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A new formulation is pres ented here for the exis tence and calculation of nonlinear normal modes in
undamped nonlinear autonomous mechanical systems. As in the linear case an expression is developed for
the mode in terms of the amplitude, mode shape and frequency, with the distinctive feature that the last two
quantities are amplitude and total phase dependent. The dynamic of the periodic response is defined by a
one-dimens ional nonlinear differential equation governing the total phas e motion. The period of the
oscillations, depending only on the amplitude, is easily deduced. It is established that the frequency and the
mode shape provide the solution to a 2p-periodic nonlinear eigenvalue problem, from which a numerical 
Galerkin procedure is developed for approximating the nonlinear modes . The procedure is applied to
various mechanical sys tems with two degrees of freedom.
1. Introduction

Extending the concept of normal modes of vibrating systems to the case where the restoring
forces contain nonlinear terms has been a challenge to many authors, mainly because the principle
of linear superposition does not hold for nonlinear systems. However, the existence of
‘‘synchronous’’ periodic oscillations has great potential for applications to nonlinear free and
forced vibration problems. The recent review paper by Vakakis [1], discusses the need for the
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normal modes approach to be extended to nonlinear theory, and it is concluded that nonlinear
normal modes (NNMs) may provide a valuable theoretical tool for understanding some
peculiarities of nonlinear systems such as mode bifurcations and nonlinear mode localization.

Following the pioneer work by Rosenberg [2] on conservative systems, several attempts have
been made to develop methods of calculating NNMs. These include the harmonic method
developed by Szemplinska-Stupnicka [3], the normal form theory [4,5], the invariant manifold
method [6,7] (which led to a new definition of NNMs extending the concept to non-conservative
systems), the perturbation method [8], the balance harmonic procedure [9], the method of multiple
scales [10], and various combinations.

In the present study, a new formulation is presented for the existence and calculation of the
synchronous periodic oscillation of an undamped autonomous nonlinear mechanical system. The
vector restoring force does not necessarily derive from a potential function. We define motion in
line with Rosenberg’s definition [2], i.e. a motion where all the material points in the system
reaches their extreme values and/or pass through zero simultaneously (NNM). The modal line in
the configuration space can be either straight or curved. The NNM is expressed here like a linear
normal mode (LNM), in terms of the ‘‘amplitude’’, ‘‘phase’’, ‘‘modal vector’’, and ‘‘frequency’’.
The most distinctive feature of this formulation is that the modal vector and frequency are viewed
as amplitude and total phase dependent. The dynamic is defined by a one-dimensional differential
equation, governing the total phase motion, from which the period of the oscillations is deduced.
The period depends only on the amplitude. The modal vector and the frequency provide the
solution to a nonlinear eigenvector–eigenvalue 2p-periodic problem, which makes it possible to
calculate these quantities using the classical Galerkin procedure in the space of 2p-periodic
functions [10]. It should be noted that the zero-order solution reduces to the Szemplinska–S-
tupnicka approach [3]. The formulation describes the NNM in terms of synchronous periodic
oscillations as well as in terms of a two-dimensional invariant set of the dynamical system.

The case of an odd nonlinear vector restoring force is first considered. A necessary and
sufficient condition for the existence of similar NNMs, i.e. modes for which the modal line is a
straight line in the configuration space, is given. A basic result as regards the existence and
uniqueness of an NNM located outside bifurcating points is also given. The Galerkin
computational procedure is applied to two-dimensional mechanical systems in the odd case as
well as in the general case. It seems that the presence of internal resonances in the underlying
linear system does not require particular attention in these calculations.
2. Problem under study

In this study, we present a new formulation for the existence and calculation of synchronous
periodic solutions of the undamped autonomous nonlinear n-degrees of freedom (dof) mechanical
system

½M� €XðtÞ þ FðXðtÞÞ ¼ 0; (1)

where the mass matrix, ½M�; is symmetrical and positive definite, and the restoring force vector
function, FðXÞ (including linear and nonlinear terms) is continuously differentiable and such that
Fð0Þ ¼ 0: The over dots stand for temporal derivatives.
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The following assumption will be made throughout this study:
H1.
 F is a monotonically increasing function, viz.
8X; 8Y 2 Rn; ðX	 YÞTðFðXÞ 	 FðYÞÞX0: (2)

The linear equation

½M� €XðtÞ þ ½qFX ð0Þ�XðtÞ ¼ 0; (3)

where ½qFX ð0Þ� denotes the Jacobian matrix of F with respect to X; will be called the underlying
linear system (or linearized system) associated with the nonlinear system (1). It can be readily
verified that: if X
ðtÞ is a periodic solution with period T40 (i.e. X
ðtÞ ¼ X
ðt þ TÞ; 8t) of Eq. (1),
then X

ðtÞ ¼ X
ð	tÞ is also a T-periodic solution for Eq. (1). Our study will be devoted to the T-
periodic solution of Eq. (1) with symmetry X
ðtÞ ¼ X
ð	tÞ: That is the associated Fourier series
will contain only cosine terms.

