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Abstract: In this note I describe the structure of the biset functor B× sending a

p-group P to the group of units of its Burnside ring B(P ). In particular, I show that B×

is a rational biset functor. It follows that if P is a p-group, the structure of B×(P ) can

be read from a genetic basis of P : the group B×(P ) is an elementary abelian 2-group of

rank equal to the number isomorphism classes of rational irreducible representations of P

whose type is trivial, cyclic of order 2, or dihedral.

1. Introduction

If G is a finite group, denote by B(G) the Burnside ring of G, i.e. the
Grothendieck ring of the category of finite G-sets (see e.g. [2]). The ques-
tion of structure of the multiplicative group B×(G) has been studied by
T. tom Dieck ([13]), T. Matsuda ([11]), T. Matsuda and T. Miyata ([12]),
T. Yoshida ([16]), by geometric and algebraic methods.

Recently, E. Yalçin wrote a very nice paper ([14]), in which he proves an
induction theorem for B× for 2-groups, which says that if P is a 2-group, then
any element of B×(P ) is a sum of elements obtained by inflation and tensor
induction from sections (T, S) of P , such that T/S is trivial or dihedral.

The main theorem of the present paper implies a more precise form of
Yalçin’s Theorem, but the proof is independent, and uses entirely different
methods. In particular, the biset functor techniques developed in [1], [4]
and [6], lead to a precise description of B×(P ), when P is a 2-group (actually
also for arbitrary p-groups, but the case p odd is known to be rather trivial).
The main ingredient consists to show that B× is a rational biset functor,
and this is done by showing that the functor B× (restricted to p-groups) is
a subfunctor of the functor F2R

∗
Q. This leads to a description of B×(P ) in

AMS Subject Classification : 19A22, 16U60 Keywords : Burnside ring , unit,
biset functor
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terms of a genetic basis of P , or equivalently, in terms of rational irreducible
representations of P .

The paper is organized as follows : in Section 2, I recall the main defini-
tions and notation on biset functors. Section 3 deals with genetic subgroups
and rational biset functors. Section 4 gives a natural exposition of the biset
functor structure of B×. In Section 5, I state results about faithful elements
in B×(P ) for some specific p-groups P . In Section 6, I introduce a natural
transformation of biset functors from B× to F2B

∗. This transformation is
injective, and in Section 7, I show that the image of its restriction to p-groups
is contained in the subfunctor F2R

∗
Q of F2B

∗. This is the key result, leading
in Section 8 to a description of the lattice of subfunctors of the restriction
of B× to p-groups : it is always a uniserial p-biset functor (even simple if p is
odd). This also provides an answer to the question, raised by Yalçin ([14]),
of the surjectivity of the exponential map B(P ) → B×(P ) for a 2-group P .

2. Biset functors

2.1. Notation and Definition : Denote by C the following category :

• The objects of C are the finite groups.

• If G and H are finite p-groups, then HomC(G,H) = B(H × Gop) is
the Burnside group of finite (H,G)-bisets. An element of this group is
called a virtual (H,G)-biset.

• The composition of morphisms is Z-bilinear, and if G, H, K are finite
groups, if U is a finite (H,G)-biset, and V is a finite (K,H)-biset,
then the composition of (the isomorphism classes of) V and U is the
(isomorphism class) of V×HU . The identity morphism IdG of the group
G is the class of the set G, with left and right action by multiplication.

If p is a prime number, denote by Cp the full subcategory of C whose objects
are finite p-groups.

Let F denote the category of additive functors from C to the category
Z-Mod of abelian groups. An object of F is called a biset functor. Similarly,
denote by Fp the category of additive functors from Cp to Z-Mod. An object
of Fp will be called a p-biset functor.

If F is an object of F , ifG andH are finite groups, and if ϕ ∈ HomC(G,H),
then the image of w ∈ F (G) by the map F (ϕ) will generally be denoted
by ϕ(w). The composition ψ ◦ ϕ of morphisms ϕ ∈ HomC(G,H) and
ψ ∈ HomC(H,K) will also be denoted by ψ ×H ϕ.
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2.2. Notation : The Burnside biset functor (defined e.g. as the Yoneda
functor HomC(1,−)), will be denoted by B. The functor of rational repre-
sentations (see Section 1 of [4]) will be denoted by RQ. The restriction of B
and RQ to Cp will also be denoted by B and RQ.

