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1 Introduction

In many applications, for instance the simulation of the behaviour of ferromagnetic materials, the
demagnetization field, approximation of the Maxwell contribution, has to be computed (see [1, 4]).
One of the applications aimed by this paper is the simulation of ferromagnetic periodic layers. This
type of layers could be, for example, structured poly-cristals or textured thin layers of dispersed
ferromagnetic dots (see for instance [2]). In these two cases, in order to compute the evolution of
a periodic magnetization, it becomes necessary to carefully take into account the demagnetization
contribution. Indeed, the extension of non-periodic computations to periodic computations is not
straightforward in the case of demagnetization field. In the remainder of the paper, we will denote
Hd(m) the demagnetization contribution and m the magnetization. The magnetization m is a
vector field from R

3 to R
3 which support is reduced to Ω, the open bounded set of R

3 occupied by
the ferromagnetic material. Then, the demagnetization field is deduced from the magnetization
field by the formula {

rot(Hd(m)) = 0,
div(Hd(m)) = div(m̃),

(1)

in the sense of distribution on R
3 where m̃ padding to zero of m on the whole space. The application

so built Hd(m) is non local, it is to say that in order to compute the contribution Hd in one point
of the space, you need to know the magnetization in the whole space. This particularity can be
easily seen using the the following representation formula

Hd(m) =

∫

R3

grad div (G(x − y)m(y)) dy,

where G is the Green kernel of the Laplacian in the whole space. In a previous work (see [5]) the
fast computation of the demagnetization field has been treated for bounded domains of R

3. The
aim of this paper is to extend the result to periodic domain preserving the effectiveness of the
method on bounded domains.

The main difficulty is that, in order to compute the demagnetization field on a periodic domain,
one must know the magnetization on the whole infinite domain. To mesh this domain is obviously
impossible, we have to build a good approximation of the far magnetization contributions necessary
to compute the demagnetization at a given point of the domain.

The idea developped in this paper is to use a multi-grid mesh: the finer mesh will sharply
discretize one period of the magnetic domain, afterward, we build a succession of grids whose
superposition give a diadic mesh of the space. Then, two key points are used: the first is the fact
that the magnetization is periodic and then it is possible to approximate it on each grid, the second
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is that the demagnetization field operator depends only on the shape of the domain and not on its
size. This last property permits to preserve the same computation method in order to obtain the
demagnetization field on each level of the multi-grid mesh.

In a first part, we will propose a mathematical framework to justify the computation of the
demagnetization field on a periodic domain and to give a sense to the micromagnetism equations
in this context. In a second part, we will expose the proposed multi-grid method. The last part
will be dedicated to the numerical experimentations.

2 Problematic and equations

2.1 A mathematical framework for micromagnetism in a periodic do-

main

In a bounded domain, the dimensionless micromagnetism equations can be written as follows :
find m in H1(Ω×]0, T [, R3) such that, for every m0 in H1(Ω, S2) (S2 is the unit sphere of R

3) one
has 




∂m
∂t

= −m ∧ H(m) − αm ∧ (m ∧ H(m)),∀(x, t) ∈ Ω×]0, T [,
m(x, 0) = m0(x),∀x ∈ Ω,
H(m) = Ha(m) + A△m + Hd(m),

where α is a strictly positive real number, Ha designate the anisotropy contribution (non differential
and purely local in our case), A is the exchange constant and we set, in the sense of distributions
on R

3 valued in R
3 {

rot(Hd(m)) = 0,
div(Hd(m)) = −div(m̃).

(2)

We can define an energy for this system using the following formula: for every m in H1(Ω×]0, T [, R3),
one has:

e(m) = −
∫

Ω

H(m).m dx.

In the case of a periodic domain, the previous definitions can not be used directly. We must
adapt the framwork as follows: given ΩΠ, a periodic domain of period Ω̃ and Ω a bounded domain
included in Ω̃. We then set, for all separable Banach space W

H1
Π(ΩΠ,W ) = {u ∈ Π(Ω̃,W ) | u|Ω ∈ H1(Ω,W )},

L2
Π(ΩΠ,W ) = {u ∈ Π(Ω̃,W ) | u|Ω ∈ L2(Ω,W )},

where Π(Ω̃,W ) designates the periodic functions, of period Ω̃ and valued in W . It is obvious that
this space is not included neither in L2(R3) nor in H1(R3), then, most of the definitions given on
a bounded domain become invalid. The Landau Lifshitz system is re-written as follows: find m in
H1