An example of restoring forces associated with geometrical nonlinear behaviour of vibrating
beam, plate or shell [11,12] is given by

FðXÞ ¼ LðXÞ þQðX;XÞ þ CðX;X;XÞ; (4)

where L; Q and C are linear, bi-linear and tri-linear vector functions. In order that assumption H1
be satisfied the odd part of FðXÞ (linear and cubic terms) are of prime importance. In the
following, the odd restoring force case will be first considered. The general case will be discussed
in Section 4.
3. Odd restoring force case

In addition to H1, we assume throughout this section that
H2.
 FðXÞ ¼ 	Fð	XÞ:
3.1. LNMs

We will first deal briefly with the classical linear case in which FðXÞ ¼ ½K�X; where ½K� is a
symmetrical positive definite matrix. The general solution of Eq. (1) can be expressed as

XðtÞ ¼
Xn

l¼1

wlal cosðol t þ jlÞ;

where ðwl ;o
2
l Þ with ol40 for l ¼ 1; . . . ; n denotes the set of eigenvector–eigenvalue such that

½K�wl ¼ ½M�wlo
2
l ; wT

l ½M�wl ¼ 1 and wT
l ½M�wk ¼ 0; lak:

The pairs ðal ;jlÞ 2 Rþ � ½0; 2p� of constant real numbers set the initial conditions. It follows that
Eq. (1) possesses n-periodic solutions with period Tl ¼ 2p=ol ; l ¼ 1; . . . ; n; respectively, which
3



can be written as (index l is omitted)

XðtÞ ¼ wa cos FðtÞ; (5)

_FðtÞ ¼ o; Fð0Þ ¼ j: (6)

The scalar function Fð:Þ describes the dynamic operating on the modal line (a straight line) in the
configuration space.

In cases where the matrix ½K� is not symmetrical but only positive the same result holds. The
eigenvectors will no longer be ½M�-orthogonal, however, in this case.
3.2. NNMs

As suggested by the linear case, a synchronous periodic solution to Eq. (1) is sought in the form

XðtÞ ¼ Wða;FðtÞÞa cos FðtÞ; (7)

_FðtÞ ¼ Oða;FðtÞÞ; Fð0Þ ¼ j: (8)

Eq. (7) describes the geometrical behaviour of the solution in the configuration space and the
dynamics of the periodic response is defined by the one-dimensional differential equation, Eq. (8),
governing the total phase motion Fð:Þ:

Four quantities are involved in Eqs. (7) and (8): two given scalar quantities, the amplitude ðaX0Þ
and the phase (j 2 ½0; 2p�) which set the initial conditions of the vibration in NNM motion on the
configuration space. Two unknown functions, W and O; that will be referred to here as the modal
vector and the modal or resonance frequency of the NNM, respectively. To ensure that parameter a

appropriately characterizes the amplitude of the modal line in Eq. (7), a normalization condition
on the modal vector W is required. In this study, we will adopt (without lost of generality) the
following condition:

WT
ða;FÞ½M�Wða;FÞ ¼ 1: (9)

The modal vector W and the frequency O will be viewed here as amplitude and total phase
dependent, and denoted W ¼ Wða;FÞ; O ¼ Oða;FÞ; and will be searched for as 2p-periodic
functions with respect to F for fixed a. More specifically, according to the symmetry condition H2,
these functions will be searched for as even periodic functions with respect to F with period 2p; that
is with Fourier series

Oða;FÞ ¼
X1
k¼0

O2kðaÞ cos 2kF; Wða;FÞ ¼
X1
k¼0

W2kðaÞ cos 2kF:

It follows that the Fourier series of XðtÞ in terms of FðtÞ will contain only odd cosine terms. From
Eq. (8), it results that

dt ¼
1

Oða;FÞ
dF:
4



Once the (positive) frequency has been determined, the period of the oscillations will be given by

TðaÞ ¼

Z jþ2p

j

1

Oða;fÞ
df ¼ 2

Z p

0

1

Oða;fÞ
df; (10)

and the result depends only on a. It can be readily verified that Fðt þ TðaÞÞ ¼ FðtÞ þ 2p and
Fðt þ TðaÞ=2Þ ¼ FðtÞ þ p yielding XðtÞ ¼ Xðt þ TðaÞÞ and XðtÞ ¼ 	Xðt þ TðaÞ=2Þ:

Finally, Eq. (7) together with

_XðtÞ ¼ aOða;FðtÞÞ
qWða;FðtÞÞ

qF
cos FðtÞ 	 Wða;FðtÞÞ sin FðtÞ

� �
; (11)

define a ‘‘synchronous’’ periodic oscillation [2], where all the material points in the system pass
through zero (Xðt
Þ ¼ 0; Fðt
Þ ¼ p=2) or reach their extreme values ðXðt

Þ ¼ 0; Fðt

Þ ¼ 2pÞ
simultaneously. The set, in the phase space, defined by Eqs. (7) and (11) taking the initial
conditions a and j to be independent variables is an invariant set for the dynamical system
associated with the equation of motion, Eq. (1). Thus, this formulation gives also a
characterization of the NNM in the framework of invariant manifold [6,7].

The proposed formulation differs from that given in Ref. [3]

XðtÞ ¼ aWðaÞ cosðOðaÞt þ jÞ; (12)

where the frequency and the mode shape are only dependent on the amplitude. Taking into
account the total phase in the definition of the modal vector allows us considering the modal lines
(in the configuration space) either straight or curved.