2.3. Examples : Recall that this formalism of bisets gives a single frame-
work for the usual operations of induction, restriction, inflation, deflation,
and transport by isomorphism via the following correspondences :

• If H is a subgroup of G, then let IndG
H ∈ HomC(H,G) denote the set G,

with left action of G and right action of H by multiplication.

• If H is a subgroup of G, then let ResG
H ∈ HomC(G,H) denote the set G,

with left action of H and right action of G by multiplication.

• If N ⊳G, and H = G/N , then let InfGH ∈ HomC(H,G) denote the set H ,
with left action of G by projection and multiplication, and right action
of H by multiplication.

• If N ⊳G, and H = G/N , then let DefGH ∈ HomC(G,H) denote the
set H , with left action of H by multiplication, and right action of G by
projection and multiplication.

• If ϕ : G → H is a group isomorphism, then let IsoH
G = IsoH

G (ϕ) ∈
HomC(G,H) denote the set H , with left action of H by multiplication,
and right action of G by taking image by ϕ, and then multiplying in H .

2.4. Definition : A section of the group G is a pair (T, S) of subgroups
of G such that S ⊳T .

2.5. Notation : If (T, S) is a section of G, set

IndinfGT/S = IndG
T InfTT/S and DefresG

T/S = DefTT/SResG
T .

Then IndinfGT/S
∼= G/S as (G, T/S)-biset, and DefresG

T/S
∼= S\G as (T/S,G)-

biset.

2.6. Notation : Let G and H be groups, let U be an (H,G)-biset, and let
u ∈ U . If T is a subgroup of H, set

T u = {g ∈ G | ∃t ∈ T, tu = ug} .

This is a subgroup of G. Similarly, if S is a subgroup of G, set

uS = {h ∈ H | ∃s ∈ S, us = hu} .

This is a subgroup of H.
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2.7. Lemma : Let G and H be groups, let U be an (H,G)-biset, and let S
be a subgroup of G. Then there is an isomorphism of H-sets

U/G =
⊔

u∈[H\U/S]

H/uS ,

where [H\U/S] is a set of representatives of (H,S)-orbits on U .

Proof: Indeed H\U/S is the set of orbits of H on U/S, and uS is the
stabilizer of uS in H .

2.8. Opposite bisets : If G and H are finite groups, and if U is a finite
(H,G)-biset, then let Uop denote the opposite biset : as a set, it is equal
to U , and it is a (G,H)-biset for the following action

∀h ∈ H, ∀u ∈ U, ∀g ∈ G, g.u.h (in Uop) = h−1ug−1 (in U) .

This definition can be extended by linearity, to give an isomorphism

ϕ 7→ ϕop : HomC(G,H) → HomC(H,G) .

It is easy to check that (ϕ ◦ψ)op = ψop ◦ ϕop, with obvious notation, and the
functor

{

G 7→ G
ϕ 7→ ϕop

is an equivalence of categories from C to the dual category, which restricts
to an equivalence of Cp to its dual category.

2.9. Example : if G is a finite group, and (T, S) is a section of G, then

(IndinfGT/S)op ∼= DefresG
T/S

as (T/S,G)-bisets.

2.10. Definition and Notation : If F is a biset functor, the dual biset
functor F ∗ is defined by

F ∗(G) = HomZ(F (G),Z) ,

for a finite group G, and by

F ∗(ϕ)(α) = α ◦ F (ϕop) ,

for any α ∈ F ∗(G), any finite group H, and any ϕ ∈ HomC(G,H).
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2.11. Some idempotents in EndC(G) : Let G be a finite group, and let
N ⊳G. Then it is clear from the definitions that

DefGG/N ◦ InfGG/N = (G/N) ×G (G/N) = IdG/N .

It follows that the composition eG
N = InfGG/N ◦ DefGG/N is an idempotent in

EndC(G). Moreover, if M and N are normal subgroups of G, then eG
N ◦ eG

M =
eG

NM . Moreover eG
1 = IdG.

2.12. Lemma : ([6] Lemma 2.5) If N ⊳G, define fG
N ∈ EndC(G) by

fG
N =

∑

M ⊳ G
N⊆M

µ⊳ G(N,M)eG
M ,

where µ⊳ G denotes the Möbius function of the poset of normal subgroups of G.
Then the elements fG

N , for N ⊳G, are orthogonal idempotents of EndC(G),
and their sum is equal to IdG.

Moreover, it is easy to check from the definition that for N ⊳G,

(2.13) fG
N = InfGG/N ◦ f

G/N
1

◦ DefGG/N ,

and
eG

N = InfGG/N ◦ DefGG/N =
∑

M ⊳ G
M⊇N

fG
M .