Π(ΩΠ×]0, T [, R3) such that supp(m|eΩ) = Ω and, for every m0 in H1
Π(ΩΠ, S2) (S2 is not a convex

subset of R
3, then H1

Π(Ω, S2) is not a space but a manifold) one has





∂m
∂t

= −m ∧ HΠ(m) − αm ∧ (m ∧ HΠ(m)),∀(x, t) ∈ ΩΠ×]0, T [,
m(x, 0) = m0(x),∀x ∈ ΩΠ,
HΠ(m) = Ha,Π(m) + A△Πm + Hd,Π(m),

Ha,Π(m) is the field of Π(Ω̃, R3) such that, for every point x in Ω one has Ha,Π|Ω(m)(x) =
Ha(m|Ω)(x) and the vector vanishes on all other points. In the same way, we define the vector

field △Π(m) of Π(Ω̃, R3) by △Π(m)|Ω = △m which vanishes elsewhere in Ω̃. The demagnetization
is then naturally given by the formula (2) applied to a periodic vector field m, but, this formula
is not valid for all types of periodic domains as explained in the next subsection. For admissible
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domains, the demagnetization field obtained via formula (2) is an element of L2
Π(ΩΠ, R3) as proved

in the next subsection.
Let suppose that the domain ΩΠ is an admissible periodic domain for the computation of the

demagnetization field, the demagnetization energy can be written as follows:

eΠ = −
∫

Ω

HΠ(m).m dx.

For the anisotropic and exchange contributions, there is no major modifcation of the bounded
case. But, as shown in the preceeding formula, the demagnetization energy contribution involves
the demagnetizing field due to one period but also the radiation of the field from all the periods
of the infinite domain. Then, in order to compute the demagnetization field on a periodic domain,
one has to compute the limit of a serie. The admissible domains will be those such that this serie
converges.

2.2 Demagnetization field: the admissible domains

The first question is: given the micromagnetism model, what are admissible periodic domains, it
is to say domains on whom one can define an energy. In this part we will then give a definition
of the energy for periodic domain and prove that admissible periodic domains have no more than
two periodic directions. The first property we will need is the decay of the magnetic field given in
the following lemma

Lemma 1. Given m in L2(R3) such that supp(m) = ω where ω is a compact set of R
3, then, the

demagnetization field radiate by m outside of ω is smooth. Furthermore, there exists C1 and C2,
strictly positive real numbers, such that for every x in (R3\ω̄)2 and λ > 1

C1

(
d(ω, x)

d(ω, λx)

)3

≤ |Hd(m)(x)|
|Hd(m)(λx)| ≤ C2

(
d(ω, x)

d(ω, λx)

)3

,

where d(ω, x) = supz∈ω|x − z|.

Proof. As proven in [5], for all m in L2(Ω), P0,h(m) converges to m when h vanishes where P0,h

is the constant piecewise projection of m and moreover, Hd(P0,h(m)) tends to Hd(m). Then, let
consider m, a constant vector field on a spheric domain of radius η, the generalization to a an
indifferent smooth domain is straightforward.
Let m a constant vector filed on the ball B(0, η) of center 0 and radius η and x a given point of
R

3 not in B(0, η), the demagnetizing field of m is given by:

Hd(m)(x) =
−1

4π

∫

B(0,η)

gradxdivx

m

|x − y|dy,

=
−1

4π

(∫

B(0,η)

1

|x − y|3 K(x − y)dy

)
m,

where K is the matrix is the application from R
3 into the space of real matrices of order 3 defined

by, for all x = (x1, x2, x3)
t ∈ R

3:

K(x) =




−1 +
3x2

1

|x|2
3x1x2

2|x|2
3x1x3

2|x|2

3x1x2

2|x|2 −1 +
3x2

2

|x|2
3x2x3

2|x|2

3x1x3

2|x|2
3x2x3

2|x|2 −1 +
3x2

3

|x|2


 .
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Then, let now compute the demagnetizing field of λx where λ is a real number strictly superior to
one. We have

|Hd(m)(λx)| = |−1

4π

(∫

B(0,η)

1

|λx − y|3 K(λx − y)dy

)
m|,

= |−λ3

4π

(∫

B(0, η
λ

)

1

|λx − λy|3 K(λx − λy)dy

)
m|,

= | −λ3

4λ3π

(∫

B(0, η
λ

)

1

|x − y|3 K(x − y)dy

)
m|,

= | −1

4λ3π

(∫

B(0,η)

1

|x − y
λ
|3 K(x − y

λ
)dy

)
m|,

≤ C

λ3
|Hd(m)(x)|.