3.3. A periodic eigenvalue–eigenfunction problem

The objective now is to characterize the pair ðO;WÞ which defines an NNM. Substituting Eq. (7)
into Eq. (1), using Eq. (8), we get

½M�

d
dðWða;FÞ cos FÞ

dF
Oða;FÞ

� �
dF

Oða;FÞ þ
1

a
FðaWða;FÞ cos FÞ ¼ 0; (13)

where F looks like an independent variable. This variable will therefore be denoted f in what
follows.

Differentiating with respect to f; using the differential rule 2OqO=qf ¼ qO2=qf; Eq. (13)
becomes

LðO2;W;fÞ þ
1

a
FðWa cos fÞ ¼ ½M�W O2 cos fþ

1

2

qO2

qf
sin f

� �
; (14)

where the differential operator L is given by

LðO2;W;fÞ ¼ O2 cos f½M�
q2W

qf2
	 2O2 sin f½M�

qW
qf

þ
1

2

qO2

qf
cos f½M�

qW
qf

: (15)

The frequency function, O; appears in Eq. (14) by its square, O2: So, in the following, we will look
for the pair ðO2;WÞ:
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Recalling

WT
½M�W ¼ 1; (16)

we must solve, for the fixed parameter a, the 2p-periodic nonlinear eigenvalue ðO2Þ-eigenvector
ðWÞ problem defined by Eqs. (14) and (16). These equations reduce to ½K�W ¼ ½M�WO2 in the
linear case.

We will focus on periodic solutions ðO2ða; :Þ;Wða; :ÞÞ which satisfy the following properties:


 f	!ðO2ða;fÞ;Wða;fÞÞ are real-valued functions and (one time, two times) continuously
differentiable on ½0; 2p�;


 8f; ðO2ða;fÞ;Wða;fÞÞ ¼ ðO2ða;	fÞ;Wða;	fÞÞ ¼ ðO2ða;fþ pÞ;Wða;fþ pÞÞ:
Such solutions will be named well-defined periodic solutions.
It can be shown (see Appendix A) that for a well-defined periodic solution of Eqs. (14) and (16)

we always have

8ða;fÞ;O2ða;fÞ40; (17)

and O2 can be expressed in terms of C as

O2ða;fÞ ¼
2

a sin2 f

Z f

0

exp 	

Z f

s
bða; nÞdn

� �
Iða;sÞds

� �
; (18)

where

Iða;fÞ ¼ sin fWT
ða;fÞFðWða;fÞa cos fÞ;

and

bða;fÞ ¼ 2g2ða;fÞ
cos f
sin f

with g2ða;fÞ ¼
qWT

ða;fÞ
qf

½M�
qWða;fÞ

qf
:

Note that inequality (17) ensures the existence of a real positive resonance frequency function O
and Eq. (18) reduces to O2 ¼ WT

½K�W in the linear case.
Moreover, if we assume that the eigenvalues associated with the pair of matrices ð½M�; ½qXFð0Þ�Þ

are distinct and without resonance relations between the associated frequencies then we can prove
that for each a in some neighbourhood of a ¼ 0; there exist n well-defined solutions to Eqs. (14)
and (16). Each solution is unique in some neighbourhood of a ¼ 0 and ðo2

l ;wlÞ where ðo2
l ;wlÞ

denotes the corresponding normal mode of the underlying linear system (3).
Furthermore, as a ! 0; the following limits hold:

sup
f2½0;2p�

j O2ða;fÞ 	 o2
l j! 0; sup

f2½0;2p�
kWða;fÞ 	 wlk ! 0;

sup
f2½0;2p�

sin f
qO2

qf

����
����! 0; sup

f2½0;2p�

qW
qf

����
����

����
����! 0; sup

f2½0;2p�

q2W

qf2

����
����

����
����! 0:

Consequently there exist n NNMs which can be viewed as a continuation of the LNMs of the
underlying linear system (3).
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3.4. A necessary and sufficient condition for the existence of similar NNMs (SNNMs)

As described in Ref. [2], a nonlinear mode is ‘‘similar’’ if the motion in the configuration space
is such that

X iðtÞ

X jðtÞ
¼ ðConstantÞij; (19)

where X i denotes the ith component of X:
This leads to the following statement: an NNM is similar if and only if the ½M�-normalized

vector W does not depend on F:
In this case, Eq. (14), using Eq. (16), reduces to

O2 cos fþ
1

2
sin f

qO2

qf
¼ WT 1

a
FðaW cos fÞ; (20)

and substituting Eq. (20) into Eq. (14) yields

FðaW cos fÞ ¼ ðWTFðaW cos fÞÞ½M�W: (21)

This leads to the following statement: the nonlinear system (1) admits an SNNM if and only if
Eq. (21) possesses a ½M�-normalized f-independent vector solution W: The associated frequency is
given by

O2ða;fÞ ¼
2

a sin2 f

Z f

0

WTFðaW cos sÞ sin sds: (22)

This expression defines a regular, even, 2p-periodic function with respect to f with a Fourier series
of the form O2ða;fÞ ¼

P1

k¼0O
2
2kðaÞ cos 2kf:

Comment: It can be easily checked that any function of the following form yields SNNMs:


 FðXÞ ¼ ½K�Xþ f ðXÞ½K1�X where ½K� and ½K1� are symmetrical and definite positive matrices such
that the eigenvalue problem associated with the pair of matrices ð½M�; ½K�Þ and ð½M�; ½K1�Þ leads
to the same eigenvectors, and f ðXÞ is some even, positive, smooth scalar function (in that case
the mode shapes of the SNNMs coincide with those of the underlying linear system (see example
below);


