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ON GEOMETRIC FLATS IN THE CAT(0) REALIZATION OF COXETER
GROUPS AND TITS BUILDINGS

PIERRE-EMMANUEL CAPRACE∗ AND FRÉDÉRIC HAGLUND

Abstract. Given a complete CAT(0) space X endowed with a geometric action of a group
Γ, it is known that if Γ contains a free abelian group of rank n, then X contains a geometric
flat of dimension n. We prove a converse of this statement in the special case where X is a
convex subcomplex of the CAT(0) realization of a Coxeter group W , and Γ is a subgroup of
W . In particular a convex cocompact subgroup of a Coxeter group is Gromov-hyperbolic if
and only if it does not contain a free abelian group of rank 2. Our result also provides an
explicit control on geometric flats in the CAT(0) realization of arbitrary Tits buildings.

Introduction

Let X be a complete CAT(0) space and Γ be a group acting properly discontinuously and
cocompactly on X. It is a well known consequence of the so called flat torus theorem (see
[BH99, Corollary II.7.2]) that:

(Zn ⇒ En): if Γ contains a free abelian group of rank n, then X contains a geometric flat
of dimension n.

Recall that a (geometric) flat of dimension n, also called (geometric) n–flat, is a closed
convex subset of X which is isometric to the Euclidean n-space. One may wonder whether
a converse of this statement does hold, that is to say, whether the presence of a geometric
n–flat in X is reflected in Γ by the existence of a free abelian group of rank n. This question
goes back at least to Gromov [Gro93, §6.B3].

In the case n = 2, in view of the flat plane theorem (see [BH99, Corollary III.H.1.5]), this
question can be stated as follows:

If X is not hyperbolic, does Γ contains a copy of Z × Z?

The answer is known to be positive in the following cases:

• Γ is the fundamental group of a closed aspherical 3-manifold, see [KK04].
• X is a square complex satisfying certain technical conditions, see [Wis05].

A combinatorially convex subcomplex of the Davis complex |W |0 of a Coxeter group
W is an intersection of closed half-spaces of |W |0. The following result shows that, if X is
a such a combinatorially convex subcomplex of |W |0, and if Γ ⊂ W acts cellularly, then the
converse of the property (Zn ⇒ En) above holds for all n:

Theorem A. Let X be a combinatorially convex subcomplex of the Davis complex |W |0 of
a Coxeter group W . Let Γ be a subgroup of W which preserves X and whose induced action
on X is cocompact. If X contains a geometric n–flat, then Γ contains a free abelian group of
rank n.
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2 P.-E. CAPRACE AND F. HAGLUND

Since half-spaces are CAT(0)-convex, combinatorially convex subcomplexes are CAT(0)-
convex as well. We do not know if the theorem above is still true when X is only assumed to
be a CAT(0)-convex subset of |W |0. We note that in general the intersection X̄ of the closed
half-spaces of |W |0 containing X is not cocompact under Γ. Yet Γ is still cofinite on the set
of walls separating X (or X̄), and perhaps this is enough.

Corollary B. Let X be a CAT(0) convex subcomplex of the Davis complex |W |0 of a Coxeter
group W . Let Γ be a subgroup of W which preserves X and whose induced action on X is
cocompact. If X contains a geometric n–flat, then Γ contains a free abelian group of rank n.

Proof. The Corollary follows by Theorem A because, since X is a subcomplex, the intersection
of the closed half-spaces of |W |0 containing X is a combinatorially convex Γ-cocompact
subcomplex X̄.

We sketch the argument. The key-point is that X0 is convex for the combinatorial distance.
First, any two vertices x, y of X may be joined by a combinatorial geodesic (x0 = x, . . . , xn =
y) all of whose vertices belong to the smallest subcomplex of |W |0 containing the CAT(0)
geodesic between x ad y (see [HP98, Lemme 4.9]). Since X is a CAT(0) convex subcomplex,
it follows that x0, . . . , xn belong to X0. Now any combinatorial geodesic between x, y may be
joined to (x0, . . . , xn) by a sequence of geodesics, two consecutive of which differ by replacing
half the boundary of some polygon of |W |0 by the other half. Since X is a CAT(0) convex
subcomplex it contains a polygonal face of |W |0 as soon as it contains two consecutive edges
of the boundary. It follows that X0 contains the vertices of any combinatorial geodesic joining
two of its points.

For any edge e with endpoints x ∈ X, y 6∈ X we claim that the geometric wall m separating
x from y does not separate x from any other vertex z of X. Indeed any vertex separated from x
by m can be joined to x by a combinatorial geodesic through y. So by combinatorial convexity
X would contain y, contradiction. This shows that X is contained in the intersection X̃ of
closed half-spaces whose boundary wall separates an edge with one endpoint in X and the
other one outside.

We claim that X̃ contains no vertex outside X. Indeed let v 6∈ X0 denote some vertex.
Choose a vertex w ∈ X0 such that the combinatorial distance d(v, w) is minimal. Consider
any geodesic from w to v. Then the first edge e of this geodesic ends at a vertex y 6∈ X, and
the wall separating w from y does not separate y from v. Thus v 6∈ X̃. Since X0 ⊂ X̄ ⊂ X̃
and X̃ is the union of chambers with center in X0, it follows that X̄ = X̃. Since Γ is cofinite
on X0 by assumption it follows that Γ is cocompact on X̄, and we may apply Theorem A. �

The algebraic flat rank of a group Γ, denoted alg-rk(Γ), is the maximal Z-rank of
abelian subgroups of Γ. The geometric flat rank of a CAT(0) space X, denoted rk(X), is
the maximal dimension of isometrically embedded flats in X. As an immediate consequence
of Theorem A combined with the flat torus theorem, one obtains:

Corollary C. Let X and Γ be as in Theorem A. Then rk(X) = alg-rk(Γ). In particular,
one has rk(|W |0) = alg-rk(W ).

It is an important result of Daan Krammer [Kra94, Theorem 6.8.3] that the algebraic flat
rank of W can be easily computed in the Coxeter diagram of (W, S).

The equality between the algebraic flat rank of W and the geometric flat rank of |W |0 was
conjectured in [BRW05]. Actually, it is shown in loc. cit. that this equality allows to compute
very efficiently the so called (topological) flat rank of certain automorphism groups of locally
finite buildings whose Weyl group is W . The groups in question carry a canonical structure of
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locally compact totally discontinuous topological groups; furthermore they are topologically
simple [Rém04]. The topological flat rank mentioned above is a natural invariant of the
structure of topological group (see [BRW05] for more details).

The class of pairs (X, Γ) satisfying the assumptions of Theorem A is larger than one might
expect. Assume for example that Γ acts geometrically by cellular isometries on a CAT(0)
cubical complex X, and that Γ acts in a ‘special’ way on hyperplanes:

(1) for any hyperplane H of X and any element g ∈ Γ, either gH = H , or H and gH
have disjoint neighbourhoods

(2) for any two distinct, intersecting hyperplanes H, H ′ of X and any element g ∈ Γ,
either gH ′ intersects H , or H and gH ′ have disjoint neighbourhoods

Such ‘special’ actions are studied in [HW06], where it is proved that in the above situation
there exists a right-angled Coxeter group W , an embedding Γ → W and an equivariant cellu-
lar isometric embedding X → |W |0. Thus Corollary B applies to groups acting geometrically
and specially on CAT(0) cubical complexes. When the action is free we obtain:

Corollary D. The fundamental group of a compact non positively curved special cube complex
is hyperbolic iff it does not contain Z × Z.

The fundamental groups of the “clean” (V H-)square complexes studied in [Wis05] are
examples of virtually special groups (by Theorem 5.7 of [HW06]). Thus our Theorem A
provides in this case a new proof of the equivalence between hyperbolicity and absence of
Z × Z. Note that Wise’s result applies to malnormal or cyclonormal V H-complexes, which
are a priori more general than the virtually clean ones. But in [Wis05] Wise asks explicitly
wether malnormal or cyclonormal implies virtually clean; and he proved already this converse
implication for many classes of V H-complexes.

Not surprisingly, Theorem A also provides a control on geometric flats isometrically em-
bedded in the CAT(0) realization of arbitrary Tits buildings. More precisely, we have:

Theorem E. Let (W, S) be a Coxeter system and B be a building of type (W, S). Every
geometric flat of the CAT(0) realization |B|0 of B is contained in an apartment. In particular,
one has rk(|B|0) = alg-rk(W ).

Note that in [BRW05] the authors had established the equality rk(|B|0) = rk(|W |0).
Finally, we recall from [Kle99, Theorem B] that if X is a locally compact complete CAT(0)

space on which Isom(X) acts cocompactly, then the geometric flat rank of X coincides with
five other quantities, among which the following ones:

• The maximal dimension of a quasi–flat of X.
• sup{k | Hk−1(∂T X) 6= {0}}, where ∂T X denotes the Tits boundary of X.
• The geometric dimension of any asymptotic cone of X.