The other part of the inequality is obtain identically using underestimations in the Riemann integral
obtained after the projection phase of the limit process.

Then, using the decay properties of the demagnetization field and a summation over concentric
spheres we prove that only bi-periodic magnetic domains are admissible:

Definition 1. A periodic domain ΩΠ is said to be admissible for the demagnetization energy if for
every m in L2

Π(ΩΠ, R3) one has

0 ≤ −
∫

Ω

HΠ,d(m).m dx < ∞.

In the remainder of the paper, we will focus the study on rectangular domains ΩΠ. These
domains are such that their period Ω̃ has the following form

Ω̃ =] − Lx, Lx[×] − Ly, Ly[×] − Lz, Lz[,

where Lx, Ly and Lz are strictly positive reals, eventually infinite. for example, a domain such
that Lx, Ly and Lz are infinite is nothing more than a non periodic domain.

Proposition 1. Rectangular periodic domains such that at least one of the three parameters Lx,
Ly or Lz is infinite are admissible domains.

Proof. As shown in Lemma 1, the demagnetizing field has a strong decreasing property. We will
use this property in order to prove the theorem. Let ΩΠ be a periodic domain of period Ω̃ and I a
set of indices who designates the periods as follows: for every i in I, Ωi is a transformation of Ω̃.
Then, we can write the periodic demagnetizing energy as follows, for every m in L2

Π(ΩΠ, R3):

ed,Π(m) = −(Hd,Π(m),m)Ω̃

= −
∑

i∈I

(Hd(χi m),m)Ω̃,

where χi is the characteristic function the domain Ωi. Then, setting for every Ω1 and Ω2, open
bounded sets of R

3

d(Ω1,Ω2) = inf
x∈Ω1

sup
y∈Ω2

|x − y|,
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we can apply the Lemma 1 and obtain the following estimation

C1

∑

i∈I

(
d(Ω̃)

d(Ω̃,Ωi)

)3

≤ ed,Π(m) ≤ C2

∑

i∈I

(
d(Ω̃)

d(Ω̃,Ωi)

)3

,

and, organizing grouping of cells Ωj whose d(Ω̃,Ωi) are close, we obtain the following estimate

∞∑

i=0

Ai

C1

i3
≤ ed,Π(m) ≤

∞∑

i=0

Ai

C2

i3
,

Ai is the number of cells such that d(Ω̃)

d(Ω̃,Ωi)
is close to i. For instance, when the domain is periodic

in one direction, Ai = K, when the domain is periodic in two dimension, Ai = Ki2 and in three
direction Ai = i3. Hence, to ensure that the energy is finite, one the number of periodic direction
has to be equal to 1 or 2.

In the remainder of the paper we will focus on admissible rectangular periodic domains, it is
to say domains which period is at least infinite in one direction of the space. For those domains,
we set

Definition 2. Given ΩΠ an admissible rectangular periodic domain whose non infinite parameters
are Lx or Lx and Ly (up to a rotation, it is always possible to be in this case), then, for every
(i, j) in Z

2, one has

Ωi = {x ∈ R
3|x − (2(i − 1)Lx)ex ∈ Ω̃} if Ω has two infinite directions,

Ωi,j = {x ∈ R
3|x − [(2(i − 1)Lx)ex + (2(j − 1)Ly)ey] ∈ Ω̃} if Ω has only one infinite direction.

2.3 Some properties of the demagnetization field on periodic rectangular

domains

On a non periodic domain, the demagnetization operator is a projector in sense of L2 norm on
divergence free space functions; it means that the kernel of this operator is the set of divergence
free functions in L2. This point is quite important and will have to be carefully treated by the
discretization.

Then, one can prove the following result

Proposition 2. For every m in L2
Π(ΩΠ, R3), one has

Hd,Π(Hd,Π(m)) = Hd,Π(m).

Moreover,
Ker(Hd,Π) = {u ∈ L2

Π(ΩΠ, R3)|div(u) = 0 in R
3}.

Proof. This property is directly induced by the system (2) as shown in [3] for bounded domains.

Then, it is possible to filter divergence free part of a field in L2
Π(ΩΠ, R3) using the demagneti-

zation field operator.
One of the properties of the demagnetization field which is used to build the algorithm in the

scale independance of the demagnetization operator

Proposition 3. For every n in L2
Π(ΩΠ, R3), for every λ strictly positve real, one set

n ◦ Λ(λ) = m,

then m is in L2
Π(Λ( 1

λ
)(ΩΠ), R3) (where Λ(λ) is the application who associates λ x to each x in R

3)
and

Hd,Π(n) ◦ Λ(λ) = Hd,Π(m).