 FðXÞ ¼ a½M�XþGðXÞ where aX0 and GiðXÞ; i ¼ 1; 2; . . . ; n; are homogeneous polynomials of
degree 2k þ 1:

Example (a multidimensional Duffing equation). Let

FðXÞ ¼ ½K�Xþ lðXT½C�XÞ½K�X;

where ½K� and ½C� are real square matrices, ½K� is symmetrical and positive definite and l is a real
number. Eq. (21) reduces to

½K�W ¼ ðWT
½K�WÞ½M�W:
7



Hence the mode shapes of the SNNMs coincide with those of the underlying linear system ðl ¼ 0Þ:
Let ðop;wpÞ be a normal mode of the linear system. Using wT

p ½M�wp ¼ 1 and wT
p ½K�wp ¼ o2

p;
Eq. (22) gives

O2
pða;fÞ ¼ o2

p þ l
o2

pa2

4
ðwT

p ½C�wpÞð3þ cos 2fÞ:

The pair ðO2
p;wpÞ completely defines an SNNM which tends towards ðo2

p;wpÞ as a tends towards
zero. The normal mode can be a softening or hardening mode depending on the sign of
lðwT

p ½C�wpÞ (provided hypothesis H1 is fulfilled). The corresponding period of the oscillations is
given by (10)

TðaÞ ¼
4

op

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ lwT

p ½C�wpa2

q K
lðwT

p ½C�wpÞa
2

2ð1þ lðwT
p ½C�wpÞa

2Þ

!
;

where Kð:Þ denotes the elliptic function of the first kind. Note that Tða ¼ 0Þ ¼ 2p=op:
It is worth taking this example to compare our approach with the normal form approach as

described, for instance, in Ref. [5]. The two approaches both yield the same geometry of the
manifold in the phase space and the same oscillation period. The main difference focuses on the
representation of the dynamic. The two approaches are of course equivalent.
3.5. A Galerkin procedure for the calculation of the NNMs

Now it is proposed to obtain accurate approximate solutions to Eqs. (14) and (16). We have to
solve a periodic differential equation with known period ð2pÞ: To do this, a Galerkin method is
implemented [10]. The unknown functions (square-frequency O2 and mode shape C), are
expanded into a finite Fourier series with respect to the variable f according to

O2
mða;fÞ ¼

Xm

k¼0

O2
m;2kðaÞ cos 2kf; Wmða;fÞ ¼

Xm

k¼0

Wm;2kðaÞ cos 2kf:

The determining equations read, for k ¼ 0; . . . ;mZ 2p

0

LðO2
m;Wm;fÞ þ

1

a
FðaWm cos fÞ 	 ½M�Wm O2

m cos fþ
1

2

qO2
m

qf
sin f

� �� �
� cosð2k þ 1Þfdf ¼ 0; ð23Þ

Z 2p

0

ðWT
m½M�Wm 	 1Þ cosð2kÞfdf ¼ 0: (24)

This constitutes a set of ðm þ 1Þn þ m þ 1 nonlinear equations for the ðm þ 1Þn þ m þ 1 unknown
coefficients O2

m;2k and Wm;2k: It should be noted that these equations are in agreement with the set
of functions usually used with this method, because due to the symmetrical properties of the
8



various terms with respect to the variable f; the following equationsZ 2p

0

LðO2
m;Wm;fÞ þ

1

a
FðaWm cos fÞ 	 ½M�Wm O2

m cos fþ
1

2

qO2
m

qf
sin f

� �� �
� cos 2kfdf ¼ 0;

Z 2p

0

ðWT
m½M�Wm 	 1Þ cosð2k þ 1Þfdf ¼ 0

are always satisfied for k ¼ 1; . . . ;m:
For given a and m, Eqs. (23) and (24) have to be solved numerically. A Newton–Raphson

method has been implemented with exact Jacobian matrices, together with an incremental-
continuation procedure with respect to the parameters a and/or m. For a ¼ a þ Da or for m ¼

m þ 1; the previous approximate values are used as the starting point. When m is increased, the
ðm þ 1Þ-order coefficients are initially taken to be equal to zero. Solutions of the reduced
equations for m ¼ 0; Z 2p

0

1

a
FðaW0;0 cos fÞ cos fdf	 2p½M�W0;0O2

0;0 ¼ 0;

WT
0;0½M�W0;0 	 1 ¼ 0;

can be used to start the procedure, especially with small values of a, where the solution is close to
the corresponding LNM.

The accuracy of the approximation can be checked, evaluating with respect to m, the L2-norm
of the residual

rmðaÞ ¼

Z 2p

0

LðO2
m;Wm;fÞ þ

1

a
FðaWm cos fÞ 	 ½M�Wm O2

m cos fþ
1

2

qO2
m

qf
sin f

� �����
����

2

df

þ

Z 2p

0

ðWT
m½M�Wm 	 1Þ2df; ð25Þ

and/or this sup-norm.
Once the O2

m;2k’s and Wm;2k’s have reached the desired level of accuracy at the desired amplitude
level a, the differential equation (8) can be solved numerically. The resulting time history, FðtÞ;
allow us to derive the corresponding time histories of the displacement (7) and velocity (11).