2.14. Lemma : If N is a non trivial normal subgroup of G, then

fG
1
◦ InfGG/N = 0 and DefGG/N ◦ fG

1
= 0 .

Proof: Indeed by 2.13

fG
1
◦ InfGG/N = fG

1
◦ InfGG/N ◦ DefGG/N ◦ InfGG/N

=
∑

M ⊳ N
M⊇N

fG
1
fG

M InfGG/N = 0 ,

since M 6= 1 when M ⊇ N . The other equality of the lemma follows by
taking opposite bisets.

2.15. Remark : It was also shown in Section 2.7 of [6] that if P is a p-group,
then

fP
1

=
∑

N⊆Ω1Z(P )

µ(1, N)P/N ,

where µ is the Möbius function of the poset of subgroups of N , and Ω1Z(P )
is the subgroup of the centre of P consisting of elements of order at most p.
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2.16. Notation and Definition : If F is a a biset functor, and if G is
a finite group, then the idempotent fG

1
of EndC(G) acts on F (G). Its image

∂F (G) = fG
1
F (G)

is a direct summand of F (G) as Z-module : it will be called the set of faithful
elements of F (G).

The reason for this name is that any element u ∈ F (G) which is inflated
from a proper quotient of G is such that F (fG

1
)u = 0. From Lemma 2.14, it

is also clear that
∂F (G) =

⋂

1 6=N ⊳ G

Ker DefGG/N .

3. Genetic subgroups and rational p-biset functors

The following definitions are essentially taken from Section 2 of [7] :

3.1. Definition and Notation : Let P be a finite p-group. If Q is a
subgroup of P , denote by ZP (Q) the subgroup of P defined by

ZP (Q)/Q = Z(NP (Q)/Q) .

A subgroup Q of P is called genetic if it satisfies the following two conditions :

1. The group NP (Q)/Q has normal p-rank 1.

2. If x ∈ P , then Qx ∩ ZP (Q) ⊆ Q if and only if Qx = Q.

Two genetic subgroups Q and R are said to be linked modulo P (notation
Q P R), if there exist elements x and y in P such that Qx ∩ ZP (R) ⊆ R
and Ry ∩ ZP (Q) ⊆ Q.

This relation is an equivalence relation on the set of genetic subgroups
of P . The set of equivalence classes is in one to one correspondence with
the set of isomorphism classes of rational irreducible representations of P . A
genetic basis of P is a set of representatives of these equivalences classes.

If V is an irreducible representation of P , then the type of V is the iso-
morphism class of the group NP (Q)/Q, where Q is a genetic subgroup of P
in the equivalence class corresponding to V by the above bijection.

3.2. Remark : The definition of the relation P given here is different
from Definition 2.9 of [7], but it is equivalent to it, by Lemma 4.5 of [6].

The following is Theorem 3.2 of [6], in a slightly different form :
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3.3. Theorem : Let P be a finite p-group, and G be a genetic basis of P .
Let F be a p-biset functor. Then the map

IG = ⊕Q∈GIndinfPNP (Q)/Q : ⊕Q∈G∂F
(

NP (Q)/Q
)

→ F (P )

is split injective.

3.4. Remark : There are two differences with the initial statement of
Theorem 3.2 of [6] : here I use genetic subgroups instead of genetic sections,
because these two notions are equivalent by Proposition 4.4 of [6]. Also the
definition of the map IG is apparently different : with the notation of [6],
the map IG is the sum of the maps F (aQ), where aQ is the trivial (P, P/P )-

biset if Q = P , and aQ is the virtual (P,NP (Q)/Q)-biset P/Q − P/Q̂ if

Q 6= P , where Q̂ is the unique subgroup of ZP (Q) containing Q, and such
that |Q̂ : Q| = p. But it is easy to see that the restriction of the map
F (P/Q̂) to ∂F (NP (Q)/Q) is actually 0. Moreover, the map F (aQ) is equal
to IndinfPNP (Q)/Q. So in fact, the above map IG is the same as the one defined
in Theorem 3.2 of [6].

3.5. Definition : A p-biset functor F is called rational if for any finite
p-group P and any genetic basis G of P , the map IG is an isomorphism.

It was shown in Proposition 7.4 of [6] that subfunctors, quotient functors,
and dual functors of rational p-biset functors are rational.