This applies of course to the Davis complex |W |0, but also to many locally finite buildings
of arbitrary type, including all locally finite Kac-Moody buildings. In particular, Corollary C
and Theorem E above, combined with Daan Krammer’s computation of alg-rk(W ), provide
a very efficient way to compute all these quantities for these examples.

In Section 1, we first recall basic facts on the Davis–Moussong geometric realization of
Coxeter groups. In particular we introduce the walls, the half-spaces and the chambers.

In Section 2 we define combinatorial convex subsets of the Davis–Moussong geometric
realization, and we establish an important Lemma.
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In Section 3 we present the main technical tools of this article. If a family of walls behaves
as if it was contained in a Euclidean triangle subgroup, then in fact it generates a Euclidean
triangle subgroup (see Lemmas 3.1 and 3.4 for precise statements).

In Section 4 we describe completely the combinatorial structure of the set of walls sep-
arating a given flat. The reflections along these walls generate a subgroup that we also
describe.

In Section 5 we explain how to get a rank n free abelian group out of a rank n flat.
And in Section 6 we explain how to deduce the statement on buildings from the statement

on Coxeter complexes.

1. Preliminaries

Let (W, S) be a Coxeter system with S finite. The Davis complex associated with (W, S),
denoted |W |0, is a CAT(0) cellular complex equipped with a faithful, properly discontinuous,
cocompact action of W (see [Dav98]).

Recall that a reflection of W is, by definition, any conjugate of an element of S. The fixed
point set of a reflection in |W |0 is called a wall. Note that a wall is a closed convex subset
of |W |0. A fundamental property is that every wall separates |W |0 into two open convex
subsets, whose respective closures are called half-spaces. If a is a half-space, its boundary
is a wall which is denoted by ∂a. If x ∈ |W |0 is a point which is not contained in any wall,
then the intersection of all half-spaces containing x is compact; this compact set is called a
chamber of |W |0. The W -action on the chambers of |W |0 is free and transitive.

Let x, y denote two non-empty convex subsets of |W |0. We say that a wall m separates x
from y whenever x is contained in one of the half-spaces delimited by m, y is contained in
the other half-space, and neither x nor y are contained in m.

We will use the following notation. Given a wall m of |W |0, the unique reflection fixing m
pointwise is denoted by rm. For any set M of walls, we set W (M) := 〈rm| m ∈ M〉. Recall
that W (M) is itself a Coxeter system on a certain set of reflections (rν)ν∈N , where each wall
ν ∈ N is of the form ν = wµ for some w ∈ W (M) and some µ ∈ M (see [Deo89]). Such a
subgroup will be called a reflection subgroup.

Finally, given two points (resp. two convex subsets) x, y of |W |0, we denote by M (x, y) the
set of all walls which separate x from y. Two chambers c, c are said to be adjacent whenever
M (c, c′) is empty, or consists in a single wall m (in which case rm(c) = c′). A gallery (of
length n) is a sequence (c0, c1, . . . , cn) of chambers such that ci and ci+1 are adjacent chambers
for i = 0, . . . , n − 1. The gallery defines a unique sequence of walls it crosses (this sequence
might be empty if the gallery is a constant sequence).

We get a (discrete) distance on the set of chambers by considering the infimum of the
length of all galleries from the first chamber to the second. Using the simple transitive action
of W on the chambers, this gallery distance is identified with the word metric on (W, S).

It is well known that for two chambers c, c′ the gallery distance dgal(c, c
′) is the cardinality

of M (c, c′), and that a gallery from c to c′ has length dgal(c, c
′) if and only if the sequence of

walls it crosses has no repetition. Furthermore for any gallery from c to c′ the set of walls
separating c from c′ is the set of walls appearing an odd number of times in the sequence of
walls that the gallery crosses.

The following basic lemmas are well known; their proofs are easy exercises.

Lemma 1.1. Let x, y be two points of |W |0. There are two chambers cx, cy such that x ∈ cx,
y ∈ cy and M (x, y) = M (cx, cy). �
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Lemma 1.2. Let x, y ∈ |W |0. There exists γ ∈ W (M (x, y)) such that x and γ.y are
contained in a common chamber. �

2. Combinatorial convexity

A subset F ⊂ |W |0 is called combinatorially convex if either F = |W |0 or F coincides
with the intersection of all half-spaces containing it. The combinatorial convex closure of
a subset F ⊂ |W |0 will be denoted by Conv(F ). Hence Conv(F ) is either the whole |W |0 (if
F is not contained in any half-space) or the intersection of all half-spaces of |W |0 containing
F . Since half-spaces are subcomplexes of the first barycentric subdivision of |W |0 we note
that combinatorially convex subsets are subcomplexes as well.

Since half-spaces are CAT(0) convex, combinatorially convex subcomplexes are CAT(0)
convex, but we will rather use the following elementary combinatorial convexity property:
all chambers of a geodesic gallery from a chamber c to a chamber c′ belong to Conv(c ∪ c′).

Lemma 2.1. Let x, y ∈ |W |0 and assume that the set M (x, y) possesses a subset M such
that for all m ∈ M and µ ∈ M = M (x, y)\M , the reflections rm and rµ commute. Then
the combinatorial convex closure of {x, y} contains a point z such that M (y, z) = M and
M (x, z) = M .

Proof. Let cx, cy be chambers such that x ∈ cx, y ∈ cy and M (x, y) = M (cx, cy) (see
Lemma 1.1). We prove that there exists a chamber cz such that M (cy, cz) = M and
M (cx, cz) = M (note that such a chamber necessarily lies in the combinatorial convex closure
of cx ∪ cy).

This implies the desired result. Indeed since M (x, y) = M (cx, cy) we have Conv({x, y}) =
Conv(cx ∪ cy). Furthermore since M (y, cy) = ∅ we have M (cz, y) ⊂ M (cz, cy). Conversely
if m ∈ M (cz, cy) then m does not separate cz from cx – otherwise cz would not be inside
Conv(cx ∪ cy). Thus m separates cy from cx, and so m ∈ M (x, y). In particular y 6∈ m.
Thus in fact m ∈ M (cz, y). Consequently M (cz, y) = M (cz, cy) (= M), and similarly
M (cz, x) = M (cz, cx) (= M). We then define z to be any point in the interior of the
chamber cz.

It remains to prove the statement for chambers. To this end, we argue by induction on
the cardinality n of M (cx, cy). We may assume n > 0.

Consider some geodesic gallery (c0 = cx, . . . , cn−1, cn = cy). Let µ denote the unique
wall separating cn−1 from cn. By induction there is a chamber d such that M (cx, d) =
M \ {µ}, M (d, cn−1) = M \ {µ}. We then have M (d, cy) = M (d, cn−1) ∪ {µ}.

If µ ∈ M , then the chamber d satisfies M (cx, d) = M and M (d, cy) = M , so we are done.

Assume now that µ ∈ M , so M = M (d, cn−1). Consider a gallery from d to cn−1 of
minimal length. If this gallery has length 0 then M = ∅ and we take cz = cy. Otherwise let
m ∈ M denote the last wall that the gallery crosses. Let d′ denote the chamber rmrµ(cn−1).
Then d′ is adjacent to cn−2, and d′ is also adjacent to cn because rmrµ = rµrm. It follows
that there exists a gallery of minimal length from cx to cy whose last crossed wall is m. So
in fact we are back to the first case, and thus we are done. �

Note that the corresponding statement (for vertices) is true in an arbitrary CAT(0) cubical
complex X. Indeed for any two vertices x, y of X such that the set M (x, y) of hyperplanes
of X separating x from y may be written M (x, y) = M ⊔M so that every hyperplane of M
is perpendicular to every hyperplane of M , there exists a vertex z such that M (z, y) = M
and M (z, x) = M . Clearly z is on some combinatorial geodesic from x to y, thus z is in the
convex hull of {x, y}.
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3. The Euclidean triangle lemmas

In what follows, a Euclidean triangle subgroup of the Coxeter group W is a reflection
subgroup which is isomorphic to one of the three possible irreducible Coxeter groups contain-
ing Z × Z as a finite index subgroup. We say that a set P of walls is Euclidean whenever
there exists a wall m such that P ∪ {m} generates a Euclidean triangle subgroup of W . We
will be mainly interested in the case when P is a set of pairwise disjoint walls.

The following lemma relates the combinatorial configuration of a certain set of walls M of
|W |0 with the algebraic structure of W (M). This provides the key ingredient which allows
to understand the walls of a geometric flat of |W |0, see Proposition 4.9 below.