3.6. Examples

3.6.1. Example 1

The first example is taken from Ref. [7]

€x1 þ o2
1x1 þ 0:405x3

1 þ 1:34x2
1x2 þ 1:51x1x2

2 þ 0:349x3
2 ¼ 0; (26)

€x2 þ o2
2x2 þ 0:448x3

1 þ 1:51x2
1x2 þ 1:05x1x2

2 þ 4:580x3
2 ¼ 0; (27)

where o1 ¼ 0:689 and o2 ¼ 3:244 denote the natural frequencies of the underlying linear system.
9



The first NNM is depicted in Figs. 1–4 as a continuation of the linearized mode O2
0;0 ¼ 0:6892;

W0;0 ¼ ð1; 0ÞT: The residual rmðaÞ is shown in the Log-linear plot in Fig. 1 for various values
of m. The amplitude a is limited to the domain ½0; 1:88�: The residual decreases with m but the
more a increases, the less the residual decreases. At greater amplitudes the Newton–Raphson
method fails to converge, which indicates that a bifurcation is present. A similar case will be
considered in Example 2. The mode shape Wða;fÞ and the frequency Oða;fÞ are shown
in Fig. 2(a)–(c) for a ðm ¼ 6Þ-harmonics Galerkin approximation. These surfaces are similar to
that of the linear normal mode at small values of a. When a increases, the fluctuations in Wða; 0Þ
go beyond the range of small motions, and large-amplitude motion is generated. At fixed f; the
frequency O increases with the amplitude a. The maximum values of O in the cross-sections
defined by a ¼ Ct are obtained at f ¼ 0 and p by periodicity. The associated period, which
depends only on the amplitude a, is shown in (d). The hardening behaviour of the system is
confirmed.

Fig. 3 gives a picture of the invariant manifold in the phase subspace ðX 1;X 2;Y 1Þ; where the
axis Y 1 corresponds to the velocity variable _x1: This mode is non-similar and it can be established
that this system does not have a similar mode.

The time histories (over two periods) of the periodic motion corresponding to the amplitude
level a ¼ 1:88 are compared with numerical simulation in Fig. 4. On the one hand, Eq. (8) is
numerically solved with the initial condition j ¼ 0 and Eq. (7) is performed using the frequency
Oð1:88;FðtÞÞ and mode shape Wð1:88;FðtÞÞ with (m ¼ 6)-harmonics, while on the other hand, a
direct numerical integration of Eq. (1) with the corresponding initial conditions
ð1:88C1ð1:88; 0Þ; 0; 1:88C2ð1:88; 0Þ; 0Þ in the phase space ðX 1;Y 1;X 2;Y 2Þ is carried out. In both
cases, the Runge–Kutta method was used to solve the associated differential equations. The two
solutions are indistinguishable. The behaviour of the total phase is quasi-linear versus time, due to
the small fluctuations of the modal frequency with respect to f (Fig. 4(a)).

Similar results were obtained for the second NNM as a continuation of the corresponding
linearized mode O2

0;0 ¼ 3:2442; W0;0 ¼ ð0; 1Þ: The m ¼ 3 order approximation was sufficiently
accurate to describe its behaviour.
3.6.2. Example 2

We now consider the two dof nonlinear system

€x1 þ x1 þ ðx1 	 x2Þ
3
¼ 0; (28)

€x2 	 ðx1 	 x2Þ
3
¼ 0: (29)

We first focus on the NNM, starting from O2
0;0 ¼ 0; W0;0 ¼ ð0; 1ÞT; in the range a 2 ½0; 0:5�: The

convergence of the method is illustrated in Fig. 5. The continuation method fails to converge for
a ’ 0:27 indicating that a bifurcation is present. A more sophisticated continuation method, such
as the asymptotic numerical method, could be used to locate the various branches. The ðm ¼ 6Þ-
order Galerkin approximation is sufficiently accurate to describe the NNM, except in a
narrowband around a ¼ 0:27 which is omitted in Figs. 5–7. However, the calculated branch for
a40:27 seems again to be the continuation of the linear mode.
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The following ðm ¼ 6Þ-order approximations were obtained for a ¼ 0:5:

O2ð0:5;fÞ ¼ 0:10894þ 0:01249 cos 2fþ 0:00422 cos 4fþ 0:00371 cos 6f

	 0:0000 cos 8f	 0:00019 cos 10f	 0:00006 cos 12f;

C1ð0:5;fÞ ¼ 0:00746þ 0:23665 cos 2fþ 0:01434 cos 4f	 0:00240 cos 6f

	 0:00120 cos 8f	 0:00005 cos 10fþ 0:00008 cos 12f;

C2ð0:5;fÞ ¼ 0:98576	 0:00353 cos 2f	 0:01402 cos 4f	 0:00158 cos 6f

þ 0:00019 cos 8fþ 0:00014 cos 10fþ 0:00001 cos 12f:

It is worth noting that the series expansions are slowly decreasing.
The following truncated expansions have been obtained for the second NNM:

O2ð0:5;fÞ ¼ 1:35188þ 0:13969 cos 2fþ 0:00160 cos 4f	 0:00002 cos 6f

þ 0:00000 cos 8f	 0:00000 cos 10f	 0:0000 cos 12f;