Proof. This property is deduced form the fact that the operator Hd is a zero order operator.
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2.4 Algorithm constraints

The algorithm we build has to obey to several constraints:

• to preserve the more accurately the kernel of the demagnetization operator,

• to preserve the positivity of the demagnetization energy,

• to have a complexity comparable to the complexity of the fast algorithm on non periodic
domains.

3 A multilevel algorithm for the computation of demagne-

tization field on rectangular periodic domains

3.1 Un quick recall of the algorithm on non periodic domains

Given Ω a bounded domain. We set (ωi)i∈I a family of conne open sets of non empty interior (see
[5]):

∀(i, j) ∈ I2, i 6= j : ωi ∪ ωj = ∅,
where I is a finite set

Ω̄ =
⋂

i∈I

ω̄i.

Then, for every U = (ui)i∈I in R
3, we set m =

∑
i∈I uiχωi

. The approximation Hd,h of the
demagnetization field associted to a vector U is given by

(Hd,h(U))j =
∑

(i,j)∈I2

Ki,juj ,

with

∀(i, j) ∈ I2,∀u ∈ R
3, Ki,ju =

−1

4π

∫

ωj

∫

ωi

gradxdivx

(
u

|y − x|

)
dy dx.

For a regular cubic mesh of a rectangular domain Ω, the matrix Hd associated to the linear
operator hd,h is block-Toeplitz. This structure allows fast computations of complexity O(n log(n))
(where n is the number of elements in the set I).

3.2 Mesh of the infinite domain: the diadic mesh

Given ΩΠ an admissible periodic rectangular domain, in order to compute an approximation of the
demagnetization field of an element of L2

Π(ΩΠ, R3) we have to mesh ΩΠ. This mesh must, obviously,
contains a finite number of elements; then we use the decay property of the demagnetization field
in the computation of the interaction between two elements of the mesh.

The discrete diadic domain we build is an assembly of crowns. In the center, the fine mesh of
the domain Ω̃ is put. Then, on each new crown, the domain is meshed with elements four times
greater than the elements of the preceeding crown (see Fig. 1).

Moreover, to improve the method, we add a zone of fine cells as it is shown for example in
Figure 2 : for the cells marked by x, the corresponding fine zone added is drawing with dotted
lines. In consequence, each cell located in Ω̃ has its associated fine zone. Every non-overlapping
fine zones have the same size that the fine mesh discretizing Ω̃ and for a three dimensional domain,
the number of fine zones is equal to eight (four in the case of a bidimensional domain). These fine
zones allow a better approximation of the demagnetization field due to the fact that we compute
more precisely the closest contributions which are the most important.
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The magnetization field, thanks to the periodicity, is known on the whole space. It is the
possible to project it, in sense of the means, on the diadic mesh. Where the elements are the finer,
values will not be changed, on the coarse part, values will be averaged. It is the magnetization
field of the piece-wize magnetization that we will compute. The internal crown which meshes Ω̃,
will be designate by the index 0. Then, each following crown is indexed by an increasing index.
Each of the p levels will have an index between 0 and p − 1.

For example, we considere an admissible domain periodic in the two directions Ox and Oy.
For a magnetization field m = (0, 0, 1), we show on the Figures 3, 4, 5 and 6 the values of the z
component of m for each level of the diadic mesh. The fine zone considered in this example is that
one which is associated to the cells marked by x in Figure 2. The magnetization field on the other
fine zones is computed by the same way.

3.3 Computation of the demagnetization field on each level: taking into

account the order of the operator

The goal is to compute the demagnetizing field on the fine mesh at the center of the diadic mesh,
this computation will have to take into account the contributions from all the meshed levels. In
order to fulfil this purpose, we use that for every (Ui,j)(i,j)∈{0,..,p−1}×{1,...,n(i)} computed with the
mean values of m on the fine mesh, we have:

∀j ∈ I, (Hd,h,Π(m))j =

∫

Ωj




p∑

k=0

n(k)∑

i=1

Hd(Uk,iχωk,i
)


 dx.

Then, using the scale independance of the demagnetizing field (induced by the fact that the op-
erator is a 0 zero order operator), it is possible to shift the estimation of the demagnetizing field on
the coarse mesh to the estimate on the finer mesh. It comes from the fact that the interaction be-
tween two elements is the same than the one between this elements expanded by an arbitrary factor.