Lemma 3.1. There exists a constant L, depending only on the Coxeter system (W, S), such
that the following property holds. Let a, b, h0, h1, . . . , hn be a collection of half-spaces of |W |0
such that:

(1) ∅ 6= a ∩ b ( h0 ( h1 ( · · · ( hn,
(2) ∅ 6= ∂a ∩ ∂b ⊂ ∂h0,
(3) ∂a and ∂b both meet ∂hi for each i = 1, . . . , n.

If n ≥ L, then the group generated by the reflections through the walls ∂a, ∂b, ∂h0, ∂h1, . . . , ∂hn

is a Euclidean triangle subgroup.

Proof. See [Cap06, Theorem A]. �

A set P of walls of |W |0 is called a chain of walls if there exists a set A of half-spaces
of |W |0 such that A is totally ordered by inclusion and P = {∂a, a ∈ A} (for short we write
P = ∂A). There are three kinds of chains of walls. We say that P is a segment of walls
if it is a finite chain of walls. We say that P is a line of walls if P = ∂A, with A a set of
half-spaces such that the ordered set (A,⊂) is isomorphic to (Z,≤). And we say that P is
a ray of walls if P = ∂A, with A a set of half-spaces such that the ordered set (A,⊂) is
isomorphic to (N,≤).

Lemma 3.2. Let P denote a nonempty set of walls which are all disjoint from a given wall
µ. Assume that P ∪ {µ} is Euclidean. Then P ∪ {µ} is a chain and W (P ∪ {µ}) is infinite
dihedral.

Proof. Let µ′ denote some wall such that W (P ∪ {µ, µ′}) is a Euclidean triangle subgroup.
Represent W (P ∪{µ, µ′}) as a group of isometries of the Euclidean plane (in such a way that
the abstract reflections act as geometric reflections).

Let m, m′ denote two walls of P ∪ {µ}. Note that m ∩ m′ = ∅ if and only if the order
of rmrm′ is infinite. In the geometric representation we have m ∩ m′ = ∅ if and only if
the Euclidean lines L(m), L(m′) fixed pointwise by m and m′ are parallel. Since we assume
m ∩ µ = ∅ or m = µ, we deduce that L(m) is parallel to L(µ). Similarly L(m′) is parallel to
L(µ). Thus L(m) and L(m′) are parallel, which implies that m = m′ or m ∩ m′ = ∅.

Thus P ∪ {µ} is a set of pairwise disjoint walls (of cardinality ≥ 2). By looking at the
geometric representation we deduce that W (P ∪ {µ}) is infinite dihedral. Note that the set
of walls associated with all the reflections of any infinite dihedral reflection subgroup is a line
of walls (this can be seen by considering a generating set consisting of two reflections; the
associated walls cut |W |0 into three pieces, one of which is a fundamental domain for the
reflection subgroup that we consider). It follows that P ∪ {µ} is a chain. �

Let T denote any subset of the generating set S. Then any conjugate of the subgroup
W (T ) is called a parabolic subgroup. The parabolic closure of any subgroup Γ ⊂ W is
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the intersection of all parabolic subgroups of W containing Γ; we denote it by Γ̃. With this
terminology, we have:

Lemma 3.3. Let P be a set of pairwise disjoint walls of |W |0. Assume that there exists a
wall m such that W (P ∪ {m}) is a Euclidean triangle subgroup. Then the parabolic closure

W̃ (P ) satisfies the following conditions:

(1) W̃ (P ) is isomorphic to an irreducible affine Coxeter group.
(2) For all walls µ, µ′, µ′′, if µ separates µ′ from µ′′ and if rµ′ and rµ′′ both belong to

W̃ (P ), then rµ also belongs to W̃ (P ).

(3) For any line of walls P ′ and any wall µ, if W (P ′) ≤ W̃ (P ) and if W (P ′ ∪ {µ}) is a

Euclidean triangle subgroup, then rµ belongs to W̃ (P ).

Proof. Point (1) follows from a theorem of D. Krammer which appears in [CM05, Theo-
rem 1.2] (see also Theorem 3.3 in loc. cit.); (2) and (3) follow from (1) using convexity
arguments, see [Cap06, Lemma 8] for details. �

We may now deduce an other useful result of the same kind as Lemma 3.1:

Corollary 3.4. Let P be a set of pairwise disjoint walls of |W |0 and let m be a wall such
that W (P ∪ {m}) is a Euclidean triangle subgroup. Then W possesses a Euclidean triangle

subgroup, denoted by W (P ∪ {m}), containing W (P ∪{m}) and such that rµ ∈ W (P ∪ {m})
for each wall µ satisfying either of the following conditions:

(1) There exist µ′, µ′′ ∈ P such that µ separates µ′ from µ′′.
(2) µ is disjoint from m and moreover W (P ∪ {µ}) is a Euclidean triangle subgroup.

Proof. Let W̃ (P ) ≤ W be the irreducible affine Coxeter group provided by Lemma 3.3.

By Lemma 3.3(3) we have rm ∈ W̃ (P ). Let P ′ be the set consisting of all those walls p′

such that rp′ ∈ W̃ (P ) and that there exists p ∈ P ∪ {m} which does not meet p′. Define

W (P ∪ {m}) := W (P ′∪P ∪{m}). The group W (P ∪ {m}) is a Euclidean triangle subgroup,
because it is a subgroup of an affine Coxeter group generated by reflections corresponding
to two directions of hyperplanes. Given a wall µ satisfying (1) or (2), we obtain successively

rµ ∈ W̃ (P ) by Lemma 3.3 and then µ ∈ P ′ by the definition of P ′. �

4. The walls of a geometric flat

Let F be a geometric flat which is isometrically embedded in the Davis complex |W |0 of
W . Let M (F ) denote the set of all walls which separate points of F :

M (F ) :=
⋃

x,y∈F

M (x, y).

Lemma 4.1. For all µ ∈ M (F ), the set µ ∩ F is a Euclidean hyperplane of F .

Proof. Let x, y be points of F which are separated by µ. We know that µ ∩ F is a closed
convex subset of F which separates F into two open convex subsets. Thus the result will
follow if we prove that the geodesic segment [x, y] joining x to y meets µ in a single point.
This is a local property, which can easily be checked in a single (Euclidean) cell of |W |0 (see
[NV02, Lemma 3.4] for details). �
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Lemma 4.2. Let µ be a wall which meets F . Assume that F contains a Euclidean half-space
F+ such that F+ ∩ µ 6= ∅ and F+ is contained in a ε–neighborhood of µ for some ε > 0.
Then F ⊂ µ.

Proof. Let d be the distance function of the Davis complex |W |0. Since µ is a closed convex
subset, the function dµ : |W |0 → R+ : x 7→ inf{d(x, y)| y ∈ µ} is convex (see [BH99, §II.2]).
By assumption, the restriction dµ|F+ of dµ to F+ is bounded. Therefore dµ|F+ must be
constant, as it is the case for any bounded convex function on an unbounded convex domain.
Since µ meets F+ by hypothesis, we have dµ|F+ = 0, that is to say, F+ ⊂ µ. By Lemma 4.1,
this implies F ⊂ µ. �

Two elements µ, µ′ of M (F ) will be called F–parallel if their respective traces on F are
parallel in the Euclidean sense. In symbols, this writes:

µ‖F µ′ ⇔ µ ∩ F = µ′ ∩ F or µ ∩ F ∩ µ′ = ∅.

The relation of F–parallelism is an equivalence relation on M (F ).
Besides the relation of F–parallelism, there is an other relation of global parallelism on

the walls of F defined by

µ‖µ′ ⇔ µ = µ′ or µ ∩ µ′ = ∅.

Clearly µ‖µ′ ⇒ µ‖F µ′. Given µ ∈ M (F ), we set PF (µ) := {m ∈ M (F ) | m‖µ}. Thus
PF (µ) is contained in the F–parallel class of µ. Note that, in contrast with the F–parallelism,
the relation of global parallelism is not transitive in general: two distinct walls of PF (µ) may
have non trivial intersection.

Any large set of walls contains two non-intersecting ones (see [NR03, Lemma 3]). Con-
sequently, the set of F–parallel classes is finite. Since chambers are compact and F is un-
bounded, it follows that some F–parallel class must be infinite. Actually, all of them are, as
follows from the following:

Lemma 4.3. Given any µ ∈ M (F ), there exist two rays of walls M+(µ), M−(µ) ⊂ M (F )
such that µ separates any element of M+(µ) from any element of M−(µ). In particular, µ
does not meet any element of M+(µ) ∪ M−(µ), and PF (µ) contains a line of walls (passing
through µ).