C1ð0:5;fÞ ¼ 0:97006	 0:00340 cos 2fþ 0:00002 cos 4fþ 0:00000 cos 6f

	 0:00000 cos 8fþ 0:00000 cos 10f	 0:00000 cos 12f;

C2ð0:5;fÞ ¼ 	 0:24263	 0:0133 cos 2fþ 0:00029 cos 4f	 0:00000 cos 6f

þ 0:00000 cos 8f	 0:00000 cos 10f	 0:00000 cos 12f

as a continuation of the LNM O2
0;0 ¼ 1; W0;0 ¼ ð1; 0ÞT:

The two modes are obviously not affected in the same way by the nonlinear terms. The
similarity property is almost satisfied by the second mode whereas the first nonlinear mode is
strongly non-similar.
14



4. General restoring force case

Throughout this section, we only assume H1.
4.1. NNMs

In the case where FðXÞ is not necessarily an odd function, the NNMs take the following form:

XðtÞ ¼ Wða;FðtÞÞa cos FðtÞ þ aBða;FðtÞÞ; (30)

_FðtÞ ¼ Oða;FðtÞÞ; Fð0Þ ¼ j; (31)

where B denotes a vector function.
Five quantities are involved in Eqs. (30) and (31): two given scalar quantities, the amplitude

ða40Þ and the phase (j 2 ½0; 2p�), which set the initial conditions of the vibration in NNM motion
on the configuration space. Three unknown functions, W; O and B that will be referred to here as
the modal vector, the modal or resonance frequency and the bias term of the NNM, respectively.
The bias term has been added to balance the even cosine terms if the nonlinear function includes
even terms. These functions will be searched for as even periodic function with respect to F with
period p; that is with Fourier series

Bða;fÞ ¼
X1
k¼0

B2kðaÞ cos 2kf:

As in the odd restoring force case, the proposed formulation (30) differs from that given in Ref. [3]
where an approximate solution of the form

XðtÞ ¼ aWðaÞ cosðOðaÞt þ jÞ þ aBðaÞ (32)

has been considered, ignoring the phase dependence on the frequency, mode shape and bias term.
4.2. A periodic eigenvalue–eigenfunction problem

The objective now is to characterize the three functions ðO;W;BÞ which define an NNM.
Substituting Eq. (30) into Eq. (1), Eqs. (14) and (16) become

LðO2;W;fÞ þ
1

a
FðWa cos fþ aBÞ þ O2½M�

q2B

qf2
þ

1

2

qO2

qf
½M�

qB
qf

¼ ½M�W O2 cos fþ
1

2

qO2

qf
sin f

� �
; ð33Þ

WT
½M�W ¼ 1; (34)

where the operator L is still given by Eq. (15).
Apparently we have to solve two equations for three unknowns. Nevertheless we look for

symmetrical p-periodic solutions ðO2ða; :Þ;Wða::Þ;Bða; :ÞÞ which satisfy the following properties
15



(well-defined periodic solutions):


 f	!ðO2ða;fÞ;Wða;fÞ;Bða;fÞÞ are real-valued functions and (one time, two times)-continu-
ously differentiable on ½0; 2p�;


 O2ða;fÞ ¼ O2ða;	fÞ ¼ O2ða;fþ pÞ; Wða;fÞ ¼ Wða;	fÞ ¼ Wða;fþ pÞ; and Bða;fÞ ¼
Bð0;	fÞ ¼ Bða;fþ pÞ:

Consequently, using the decomposition

FðWða;fÞa cos fþ aBða;fÞÞ ¼ Foddða;W;B;fÞ þ Fevenða;W;B;fÞ;

where Foddða;W;B;fÞ (resp. Fevenða;W;B;fÞ) stands for the odd (resp. even) cosine terms in the
Fourier series of FðWða;fÞa cos fþ aBða;fÞÞ with respect to f; the above problem (defined by
Eqs. (33) and (34)) can be rewritten into

LðO2;W;fÞ þ
1

a
Foddða;W;B;fÞ 	 ½M�WðO2 cos fþ

1

2

qO2

qf
sin fÞ ¼ 0; (35)

O2½M�
q2B

qf2
þ

1

2

qO2

qf
½M�

qB
qf

þ
1

a
Fevenða;W;B;fÞ ¼ 0; (36)

WT
½M�W ¼ 1: (37)

In the case of a restoring vector force function of the form (4)

FðXÞ ¼ ½K�XþQðX;XÞ þ CðX;X;XÞ; (38)

it is easy to show that

Fevenða;W;B;fÞ ¼ ½K�aBþQðaW cos f; aW cos fÞ

þ QðaB; aBÞ þ CðaW cos f; aW cos f; aBÞ

þ CðaW cos f; aB; aW cos fÞ

þ CðaB; aW cos f; aW cos fÞ þ CðaB; aB; aBÞ;

and

Foddða;W;B;fÞ ¼ ½K�aW cos fþQðaW cos f; aBÞ

þ QðaB; aW cos fÞ þ CðaW cos f; aW cos f; aW cos fÞ

þ CðaW cos f; aB; aBÞ þ CðaB; aW cos f; aBÞ

þ CðaB; aB; aW cos fÞ;

where the last equation can be re-written as

Foddða;W;B;fÞ ¼ a cos f½qXFðaBÞ�W þ a3 cos3 fCðW;W;WÞ: (39)