4. The functor of units of the Burnside ring

4.1. Notation : If G is a finite group, let B×(G) denote the group of units
of the Burnside ring B(G).

If G and H are finite groups, if U is a finite (H,G)-biset, recall that Uop

denotes the (G,H)-biset obtained from U by reversing the actions. If X is a
finite G-set, then TU(X) = HomG(Uop, X) is a finite H-set. The correspon-
dence X 7→ TU (X) can be extended to a correspondence TU : B(G) → B(H),
which is multiplicative (i.e. TU (ab) = TU(a)TU(b) for any a, b ∈ B(G)), and
preserves identity elements (i.e. TU(G/G) = H/H). This extension to B(G)
can be built by different means, and the following is described in Section 4.1
of [3] : if a is an element of B(G), then there exists a finite G-poset X such
that a is equal to the Lefschetz invariant ΛX . Now HomG(Uop, X) has a
natural structure of H-poset, and one can set TU(a) = ΛHomG(Uop,X). It is
an element of B(H), which does not depend of the choice of the poset X

7



such that a = ΛX , because with Notation 2.6 and Lemma 2.7, for any sub-
group T of H the Euler-Poincaré characteristics χ

(

HomG(Uop, X)T
)

can be
computed by

χ
(

HomG(Uop, X)T
)

=
∏

u∈T\U/G

χ(XT u

) ,

and the latter only depends on the element ΛX of B(G). As a consequence,
one has that

|TU(a)T | =
∏

u∈T\U/G

|aT u

| .

It follows in particular that TU

(

B×(G)
)

⊆ B×(H). Moreover, it is easy
to check that TU = TU ′ if U and U ′ are isomorphic (H,G)-bisets, that
TU1⊔U2

(a) = TU1
(a)TU2

(a) for any (H,G)-bisets U1 and U2, and any a ∈ B(G).
It follows that there is a well defined bilinear pairing

B(H ×Gop) × B×(G) → B×(H) ,

extending the correspondence (U, a) 7→ TU(a). If f ∈ B(H×Gop) (i.e. if f is
a virtual (H,G)-biset), the corresponding group homomorphism B×(G) →
B×(H) will be denoted by B×(f).

Now let K be a third group, and V be a finite (K,H)-set. If X is a finite
G-set, there is a canonical isomorphism of K-sets

HomH

(

V op,HomG(Uop, X)
)

∼= HomG

(

(V ×H U)op, X
)

,

showing that TV ◦ TU = TV ×HU .
It follows more generally that B×(g) ◦ B×(f) = B×(g ×H f) for any

g ∈ B(K ×Hop) and any f ∈ B(H ×Gop). Finally this shows :

4.2. Proposition : The correspondence sending a finite group G to B×(G),
and an homomorphism f in C to B×(f), is a biset functor.

4.3. Remark and Notation : The restriction and inflation maps for the
functor B× are the usual ones for the functor B. The deflation map DefGG/N

corresponds to taking fixed points under N (so it does not coincide with the
usual deflation map for B, which consist in taking orbits under N).

Similarly, if H is a subgroup of G, the induction map from H to G for the
functor B× is sometimes called multiplicative induction. I will call it tensor
induction, and denote it by TenG

H . If (T, S) is a section of G, I will also set
TeninfPT/S = TenP

T InfTT/S.
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5. Faithful elements in B×(G)

5.1. Notation and definition : Let G be a finite group. Denote by [sG]
a set of representatives of conjugacy classes of subgroups of G. Then the
elements G/L, for L ∈ [sG], form a basis of B(G) over Z, called the canonical
basis of B(G).

The primitive idempotents of QB(G) are also indexed by [sG] : if H ∈
[sG], the correspondent idempotent eG

H is equal to

eG
H =

1

|NG(H)|

∑

K⊆H

|K|µ(K,H)G/K ,

where µ(K,H) denotes the Möbius function of the poset of subgroups of G,
ordered by inclusion (see [10], [15], or [2]).

Recall that if a ∈ B(G), then a · eG
H = |aH |eG

H so that a can be written as

a =
∑

H∈[sG]

|aH |eG
H .

Now a ∈ B×(G) if and only if a ∈ B(G) and |aH | ∈ {±1} for any H ∈ [sG],
or equivalently if a2 = G/G. If now P is a p-group, and if p 6= 2, since
|aH | ≡ |a| (p) for any subgroup |H| of P , it follows that |aH | = |a| for any
H , thus a = ±P/P . This shows the following well know

5.2. Lemma : If P is an odd order p-group, then B×(P ) = {±P/P}.

5.3. Remark : So in the sequel, when considering p-groups, the only really
non-trivial case will occur for p = 2. However, some statements will be given
for arbitrary p-groups.