Proof. Consider a line of F which meets orthogonally the F -hyperplane µ ∩ F . Using
Lemma 4.2 we see that when a point p goes at infinity on the line, its distance to µ must
tend to infinity. Now by the so called parallel wall theorem (see [BH93, Theorem 2.8]) any
point at large distance from a given wall in |W |0 is separated from that wall by some other
wall of |W |0. The Lemma follows. �

Remarks 4.4. For µ ∈ M (F ), any subset P ⊂ PF (µ) of pairwise disjoint walls is a chain of
walls. Indeed for three distinct walls p1, p2, p3 ∈ P we have pi‖F µ, thus p1, p2, p3 are mutually
F–parallel. The Euclidean hyperplanes pi ∩ F are pairwise disjoint, so we may assume that
p2∩F separates p1∩F from p3∩F . It follows that p2 separates p1 from p3. Hence {p1, p2, p3}
is a segment of walls. Since any 3–subset of P is a chain, it follows that P itself is a chain.

We will see in Proposition 4.7 below that the restriction of the relation of global parallelism
to a certain subset MEucl(F ) of M (F ) is an equivalence.

By definition, the subset MEucl(F ) ⊂ M (F ) consists of all those walls µ ∈ M (F ) which
satisfy the following property:

There exists a wall µ′ ∈ M (F ) such that W (PF (µ)∪{µ′}) is a Euclidean triangle subgroup.

Applying Lemmas 3.2 and 4.3, we get the following:
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Lemma 4.5. Assume µ ∈ MEucl(F ), and more precisely that W (PF (µ)∪{µ′}) is a Euclidean
triangle subgroup for some µ′ ∈ M (F ). Then:

(i) PF (µ) is a line of walls.
(ii) For all m ∈ PF (µ), one has PF (µ) ⊂ PF (m). In particular PF (µ) = PF (m) provided

m ∈ MEucl(F ).
(iii) W (PF (µ)) is an infinite dihedral subgroup of W , and is a maximal one.
(iv) rµ′ does not centralize W (PF (µ)). �

The following lemma outlines the main combinatorial properties of the set MEucl(F ).

Lemma 4.6. We have the following:

(i) Let P ⊂ M (F ) be a line of walls. If there exists m ∈ M (F ) such that the group
W (P ∪ {m}) is a Euclidean triangle subgroup, then P ⊂ MEucl(F ).

(ii) Let m ∈ M (F ). If m 6∈ MEucl(F ), then m meets every element of MEucl(F ).
(iii) Let m, m′ ∈ M (F ). If the reflections rm and rm′ do not commute and if m and m′

are not F–parallel, then m ∈ MEucl(F ).
(iv) Let m, m′ ∈ M (F ). If the reflections rm and rm′ do not commute and if m′ ∈

MEucl(F ), then m ∈ MEucl(F ).

Before proving the lemma, it is convenient to introduce the following additional terminol-
ogy. A set P of walls of |W |0 is said to be convex whenever the following holds: for each
wall m of |W |0 separating two walls of P , we have m ∈ P . For example, for all x, y ∈ |W |0
the set M (x, y) is convex; moreover, the set M (F ) is convex as well.

Proof of Lemma 4.6(i). Let µ ∈ P . Since P ⊂ M (F ) is a line of walls we have P ⊂ PF (µ).
There are finitely many walls separating two disjoint walls of |W |0. The line of walls P may
be written as a union of segments of walls {µn, µn+1} (n ∈ Z) so that no m ∈ P separates
µn from µn+1. Choose then a segment of walls Pn ⊂ PF (µ) such that Pn ∩ P = {µn, µn+1}
and any wall m ∈ Pn \ {µn, µn+1} separates µn from µn+1 and moreover Pn is maximal with
respect to these properties. Set P̄ = ∪kPk. Then P ⊂ P̄ ⊂ PF (µ), P̄ is a line and for every
wall m′ of PF (µ) \ P̄ the set P̄ ∪ {m′} is not a line anymore.

By construction for every p ∈ P̄ there exist p′, p′′ ∈ P such that p separates p′ from p′′.
Therefore, since W (P ∪ {m}) is a Euclidean triangle subgroup, we have W (P̄ ∪ {m}) ⊂

W (P ∪ {m}) by Corollary 3.4. In particular, W (P̄ ∪ {m}) is a Euclidean triangle subgroup.
Hence we are done if we show that P̄ = PF (µ). This is what we do now.

Let m′ denote a wall separating two walls p′, p′′ of P̄ . Then m′ ∈ M (F ) and by Corollary 3.4
the subset P̄∪{m′} is still Euclidean. By Lemma 3.2 P̄∪{m′} is a line, and by the maximality
of P̄ we have m′ ∈ P̄ . Thus P̄ is a convex set of walls.

Assume by contradiction that there exists m′ ∈ PF (µ)\P̄ . By the maximality of P̄ , the
set P̄ ∪ {m′} is not a line anymore. By Remark 4.4 this implies that m′ meets at least one
element of P̄ . Let P̄ ′ denotes the (nonempty) subset of P̄ consisting of all those walls which
meet m′. Note that by the definition of P̄ ′, for all p ∈ P̄ , if there exist p′, p′′ ∈ P̄ ′ such that
p separates p′ from p′′, then p ∈ P̄ ′. Since P̄ is convex, this shows in particular that P̄ ′ is
convex.

If P̄ ′ is finite, it is a segment of the line P̄ and there exist p′, p′′ ∈ P̄ such that m′ separates
p′ from p′′. Since P̄ is convex, this implies that m′ ∈ P̄ , a contradiction.

Hence P̄ ′ is infinite. Since µ 6∈ P̄ ′ and P̄ ′ is convex, we see that P̄ ′ is a ray of walls
(contained in P̄ , and not containing µ).

By Lemma 3.2 the group W (P̄ ) is infinite dihedral. Since P̄ is a line of walls, the wall
π of any reflection rπ of W (P̄ ) separates two walls p′, p′′ of P̄ . By convexity we then have
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π ∈ P̄ : the reflections of W (P̄ ) are precisely the reflections along walls of P̄ . We note two
consequences of that. Firstly P̄ is invariant under W (P̄ ). Secondly we have W (P̄ ) = W (P̄0)
for any convex subset P̄0 ⊂ P̄ of cardinality at least 2. In particular we have W (P̄ ) = W (P̄ ′).

The reflection rm′ does not centralize W (P̄ ′), otherwise it would centralize W (P̄ ) and,
hence, m′ would meet µ. Consequently rm′ does not centralize W (P̄ ′

0) for all convex subset
P̄ ′

0 ⊂ P̄ ′ of cardinality at least 2. Hence there are infinitely many walls p̄′ in the ray P̄ ′ such
that the reflections rm′ and rp do not commute. Let p̄′ ∈ P̄ ′ denote some wall such that
the reflections rm′ and rp̄′ do not commute, and that the collection of all walls of P̄ ′ which
separate p̄′ from µ is of cardinality greater than the constant L(≥ 1) of Lemma 3.1.

Let m′′ := rp̄′(m
′). Let {p̄1, . . . , p̄k} denote the segment of walls of P̄ ′ which separate µ from

p̄′ (we have k ≥ L). Then the walls m̄i = rp̄′(p̄i) belong to the ray P̄ ′ by convexity (remember
that rp̄′(µ) ∈ P̄ ). Hence each of them meets m′. By construction each of them also meets
m′′. By Lemma 3.1 we deduce that W (m′, m′′, m̄1, . . . , m̄k, p̄

′) = W (m′, m̄1, . . . , m̄k, p̄
′) is a

Euclidean triangle subgroup. Since {m̄1, . . . , m̄k, p̄
′} is a convex subsegment of P̄ containing

at least two walls we see that W (P̄ ∪ {m′}) is a Euclidean triangle subgroup. Since µ ∈ P̄
and m′ ∩ µ = ∅, this contradicts Lemma 3.2, thereby completing the proof of the desired
assertion. �

Proof of Lemma 4.6(ii). Let m ∈ M (F ). Assume that there exists µ ∈ MEucl(F ) which
does not meet m. In other words m ∈ PF (µ). By Lemma 4.6(i), µ ∈ MEucl(F ) implies
PF (µ) ⊂ MEucl(F ). Thus m ∈ MEucl(F ).

�

Proof of Lemma 4.6(iii). Let M be the F–parallel class of m and let m′′ := rm(m′). Since m
and m′ are not F–parallel, there are points x, y on m ∩ F which are separated by m′. Thus
m′′ separates x from y as well. It follows that m′′ ∈ M (F ).

We now show that m′′ is not F–parallel to m. To this end, first note that m′′ contains
m ∩ m′ ∩ F which is nonempty. Hence, if m′′ were F -parallel to m, then we would have
m∩F = m′′∩F . This yields successively m∩F = rm(m′)∩F and then m∩rm(F ) = m′∩rm(F ).
Since m∩F is pointwise fixed by rm, we have m∩F ⊂ m∩rm(F ), whence finally m∩F ⊂ m′,
which contradicts the fact that m and m′ are not F -parallel. This shows that m′′ is not F–
parallel to m and it follows that m′ and m′′ both meet every element of the F–parallel class
M .