Substituting Eq. (39) into Eq. (35) and using the same arguments as in Appendix A, it can be
shown that a well-defined periodic solution of Eqs. (35)–(37) satisfies

8ða;fÞ; O2ða;fÞ40: (40)
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4.3. A Galerkin procedure for the calculation of the NNMs

As in the odd restoring force case, an accurate approximate solutions of Eqs. (35)–(37) can be
obtained implementing a Galerkin method. The unknown functions are searched for in the form

O2
mða;fÞ ¼

Xm

k¼0

O2
m;2kðaÞ cos 2kf; Wmða;fÞ ¼

Xm

k¼0

Wm;2kðaÞ cos 2kf;

Bmða;fÞ ¼
Xm

k¼0

Bm;2kðaÞ cos 2kf;

where m denotes the order of the truncated series.
The corresponding determining equations readZ 2p

0

LðO2
m;Wm;fÞ þ

1

a
Foddða;Wm;Bm;fÞ 	 ½M�Wm O2

m cos fþ
1

2

qO2
m

qf
sin f

� �� �
� cosð2k þ 1Þfdf ¼ 0;

Z 2p

0

O2
m½M�

q2Bm

qf2
þ

1

2

qO2
m

qf
½M�

qBm

qf
þ

1

a
Fevenða;Wm;Bm;fÞ

� �
cos 2kfdf ¼ 0;

Z 2p

0

ðWT
m½M�Wm 	 1Þ cos 2kfdf ¼ 0;

for k ¼ 0; . . . ;m: This constitutes a set of 2nðm þ 1Þ þ m þ 1 nonlinear equations for the 2nðm þ

1Þ þ m þ 1 unknown coefficients Wm;2k; Bm;2k; and O2
m;2k:

As previously, an incremental-continuation numerical procedure based on the Newton–Raph-
son algorithm can be implemented.

4.4. Example 3

Here we consider a two dof nonlinear system (see Ref. [13]) composed of a mass m connected to
two springs (see Fig. 8). Under the assumption of large displacement the strain energy is given by

W ¼ 1
2

k1e2
1 þ

1
2

k2e2
2;

where

ei ¼
xi

L
þ

1

2

x1

L

� 
2

þ
x2

L

� 
2
� �

;

denotes the strain–displacement of the rth spring, the equations of motion can be written,
assuming L ¼ 1; as follows:

€x1 þ o2
1x1 þ

1
2
o2

1ð3x2
1 þ x2

2Þ þ o2
2x1x2 þ

1
2
ðo2

1 þ o2
2Þx1ðx

2
1 þ x2

2Þ ¼ 0; (41)

€x2 þ o2
2x2 þ

1
2o

2
2ð3x2

2 þ x2
1Þ þ o2

1x1x2 þ
1
2 ðo

2
1 þ o2

2Þx2ðx
2
1 þ x2

2Þ ¼ 0; (42)
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Fig. 8. Example 3—two dof nonlinear system with one mass.
where o2
1 ¼ k1=m; o2

2 ¼ k2=m: The underlying linear system is uncoupled due to the orthogonal
configuration of the two springs at rest.

The results presented here correspond to the following parameter values: o1 ¼ 1 and o2 ¼ 2;
reflecting the presence of a two-order internal resonance, o2 ¼ 2o1; of the underlying linear
system at the static equilibrium point X0 ¼ ð0; 0Þ: The procedure outlined above was applied to
generate the first two NNMs with an accurate ðm ¼ 4Þ-Galerkin approximation for the selected
amplitude ranges. Assumption H2 being not satisfied, the additive term Bða;FÞ is different from
zero.

The behaviour of the first NNM is illustrated in Figs. 9–12. The second nonlinear mode is
depicted in Figs. 13–16. We can observe that the influence of the even terms in the Fourier series
increases with a. In both cases, the time histories of the periodic motions obtained using the
proposed formulation (with the initial condition f ¼ 0) and the direct numerical integration of
Eqs. (41) and (42) are indistinguishable.
5. Conclusion and further studies

The NNMs have been formulated, as in the linear case, in terms of frequency and mode shape
vector with the distinctive feature that these quantities are amplitude and total phase dependent.
The formulation describes the NNM in terms of synchronous periodic oscillation as well as in
terms of a two-dimensional invariant set of the dynamical system. So, the vibratory properties are
distinguished from the geometrical properties.

The frequency and mode shape vector provide the solution to a nonlinear eigenvector–eigen-
value 2p-periodic differential problem. As in the linear case, the eigenvalue (frequency) is always
18
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Fig. 9. Example 3—behaviour of the first nonlinear normal mode. In plots (a)–(d): m ¼ 4:
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Fig. 10. Example 3—behaviour of the first nonlinear normal mode (continued). In plots (a) and (b): m ¼ 4: In plot (b):

m ¼ 0 (continuous line), m ¼ 1; 3 and 4 (dashed lines).
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Fig. 11. Example 3—behaviour of the first nonlinear normal mode (continued). In plot (a): invariant manifold in the

phase subspace ðX 1;Y 1;X 2Þ with m ¼ 4 . In plot (b): modal lines in the phase subspace ðX 1;Y 1Þ (m ¼ 4) for a ¼ 0:1 and

0.41. In plot (c): modal lines in the configuration space ðX 1;X 2Þ (m ¼ 4) for a ¼ 0:1 and 0.41.
positive and can be expressed in terms of the eigenvector (mode shape). The eigenvector–
eigenvalue 2p-periodic problem is numerically solved using the classical Galerkin procedure in the
space of 2p-periodic vector functions. It should be noted that the zero-order solution reduced to
the Szemplinska-Stupnicka [3] approach. Once the frequency is obtained, the period of the
associated vibratory motion is easily deduced. It only depends on the amplitude. It seems that the
presence of internal resonances in the underlying linear system does not require particular
attention in these calculations.

