.(C8) at zero energy in free space is given by

ψint(R,Ω) = R(5−3N)/2+sRφ(~Ω). (C17)

Multiplying this expression by ClY m
l (~C/C), one recovers

the ψ0
ν ’s of Section III, with

ν =
5 − 3N

2
+ sR + l. (C18)
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