By Lemma 4.3, M contains a line P containing m. In particular P is infinite. By
Lemma 3.1, the group W (P ∪ {m′}) is a Euclidean triangle subgroup. Therefore, we de-
duce from Lemma 4.6(i) that m ∈ MEucl(F ). �

Proof of Lemma 4.6(iv). Let m ∈ M (F ) and m′ ∈ MEucl(F ) be such that the reflections rm

and rm′ do not commute. By Lemma 4.6(i), we have PF (m′) ⊂ MEucl(F ). Let P ′ := PF (m′).
Hence P ′ is a line of walls and for all µ′ ∈ P ′, we have PF (µ′) = P ′.

By Lemma 4.6(ii) we may assume that m meets every element of P ′, and in fact that every
element of PF (m) meets every element of P ′, otherwise m ∈ MEucl(F ) and we are done. By
Lemma 4.3, PF (m) contains a line of walls P which contains m.

Let C (resp. C ′) denote the set of walls of P (resp. P ′) which meet m′′ := rm(m′).
Assume that C ′ is finite. Then there exists a (convex) segment of walls (p+, p1, . . . , pn, p−)

contained in P ′ such that C ′ = {p1, . . . , pn} and m′′ is disjoint from p+ and p−. We let
x+, x− denote points lying on m ∩ p+, m ∩ p− respectively. Since m′ separates p+ from p−
and m \m′′ = m \m′ we deduce that m′′ separates x+ from x−. Thus m′′ separates p+ from
p−. It follows that m′′ ∈ M (F ), and in fact m′′ ∈ PF (p+). By hypothesis m′ ∈ MEucl(F ),
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whence PF (p+) = PF (m′). Since m′′ meets m′, this implies m′ = m′′ from which it follows
that the reflections rm and rm′ commute, a contradiction. Thus C ′ is infinite.

By Lemma 3.1, it follows that W (C ′ ∪ {m}) is a Euclidean triangle subgroup. Since P ′ is
Euclidean, we have W (P ′) = W (P ′

0) for any convex chain P ′
0 ⊂ P ′ of cardinality at least 2

(see Lemma 3.2). Since C ′ is infinite and convex, we deduce W (P ′) ⊂ W (C ′ ∪ {m}). Since
rm′′ belongs to the Euclidean triangle subgroup W (C ′ ∪ {m}) and rm′′rµ′ has finite order for
every µ′ ∈ C ′, we see that rm′′rµ′ has finite order for every µ′ ∈ P ′. Thus C ′ = P ′. Moreover
for all µ′ ∈ P ′, the reflections rµ′ does not commute with rm.

Let µ be any element of P different from m. Let a denote the half-space bounded by m
such that µ∩ a = ∅. Let h0 denote the half-space bounded by m′ such that a∩ h0 ⊂ rm(h0).
Extend h0 to a chain of half-spaces (hi)i∈Z such that hi ⊂ hi+1 for all i ∈ Z and that
{∂hi| i ∈ Z} = P ′. Since W (P ′ ∪ {m}) is a Euclidean triangle subgroup it follows that the
relation a ∩ hi ⊂ rm(hi) holds for every i ∈ Z. For each i ∈ Z, choose a point yi ∈ µ ∩ ∂hi

and a point y′
i ∈ ∂hi in the interior of a. Then yi ∈ ∂hi and y′

i ∈ ∂hi are separated by m.
Since rm and r∂hi

do not commute it follows that yi and y′
i are separated by rm(∂hi). Since

y′
i ∈ a ∩ hi we deduce that yi 6∈ rm(hi) for all i ∈ Z. Now choose a point xi ∈ m ∩ ∂hi for

each i ∈ Z. We have

x0 ∈ m ∩ ∂h0 ⊂ rm(∂h0) ⊂ rm(h0) ⊂ rm(h1) ⊂ rm(h2) ⊂ . . .

Since M (x0, y0) is finite and since y0 6∈ rm(h0), there exists j > 0 such that y0 ∈ rm(hj).
Thus the wall rm(∂hi) separates y0 from yi for all i ≥ j. Since y0 and yi both lie on the wall
µ, it follows that ∂hi meets µ for all i ≥ j.

This argument holds for any µ ∈ P\{m}. In particular, if we choose µ such that m and µ
are separated by at least L elements of P , where L is the constant of Lemma 3.1, we deduce
from this lemma that W ({m, µ, ∂hj}) is a Euclidean triangle subgroup. By Corollary 3.4,

we obtain r∂hi
∈ W ({m, µ, ∂hj}) for all i ≥ j. As before, this implies that W (P ′) <

W ({m, µ, ∂hj}) and, in particular, that m′′ = rm(m′) = rm(∂h0) meets µ. Thus we have
µ ∈ C.

Since this holds for all walls µ ∈ P which are sufficiently far apart from m, and since C
is convex, we finally deduce that C = P . By Lemma 3.1 this implies that W (P ∪ {m′})
is a Euclidean triangle subgroup. By Lemma 4.6(i), we have P ⊂ MEucl(F ) whence m ∈
MEucl(F ). �

The main results of this section are the following two propositions.

Proposition 4.7. The group W (MEucl(F )) is isomorphic to a direct product of finitely many
irreducible affine Coxeter groups.

Proof. We claim that for all m, m′ ∈ MEucl(F ), either PF (m) = PF (m′) or the groups
W (PF (m)) and W (PF (m′)) centralize each other or W (PF (m) ∪ PF (m′)) is a Euclidean
triangle subgroup.

We first deduce the desired result from the claim. We know that W (MEucl(F )) is iso-
morphic to a Coxeter group. Let W (MEucl(F )) = W1 × · · · × Wk be the decomposition of
W (MEucl(F )) in its direct components. Hence Wi is an irreducible Coxeter group for each
i = 1, . . . , k. Let Mi denote the set of walls m ∈ MEucl(F ) such that rm ∈ Wi. We note that
MEucl(F ) = M1 ⊔ · · · ⊔ Mk and Wi = W (Mi).

We must prove that Wi is affine. We record the following easy observations which follow
from the fact that the Wi’s are the irreducible components of W (MEucl(F )):

(1) If m ∈ MEucl(F ) is a wall such that rm ∈ Wi, then W (PF (m)) ≤ Wi.
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(2) If m, m′ ∈ MEucl(F ) are two walls such that PF (m) 6= PF (m′) and that rm and rm′

both belong to Wi, then there exists a sequence of walls m = m0, m1, . . . , mℓ = m′

such that for each j, one has mj ∈ Mi, rmj
∈ Wi and rmj

does not commute with
rmj−1

(a priori the order of rmj
rmj−1

might be infinite).

We show that, in view of the claim above, these two observations imply that for any wall
m ∈ MEucl(F ) such that rm ∈ Wi, one has

W (PF (m)) ≤ Wi ≤ ˜W (PF (m)),

where ˜W (PF (m)) is the irreducible affine Coxeter group provided by Lemma 3.3.

By the first observation we just have to check that Wi ≤ ˜W (PF (m)). Since Wi = W (Mi)

it is enough to show that rm′ ∈ ˜W (PF (m)) for any m′ ∈ Mi. For such an m′ we have a
sequence of walls m = m0, m1, . . . , mℓ = m′ such that for each j, one has mj ∈ Mi and rmj

does not commute with rmj−1
. We are going to show by induction that for each µ ∈ PF (mi)

we have rµ ∈ ˜W (PF (m)), which implies in particular rm′ ∈ ˜W (PF (m)).
This is clearly true for i = 0. Assume this is true for PF (mi−1), with i > 0. Either

mi ∈ PF (mi−1), thus PF (mi) = PF (mi−1) and we have nothing to prove. Or, by the initial
claim, rmi

rmi−1
has finite order > 2 and W (PF (mi−1) ∪ PF (mi)) is a Euclidean triangle

subgroup. Since rmi
and rmi−1

do not commute it follows that W (PF (mi−1) ∪ {mi}) is a

Euclidean triangle subgroup. Thus by Lemma 3.3 we have rmi
∈ ˜W (PF (m)). In fact the

same argument applies to any wall µ ∈ PF (mi), which ends the proof.

The inclusion Wi ≤ ˜W (PF (m)), is now established. In particular Wi is an infinite reflection
subgroup of an irreducible affine Coxeter group; hence it must be itself an affine Coxeter
group, as desired.

It remains to prove the claim. Let m, m′ ∈ MEucl(F ).
Suppose that PF (m) 6= PF (m′). Then by Lemma 4.5 m meets m′.
If there exists m′′ ∈ PF (m) ∩ PF (m′) then, by Lemma 4.6(i), we have m′′ ∈ MEucl(F )

which implies that the elements of PF (m′′) are pairwise disjoint (see Lemma 4.5). Since
m′′ ∈ PF (m) ∩ PF (m′), we have {m, m′} ⊂ PF (m′′) and, hence, m = m′ because m meets
m′. This contradicts the fact that PF (m) 6= PF (m′), thereby showing that PF (m) ∩ PF (m′)
is empty. In other words, m meets every element of PF (m′) and m′ meets every element of
PF (m).