The above formulation can be easily extended to damped autonomous nonlinear mechanical
systems by introducing a scalar damping coefficient also depending upon the amplitude and the
total phase. The computational Galerkin method must be modified accordingly [14].

It would be interesting for applications to express the general solution of system (1) under
the form

XðtÞ ¼
Xn

l¼1

Wlða;UðtÞÞal cos FlðtÞ;
20



0 2.5 5 7.5 10 12.5 15 17.5
t

0

1

2

3

4

5

6

φ

0 2.5 5 7.5 10 12.5 15 17.5
t

-0.4

-0.2

0

0.2

x 1

0 2.5 5 7.5 10 12.5 15 17.5
t

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

x 2

(a)

(b) (c)

Fig. 12. Example 3—time histories of the periodic motion for the first nonlinear normal mode: a ¼ 0:44 and j ¼ 0: In
plot (a): F versus time obtained by solving numerically Eq. (31). In plots (b) and (c): x1 and x2 versus time obtained

from Eqs. (30) and (31) (dashed line) and by direct simulation of Eqs. (41) and (42) (continuous line).
_FlðtÞ ¼ Olða;FlðtÞÞ; Flð0Þ ¼ jl ; for l ¼ 1; . . . ; n;

where the pair ðWl ;OlÞ stands for the l-(coupled) mode, and a ¼ ða1; a2; . . . ; anÞ
T; U ¼

ðF1;F2; . . . ;FnÞ; denote the amplitude vector and the total phase vector, respectively. A promising
approach has been proposed in Refs. [15,16] for solving nonlinear systems with wide-band
random excitations.
Appendix A

In this appendix, properties (17) and (18) of a well-defined periodic solution of Eqs. (14) and
(16) are derived.

Multiplying Eq. (14) by WT and using

WT
½M�W ¼ 1; WT

½M�
qW
qf

¼ 0; WT
½M�

q2W

qf2
¼ 	

qWT

qf
½M�

qW
qf

;
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Fig. 13. Example 3—behaviour of the second nonlinear normal mode. In plots (a)–(d): m ¼ 4:
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Fig. 14. Example 3—behaviour of the second nonlinear normal mode (continued). In plots (a) and (b): m ¼ 4: In plot
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Fig. 15. Example 3—behaviour of the second nonlinear normal mode (continued). In plot (a): invariant manifold in the
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we obtain

ðg2ða;fÞ þ 1ÞO2 cos fþ
1

2
sin f

qO2

qf
¼

1

a
WTFðWa cos fÞ: (43)

Let O2ða;f

Þ be some extremum value of O2ða; :Þ on ½0; 2p�: Multiplying Eq. (43) by cosðf


Þ gives

ðg2ða;f

Þ þ 1Þcos2 f
O2 ¼

1

a2
WTa cos f
FðWa cos f


Þ; (44)

where we have used that ðqO2=qfÞða;f

Þ ¼ 0: By H1, the right-hand side of Eq. (44) is non-

negative. Consequently, any extremum value will be also non-negative and the function O2ða; :Þ
will be non-negative everywhere on ½0; 2p�:

Setting Y ¼ O2 sin2 f; Eq. (43) becomes

bða;fÞY þ
qY

qf
¼

2

a
sin fWTFðWa cos fÞ; (45)
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Fig. 16. Example 3—time histories of the periodic motion for the second NNM: a ¼ 0:8 and j ¼ 0: In plot (a): F versus

time obtained by solving numerically Eq. (31). In plots (b) and (c): x1 and x2 versus time obtained from Eqs. (30) and

(31) (dashed line) and by direct simulation of Eqs. (41) and (42) (continuous line).
and the constant variation formula gives

Y ðfÞ ¼
2

a
exp 	

Z f

0

bða; nÞdn
� �� � Z f

0

exp

Z s

0

bða; nÞdn
� �

Iða; sÞds
� �

: (46)

Owing to the symmetry properties of a well-defined periodic solution for W (Wða;fÞ ¼
Wða;	fÞ ¼ Wða;fþ pÞ), Eq. (46) makes sense as a p-periodic solution of Eq. (45) such that
Y ðpÞ ¼ Y ð0Þ ¼ 0: Iða;fÞ (as well as bða;fÞ) is in fact a regular p-periodic function with respect to
f; having a Fourier series of the form Iða;fÞ ¼

P1

k¼1 I2kðaÞ sin 2kf; so thatR p
0 expð

R s
0 bða; nÞdnÞIða;sÞds ¼ 0: Finally, expression (18) makes sense for f ¼ 0 and p; and

can be expanded into O2ða;fÞ ¼
P1

k¼0 O
2
2k cos 2kf:
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