If we consider the example presented in Section 3.2 (see Figure 2) then we have to compute the
demagnetization field for the levels 0, 1 and 2 (see Figures 3, 5 and 6) and for the associated fine
zone (see Figure 4). From the point of view of computational time, for the levels 0 and 2 we have
2 computations of the demagnetization field and for the level 1 we have 8 × 2 computations in a
three dimensional domain (8 zones). Hence, for p levels (p > 1), we have (p−1)+16 computations
of the demagnetization field at each iteration. However, these computations are fully independant
(the projections of the magnetization field on each levels are also fully independant) so they can
be easily computed in parallel. The optimal number of processors needed is clearly (p − 1) + 16.

4 Numerical results

4.1 Benchmarks : the demagnetization field of constant fields

In order to validate the method, we present three benchmarks. First, we consider the constant
field m = (0, 0, 1) in a periodic domain in the directions Ox and Oy. The computational domain

(i.e. Ω̃) is a cube. In this case, we know the demagnetization field solution : Hd(m) = (0, 0,−1).
On Figure 7 we compare the periodic solution with the non-periodic solution. In the periodic case,
we see that the demagnetization field is well computed.

Figure 8 shows that the order of our method is 1 like in the non periodic case. It means that
when the space step decreases the accuracy increases as usual for finite volume schemes. To obtain
this accuracy, we have defined the number of levels p function of the number of control volumes
: for a computational domain meshed by 2px × 2py × 2pz control volumes, the number of levels is
p = min(px, py, pz).
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Then, the second benchmark consists in taking a magnetization field equal to m = (0, 1/
√

2, 1/
√

2)
on a computational domain of the size 16 × 64 × 1. The periodicity is still in the Ox and Oy di-
rections. The expected result is Hd(m) = (0, 0,−1/

√
2) and the Figure 9 shows that the result

obtained with the method is correct.
Finally, we consider again the previous configuration but we change the value of the magneti-

zation field in taking m = (1, 0, 0). So, the expected result is Hd(m) = (0, 0, 0) which is coherent
with the result presented in Figure 10.

Notice that at eight points on Figure 10, the magnitude of the demagnetization field is about
10−2 instead of 10−4 like in the other points. Inspite of that this drawback does not modify the
order of the method, a perspective is to reduce this particularity which comes from the fine zones.

4.2 Computation of equilibrium states

In the micromagnetism context, we seek for equilibrium states whose characterization is : find the
magnetization field m which minimize the energy :

E(m) =
A

2

∫

Ω

|∇m|2dx +
1

2

∫

R3

|Hd(m)|2dx.

In the following computations, the exchange constante is A = 1.3e−11 and the space step is
d = 2.5e−9. Moreover, we use a random initialization for m at the initial time step.

First, we compute the equilibium state in a cube 8 × 8 × 8 with different periodic directions :
see Figures 11, 12 and 13.

Then, we compute the equilibrium state for a 16 × 16 × 4 domain with two vertical bars. In
Figure 14 we show the results when the periodicity is in different directions.

5 Conclusion

In order to compute a good approximation of the demagnetization field on a periodic domain, we
have to apply (p− 1)+16 times the fast computation algorithm of this field on a bounded domain
restraint to one periodicity cell, where p is the number of levels. To preserve the complexity of the
bounded domain algorithm, (p− 1) + 16 processors are needed to compute all these computations
independantly. Moreover, using the same multilevel ideas, it is also possible to only apply p times
the bounded domain algorithm (i.e. the fast block-Toeplitz vector-matrix multiplication) if we
assemble a specific discrete operator from the core demagnetizing operator to take into account
the fine contributions (corresponding to the fine zones).
In practice, good results are obtained from p equal to 2.
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1.
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Figure 7: Demagnetization field in a non periodic domain (on the left) and in a periodic domain
(on the right) in the directions Ox and Oy.
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Figure 9: Demagnetization field.
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Figure 10: Demagnetization field.

Figure 11: Equilibrium state on a non periodic domain.
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Figure 12: Equilibrium state on a periodic domain in the direction Oy.

Figure 13: Equilibrium state on a periodic domain in the directions Ox and Oy.
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Figure 14: Equilibrium state : on a non periodic domain (at the top, on the left), on a periodic
domain in the direction Ox (at the top, on the right), Oy (at the bottom, on the left) or Oz (at
the bottom, on the right).
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