For all µ ∈ PF (m) we have µ ∈ MEucl(F ) by Lemma 4.6(i) and, hence, PF (m) = PF (µ) by
Lemma 4.5. Similarly, for all µ′ ∈ PF (m′), we have PF (m′) = PF (µ′). Therefore, we deduce
from the previous paragraph that every element of PF (m) meets every element of PF (m′).

Suppose moreover that W (PF (m)) does not centralize W (PF (m′)). Then there exist p ∈
PF (m) and p′ ∈ PF (m′) such that rp and rp′ do not commute. Let p′′ := rp(p

′).
Suppose p′′ meets only finitely elements of the line of walls PF (m). Then there is a segment

of walls (p−, p1, p2, . . . , pn, p
+) inside PF (m) such that {p1, p2, . . . , pn} is the set of walls of

PF (m) which meet p′′, and p′′ is disjoint from p− and p+. We let x−, x+ denote points in
p′ ∩ p−, p′ ∩ p+ respectively. Since p separates p− from p+ and p′ \ p = p′ \ p′′ we deduce
that p′′ separates x− from x+. Thus p′′ separates p− from p+. In particular since p− and p+

meet F we have p′′ ∈ M (F ) and clearly p′′ ∈ PF (p−). As we have already observed we have
PF (p−) = PF (m) = PF (p). Thus p′′ ∈ PF (p), contradiction.

Thus in fact p′′ meets infinitely many elements of PF (m). By Lemma 3.1, this shows
that W (PF (m) ∪ {p′}) is a Euclidean triangle subgroup. Similarly W (PF (m′) ∪ {p}) is a
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Euclidean triangle subgroup. The order of the product rprn′ is thus independent of the wall
n′ chosen in the line of walls PF (m′). It follows that for each n′ ∈ PF (m′) the reflections
rp and rn′ do not commute. Then by Lemma 3.1 the subgroup W (PF (m) ∪ {n′}) is also a

Euclidean triangle subgroup. By Corollary 3.4 we now deduce that rn′ ∈ W (PF (m) ∪ {p′}).

Thus W (PF (m′)) ⊂ W (PF (m) ∪ {p′}), and in particular the group W (PF (m) ∪ PF (m′)) is a
Euclidean triangle subgroup, which proves the claim. �

Corollary 4.8. For all m ∈ MEucl(F ) and γ ∈ W (MEucl(F )), if γ.m ∩ m = ∅ then γ.m ∈
MEucl(F ).

Proof. By assumption, the group 〈rm, rγ.m〉 is an infinite dihedral group which is contained in
W (MEucl(F )). Therefore, since W (MEucl(F )) is an affine Coxeter group by Proposition 4.7,
the group W (PF (m) ∪ {γ.m}) is an infinite dihedral group and, by Lemma 4.5(iii), we have
rγ.m ∈ W (PF (m)). Since PF (m) is a convex line of walls, we deduce finally that γ.m ∈
PF (m) ⊂ MEucl(F ). �

Proposition 4.9. One the following assertions holds:

(i) There exists an infinite subset M ⊂ M (F ) which satisfies the following conditions:
• For all m, m′ ∈ M , either m ∩ F = m′ ∩ F or m ∩ F ∩ m′ = ∅;
• The groups W (M) and W (M (F )\M) centralize each other.

(ii) The group W (M (F )) is isomorphic to an affine Coxeter group.

Proof. Assume first that MEucl(F ) = M (F ). Then by Proposition 4.7 property (ii) holds.
Assume now there exists m ∈ M (F )\MEucl(F ). Let M be the set of all those elements of

M (F ) which do not belong to MEucl(F ) and which are F–parallel to m. By Lemma 4.6(ii),
we have PF (m) ⊂ M ; in particular M is infinite. Let m′ ∈ M (F )\M . If m′ is not F–
parallel to m then rm′ centralizes W (M) by Lemma 4.6(iii). If m′ is F–parallel to m, then
m′ ∈ MEucl(F ) since m′ 6∈ M . In view of Lemma 4.6(iv), this implies that rm′ centralizes
W (M). This shows that the groups W (M) and W (M (F )\M) centralize each other. Thus
property (i) holds. �

5. From geometric flats to free abelian groups

Let X be a combinatorially convex subcomplex of the Davis complex |W |0, and Γ be
a subgroup of W which stabilizes X and whose induced action on X is cocompact. The
distance function on |W |0 is denoted by d.

Lemma 5.1. Let ρ ⊂ X be any unbounded subset through a given point x, and let M (ρ) :=⋃
y,z∈ρ M (y, z) be the set of walls which separate points of ρ. There exists a constant K

(depending on ρ and Γ) with the following property: given any positive real number r, there
exists a chamber c at distance at most K from x and an element γ ∈ Γ∩W (M (ρ)) such that
c and γ.c both meet ρ, and that d(c, γ.c) > r.

Proof. Recall that a combinatorially convex subcomplex is a (CAT(0) convex) union of cham-
bers.

Let C(ρ) denote the set of chambers of X meeting ρ: thus ρ is covered by the chambers
of C(ρ). Recall that Γ has finitely many orbits on the set of all chambers of X. Since ρ is
unbounded, the set C(ρ) is infinite and it follows that there exists a chamber c ∈ C(ρ) such
that Γ.c ∩ C(ρ) is infinite.

We write Γ.c ∩ C(ρ) = {γ0.c, γ1.c, . . . , γi.c, . . . } (with γ0 = 1). We pick a point xi in each
intersection ρ∩ γi.c. By Lemma 1.2 there exists gi ∈ W (M (x0, xi)) such that gix0 and xi lie
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in a common chamber. Thus gi
−1γi is an element of W sending c to a chamber meeting c.

There are finitely many such elements.
Thus up to extracting a subsequence we may suppose that the sequence (gi

−1γi)i≥1 is
constant. Then for each i the element γ′

i = γiγ1
−1 belongs to Γ ∩ W (M (ρ)). And also γ′

i

sends the chamber γ1c to the chamber γic. The Lemma follows because the set of chambers
(γic)i≥1 is infinite. �

As before, let M (F ) denote the set of all walls which separate points of F . Theorem A of
the introduction is a straightforward consequence of the following:

Theorem 5.2. Let F be a geometric flat which is isometrically embedded in X; let n denote
its dimension. Then the intersection Γ ∩W (M (F )) contains a free abelian group of rank n.

Proof. By Selberg’s lemma, the group Γ has a finite index subgroup which is torsion free.
Since Γ is cocompact on X, any finite index subgroup of Γ is cocompact as well, hence we
may assume without loss of generality that Γ is torsion free.

The proof works by induction on the dimension n of the flat F . We may assume that
n > 0.

Suppose first that M (F ) possesses a subset M which satisfies the conditions (i) of Propo-
sition 4.9. Let then m be any element of M and set F ′ := F ∩ m. By Lemma 4.1, F ′ is a
geometric flat of dimension n − 1.

Let ρ denote any geodesic ray of F meeting transversally infinitely many walls of M .
Let x denote the origin of ρ, and let xn denote the unique point of ρ with d(x, xn) = n.
By Lemma 2.1 there exists a point zn ∈ X such that M (x, xn) = M (x, zn) ⊔ M (zn, xn),
with M (x, zn) = M (x, xn) ∩ M . Observe that the cardinality of M (x, zn) tends to infinity
with n, and thus d(x, zn) → +∞. There is a subsequence (znk

)k≥0 such that the geodesic
segment [x, znk

] ⊂ X converges to a geodesic ray ρ′ ⊂ X (with origin x). Note that for every
y ∈ ρ′ we have M (x, y) ⊂ M (x, znk

) for k large enough. In particular M (x, y) ⊂ M . Thus
M (ρ′) ⊂ M .

We now apply Lemma 5.1 to the ray ρ′ for some (large) positive real number r > 0. We
then get a nontrivial element γ ∈ Γ ∩ W (M). Observe that γ must be of infinite order since
Γ is torsion free.

It follows from the definition of M that γ centralizes W (M (F ′)). Furthermore, since
W (M (F ′)) is isomorphic to a Coxeter group and since the center of any Coxeter group is a
torsion group (this is well known and is a straightforward consequence of [Hum90, Exercise
1, p.132]), the intersection W (M (F ′)) ∩ 〈γ〉 is trivial. We deduce that the group generated
by W (M (F ′)) together with γ is isomorphic to the direct product W (M (F ′)) × 〈γ〉. The
desired result follows by induction.

Suppose now that assertion (ii) of Proposition 4.9 holds. Let µ1 be any element of M (F ).
Again by Lemma 4.1 the intersection µ1 ∩ F is a geometric flat of dimension n − 1. Note
that any flat Φ of dimension ≥ 1 is unbounded and thus has M (Φ) 6= ∅. Thus for each
i = 2, . . . , n we may choose successively

µi ∈ M (
( i−1⋂

j=1

µj

)
∩ F ).
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In view of Lemma 4.1, the set
(⋂n

i=1 µi

)
∩ F consists of a single point x of F and for each

i ∈ {1, . . . , n}, the set

λi :=
( ⋂

j∈{1,...,n}\{i}

µj

)
∩ F

is a geodesic line of F .
We need the following auxiliary result:

Lemma 5.3. Γ has a finite index subgroup Γ′ such that for any wall m and any chamber c
meeting m, if γ ∈ Γ′ sends c to a chamber meeting m, then γm = m.

Proof. It is enough to prove the Lemma when Γ = W . Recall that the stabilizer of a wall
m is the centralizer of the involution rm. Since W is residually finite the centralizer Z(rm)
is a separable subgroup, that is to say Z(rm) is an intersection of finite index subgroups.
(In any residually finite group W the centralizer of any element g is separable. Indeed, for
x /∈ C = ZW (g), we have [x, g] 6= 1, thus there is a finite quotient φ : W → Ḡ such that
[φ(x), φ(g)] 6= 1. Then φ(x) /∈ ZḠ(φ(g)) and the finite index subgroup φ−1ZḠ(φ(g)) separates
x from C.)

We fix some wall m and claim that there is a finite index subgroup Wm ⊂ W such that for
any chamber c meeting m, if γ ∈ Wm sends c to a chamber meeting m, then γm = m. The
lemma will follow since we may assume that Wm is normal, and there are only finitely many
orbits of walls under W .

Let Bm be the subset of W consisting of all those elements γ ∈ W such that there exists
a chamber c such that m and γ.c both meet m. Note that Bm is invariant by left- and
right-multiplication under Z(rm). In fact it is a finite union of double classes: Bm = Z(rm)⊔
Z(rm)γ1Z(rm)⊔ · · · ⊔Z(rm)γkZ(rm), where γ1, . . . , γk do not belong to Z(rm) (the finiteness
follows from the fact that Z(rm) acts co-finitely on the set of chambers meeting m, and from
the local compactness of the Davis complex). The claim follows if we take for Wm any finite
index subgroup of W containing the separable subgroup Z(rm) but none of the elements
γ1, . . . , γk. �

By Lemma 5.3 we may assume that for any wall m and any chamber c meeting m, if γ ∈ Γ
sends c to a chamber meeting m, then γm = m. Note that this implies in particular that if
γm intersects m, then γm = m.

Let r be any positive real number. For each i we choose one of the two rays contained in
λi with origin x, and denote it by ρi. For each i ∈ {1, . . . , n}, Lemma 5.1 provides a chamber
ci at distance at most Ki of x, and an element γi(r) ∈ W (M (λi)) ∩ Γ (⊂ W (M (F )) ∩ Γ),
such that ci ∩ ρi and γi(r).ci ∩ ρi are both nonempty, and that d(ci, γi(r).ci) > r. Here ci and
γi(r) depend on r, but Ki depends only on ρi. Note that γi(r) is of infinite order because Γ
is torsion free.

It immediately follows from the fact that ρi ⊂ µj that each γi(r) preserves µj (j 6= i).
Since x ∈ ρi ∩ µi but ρi 6⊂ µi, it follows from Lemma 4.2 that there is a constant ri such

that, given any point y of ρi, if y is at distance at least ri from x, then y is at distance larger
than Ki + D from µi, where D is the diameter of a chamber. Therefore, for each r ≥ ri,
we have d(x, γi(r).ci) ≥ d(ci, γi(r).ci) > r and hence any point on γi(r).ci ∩ ρi is at distance
larger than Ki +D from µi. Thus γi(r).ci is at distance larger than Ki from µi. On the other
hand γi(r).ci is at distance at most Ki from γi(r)µi, from which it follows that γi(r)µi 6= µi

for all r ≥ ri. By the above, this yields γi(r)µi ∩ µi = ∅ for all r ≥ ri.
Let ai be the half-space bounded by µi and containing ρi. We define an element γi as

follows.
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If γi(ri)ai ⊂ ai we set γi = γi(ri).
If not, then we choose r > ri as follows. Note that γi(r)µi ∈ MEucl(F ) for all r by

Corollary 4.8. In particular γi(ri)µi meets ρi, but ρi 6⊂ γi(ri)µi because x ∈ ρi ∩ µi and
µi ∩ γi(ri)µi = ∅. Thus, by Lemma 4.2, every point of ρi sufficiently far away from x is also
far way from γi(ri)µi. Repeating the arguments used to define the constant ri, we obtain a
constant r > ri such that γi(r)µi 6= γi(ri)µi.

Now, if γi(r)ai ⊂ ai we set γi = γi(r). Otherwise we set γi = γi(r)
−1γi(ri). Let us check

that, in the latter case, we have also γiai ⊂ ai. The walls µi, γi(ri)µi and γi(r)µi belong to
MEucl(F ) by Corollary 4.8 and are pairwise disjoint by construction. Thus they form a chain
and it follows that γi(ri)ai ⊂ γi(r)ai whence γiai ⊂ ai. Therefore, for all m > 0, we have
γm

i ai ⊂ ai and hence γm
i µi ∩ µi = ∅ while γm

i µj = µj for j 6= i.
Choose integers m1, . . . , mn divisible enough so that each γ′

i := γi
mi belongs to the trans-

lation subgroup of the affine Coxeter group W (M (F )). Thus the γ′
i’s generate an abelian

group. In view of the action of each γ′
i on the walls µ1, . . . , µn, the intersection 〈γ′

i〉∩〈γ
′
j| j 6= i〉

is trivial for all i. This implies that the γ′
i’s generate a free abelian group of rank n. �

We note that the complete proof of Theorem 5.2 is much shorter when (W, S) is assumed
to be right-angled (in this case MEucl(F ) is empty).

6. Geometric flats in Tits buildings

The purpose of this section is to prove Theorem E of the introduction.
As before, let (W, S) be a Coxeter system of finite rank. Let B = (C(B), δ) be a building

of type (W, S). Recall that C(B) is a set whose elements are called chambers, and that
δ : C(B) × C(B) → W is a mapping, called W -distance, which satisfies the following
conditions, where x, y ∈ C(B) and w = δ(x, y):

Bu1: w = 1 if and only if x = y;
Bu2: if z ∈ C(B) is such that δ(y, z) = s ∈ S, then δ(x, z) = w or ws, and if,

furthermore, l(ws) = l(w) + 1, then δ(x, z) = ws;
Bu3: if s ∈ S, there exists z ∈ C(B) such that δ(y, z) = s and δ(x, z) = ws.

For example the map W ×W → W sending (x, y) to x−1y satisfies the above. An apartment
of the building B is a subset C(A ) ⊂ C(B) such that there exists a bijection f : C(A ) → W
satisfying δ(x, y) = f(x)−1f(y).

The composed map ℓ ◦ δ : C(B) × C(B) → N, where ℓ is the word metric on W with
respect to S, is called the numerical distance of B. It is a discrete metric on C(B).

The following lemma is well known:

Lemma 6.1. Let C(A ) be an apartment and C be a subset of C(B). Suppose that there
exists a map f : C → C(A ) such that δ(f(c), f(d)) = δ(c, d) for all c, d ∈ C. Then there
exists an apartment C(A ′) such that C ⊂ C(A ′).

Proof. Follows from [Tit81, §3.7.4]. �

Let T ⊂ S and let c be a chamber of the building B. The residue of type T of c is the
set ρT (c) of those chambers c′ for which δ(c, c′) ∈ W (T ). The residue is called spherical
whenever W (T ) is finite. Given any residue ρ of B and any chamber x, there exists a unique
chamber c in ρ at minimal numerical distance from x. This chamber has the property that
δ(x, d) = δ(x, c)δ(c, d) for each chamber d of ρ. The chamber c is called the projection of
x onto ρ and is denoted by projρ(c) (see [Ron89, §Corollary 3.9]).
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Lemma 6.2. Let C(A ) be an apartment of B and C ⊂ C(A ) be a set of chambers. Suppose
that there exists a residue ρ and a chamber c ∈ C such that c ∈ C(ρ) and projρ(c

′) = c for
all c′ ∈ C. Then, for any chamber d ∈ C(ρ)\{c}, there exists an apartment C(Ad) such that
C ∪ {d} is contained in C(Ad).

Proof. Let d ∈ C(ρ)\{c} and let wd := δ(c, d). Let d′ be the unique chamber of C(A )
such that δ(c, d′) = wd. For any c′ ∈ C, we have δ(c′, d) = δ(c′, c).wd = δ(c′, d′) because
projρ(c

′) = c. It follows that the function f : C ∪ {d} → C ∪ {d′}, which maps d to d′

and induces the identity on C, preserves the W -distance δ. Therefore, the existence of an
apartment C(Ad) such that C(Ad) contains C ∪ {d} follows from Lemma 6.1. �

Before stating the main result of this section, we need to introduce some additional termi-
nology and notation:

• |B|0 denotes the CAT(0)-realization of the building B, as defined in [Dav98]; it is a
piecewise Euclidean simplicial complex. For each chamber c ∈ B there is an associated
CAT(0)-convex subcomplex |c|0 ⊂ |B|0, which we call the associated geometric
chamber. For every subset C ⊂ C(B) we denote by |C|0 the union of geometric
chambers |c|0 associated to chambers c ∈ C. We say that a subcomplex X ⊂ |B|0 is
combinatorial whenever it is a union of geometric chambers. If A is any apartment
of B the subcomplex |A |0 is isometric to |W |0. As a simplicial complex, |A |0 is
isomorphic to the first barycentric subdivision of the Davis complex |W |0.

• Given x ∈ |B|0, we set

ρ(x) := {c ∈ C(B)| x ∈ |c|0}

and

σ(x) :=
⋂

c∈ρ(x)

|c|0.

The set ρ(x) is a (spherical) residue. The subcomplex |ρ(x)|0 is a neighbourhood
N(x) of x in |B|0. For every chamber c ∈ C(B), the set Int(c) of points x ∈ |B|0
such that ρ(x) = {c} is an open subset of |B|0. It is the interior of |c|0 and its closure
is |c|0.

• Given E ⊂ |B|0, we set

C(E) := {c ∈ C(B)| |c|0 ⊂ E}.

For example given any x ∈ |B|0 we have C(N(x)) = ρ(x). We say that a subcomplex
A ⊂ |B|0 is a geometric apartment provided A is combinatorial and C(A ) is an
apartment of B.

• Given a geometric flat F ⊂ |B|0 and any subset E ⊂ |B|0, we denote by dim(F ∩E)
the dimension of the Euclidean subspace of F generated by E∩F ; by convention, the
empty set is a Euclidean subspace of dimension −1.

Let now F ⊂ |B|0 be a geometric flat of dimension n. Since the combinatorial subcom-
plexes N(x) are neighborhoods of x, we have:

∀x ∈ F, ∃ c ∈ C(B) such that x ∈ |c|0 and dim(F ∩ |c|0) = n.

And since every geometric chamber is the closure of its interior, we deduce:

∀x ∈ F, ∃ y ∈ F such that x ∈ σ(y) and dim(F ∩ σ(y)) = n.

These two basic facts will be used repeatedly in the following.
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Theorem 6.3. Let F ⊂ |B|0 be a geometric flat of dimension n and let c0 be a chamber such
that dim(F ∩ c0) = n (the geometric chamber associated to c0 is also denoted by c0). Define

C(F, c0) := {projρ(x)(c0) | x ∈ F}.

Then there exists a geometric apartment A such that C(F, c0) ⊂ C(A ). In particular, we
have F ⊂ A .

Proof. The proof is by induction on n, the case n = 0 being trivial. We assume now that
n > 0.

Let F0 ⊂ F be a Euclidean hyperplane such that dim(F0 ∩ c0) = n − 1. By induction, the
set C(F0, c0) is contained in the set of chambers of some apartment. In view of Lemma 6.1,
it follows from Zorn’s lemma that the collection of all those subsets of C(F, c0) which contain
C(F0, c0) and which are contained in the set of chambers of some apartment, has a maximal
element.

Let C1 be such a maximal element and choose a geometric apartment A1 such that C1 ⊂
C(A1). Set X := A1 ∩ F . Note that X is closed and convex.

Suppose by contradiction that C1 is properly contained in C(F, c0). The rest of the proof
is divided into several steps. The final claim below contradicts the maximality of C1, thereby
proving the theorem.

Claim 1. For all x ∈ X, we have projρ(x)(c0) ∈ C1.

Since A1 is a combinatorial subcomplex, we have σ(x) ⊂ A1. Since c0 ∈ C(A1), we have
projρ(x)(c0) ∈ C(A1). Therefore, the claim follows from the maximality of C1.

Claim 2. For all c ∈ C1, there exists x ∈ X such that projρ(x)(c0) = c.

Given c ∈ C(F, c0), there exists x ∈ F such that projρ(x)(c0) = c. If now c ∈ C1, then
σ(x) ⊂ |c|0 ⊂ A1. Thus x ∈ F ∩ A1 = X.

Claim 3. dim(F ∩ X) = n.

Clear since c0 ∩ F ⊂ X and dim(F ∩ c0) = n.

Claim 4. There exists a Euclidean hyperplane F1 ⊂ F which is contained in A1 and which
bounds an open half-space of F , none of whose points is contained in A1. In other words,
the hyperplance F1 is contained in the Euclidean boundary ∂X of X.

Let c ∈ C(F, c0)\C1 and let x ∈ F be such that projρ(x)(c0) = c. By Claim 1, x does not
belong to X. Given x0 ∈ c0 ∩ F , we have [x0, x] ∩ X = [x0, y] for some y ∈ X because X is
closed and convex. Let F1 ⊂ F be the Euclidean hyperplane parallel to F0 and containing y.
We have F1 ⊂ X by convexity. Furthermore, it is clear from the definition of y and F1 that
any point z ∈ F\F1 on the same side of F1 as x does not belong to A1.

Claim 5. Let x1 ∈ F1 be such that dim(F1 ∩ σ(x1)) = n − 1. For all c ∈ C1, we have
projρ(x1)(c) = projρ(x1)(c0).

Let c1 := projρ(x1)(c0). Suppose by contradiction that there exists c ∈ C1 such that
projρ(x1)(c) 6= c1. Let h be a (Coxeter) half-space of the apartment C(A1) containing c1 but
not c2 := projρ(x1)(c). Thus h contains c0 but not c.

Since σ(x1) ⊂ |c1|0 ∩ |c2|0, we have σ(x1) ⊂ ∂|h|0. Therefore, since F1 ⊂ A1 (see Claim 4)
and since dim(F1 ∩σ(x1)) = n− 1, we deduce from Lemma 4.1 that F1 ⊂ ∂|h|0. By Claim 4,
the set X, as a subset of F , is entirely contained in one of the Euclidean half-spaces of
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F determined by F1. Since F1 ⊂ ∂|h|0, we deduce that X, as a subset of A1, is entirely
contained in one of the Coxeter half-spaces of A1 determined by ∂|h|0. Since c0 ⊂ X ∩ |h|0,
we obtain X ⊂ |h|0.

Since c ∈ C1, there exists x ∈ X such that projρ(x)(c0) = c by Claim 2. Since X ⊂ |h|0
and since |h|0 is a combinatorial subcomplex, we have σ(x) ⊂ |h|0 and hence projρ(x)(c0) ∈ h
by the combinatorial convexity of Coxeter half-spaces. This contradicts the fact that h does
not contain c.

Claim 6. There exists d ∈ C(F, c0) and an apartment Ad such that C1 ∪ {d} ⊂ C(Ad).

Let x1 ∈ F1 be as in Claim 5. By Claim 1 we have c1 := projρ(x1)(c0) ∈ C1. Let y ∈ F\X
be such that x1 ∈ σ(y). Let d := projσ(y)(c0). Clearly d ∈ C(F, c0). Furthermore d 6∈ C1,
otherwise we would have y ∈ σ(y) ⊂ d ⊂ A1, whence y ∈ X, which is absurd. Since
σ(x1) ⊂ σ(y) ⊂ d, the claim follows from Lemma 6.2 together with Claim 5. �

Clearly, Theorem E of the introduction is an immediate consequence of Theorem 6.3,
combined with Corollary C.
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[CM05] Pierre-Emmanuel Caprace and Bernhard Mühlherr. Reflection triangles in Coxeter groups and
biautomaticity. J. Group Theory, 8(4):467–489, 2005.

[Dav98] M. Davis. Buildings are CAT(0). In H. Kropholler et al., editor, Geometry and cohomology in
group theory (Durham, 1994), volume 252 of London Math. Soc. Lecture Note Ser., pages 108–123,
Cambridge, 1998. Cambridge Univ. Press.

[Deo89] Vinay V. Deodhar. A note on subgroups generated by reflections in Coxeter groups. Arch. Math.
(Basel), 53(6):543–546, 1989.

[Gro93] M. Gromov. Asymptotic invariants of infinite groups. In Geometric group theory, Vol. 2 (Sus-
sex, 1991), volume 182 of London Math. Soc. Lecture Note Ser., pages 1–295, Cambridge, 1993.
Cambridge Univ. Press.
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