5.4. Notation : If G is a finite group, denote by FG the set of subgroups H
of G such that H ∩ Z(G) = 1, and set [FG] = FG ∩ [sG].

5.5. Lemma : Let G be a finite group. If |Z(G)| > 2, then ∂B×(G) is
trivial.

Proof: Indeed let a ∈ ∂B×(G). Then DefGG/Na is the identity element of
B×(G/N), for any non-trivial normal subgroup N of G. Now suppose that
H is a subgroup of G containing N . Then

|aH | = |DefresG
NG(H)/Ha| = |Iso

NG(H)/H
NG/N (H/N)/(H/N)Defres

G/N
NG/N (H/N)DefGG/Na| = 1 .

In particular |aH | = 1 if H∩Z(G) 6= 1. It follows that there exists a subset A
of [FG] such that

a = G/G− 2
∑

H∈A

eG
H .
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If A 6= ∅, i.e. if a 6= G/G, let L be a maximal element of A. Then L 6= G,
because Z(G) 6= 1. The coefficient of G/L in the expression of a in the
canonical basis of B(G) is equal to

−2
|L|µ(L,L)

|NG(L)|
= −2

|L|

|NG(L)|
.

This is moreover an integer, since a ∈ B×(G). It follows that |NG(L) : L| is
equal to 1 or 2. But since L ∩ Z(G) = 1, the group Z(G) embeds into the
group NG(L)/L. Hence |NG(L) : L| ≥ 3, and this contradiction shows that
A = ∅, thus a = G/G.

5.6. Lemma : Let P be a finite 2-group, of order at least 4, and suppose
that the maximal elements of FP have order 2. If |P | ≥ 2|FP |, then ∂B×(P )
is trivial.

Proof: Let a ∈ ∂B×(P ). By the argument of the previous proof, there exists
a subset A of [FP ] such that

a = P/P − 2
∑

H∈A

eP
H .

The hypothesis implies that µ(1, H) = −1 for any non-trivial element H
of [FP ]. Now if 1 ∈ A, the coefficient of P/1 in the expression of a in the
canonical basis of B(P ) is equal to

−2
1

|P |
+ 2

∑

H∈A−{1}

1

|NP (H)|
= −2

1

|P |
+ 2

∑

H∈A−{1}

1

|P |
=

−4 + 2|A|

|P |
,

where A is the set of subgroups of P which are conjugate to some element
of A. This coefficient is an integer if a ∈ B(P ), so |P | divides 2|A| − 4.
But |A| is always odd, since the trivial subgroup is the only normal subgroup
of P which is in A in this case. Thus 2|A| − 4 is congruent to 2 modulo 4,
and cannot be divisible by |P |, since |P | ≥ 4.

So 1 /∈ A, and the coefficient of P/1 in the expression of a is equal to

2
∑

H∈A

1

|NP (H)|
=

2|A|

|P |
.

Now this is an integer, so 2|A| is congruent to 0 or 1 modulo the order of P ,
which is even since |P | ≥ 2|FP | ≥ 2. Thus 1 /∈ A, and 2|A| is a multiple
of |P |. But 2|A| < 2|FP | since 1 /∈ A. So if 2|FP | ≤ |P |, it follows that A is
empty, and A is empty. Hence a = P/P , as was to be shown.
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5.7. Corollary : Let P be a finite 2-group. Then the group ∂B×(P ) is
trivial in each of the following cases :

1. P is abelian of order at least 3.

2. P is generalized quaternion or semi-dihedral.

5.8. Remark : Case 1 follows easily from Matsuda’s Theorem ([11]). Case 2
follows from Lemma 4.6 of Yalçin ([14]).

Proof: Case 1 follows from Lemma 5.5. In Case 2, if P is generalized
quaternion, then FP = {1}, thus |P | ≥ 2|FP |. And if P is semidihedral, then
there is a unique conjugacy class of non-trivial subgroups H of P such that
H ∩Z(P ) = 1. Such a group has order 2, and NP (H) = HZ(P ) has order 4.

Thus |FP | = 1 + |P |
4

, and |P | ≥ 2|FP | also in this case.

5.9. Corollary : [Yalçin [14] Lemma 4.6 and Lemma 5.2] Let P be a
p-group of normal p-rank 1. Then ∂B×(P ) is trivial, except if P is

• the trivial group, and ∂B×(P ) is the group of order 2 generated by
υP = −P/P .

• cyclic of order 2, and ∂B×(P ) is the group of order 2 generated by

υP = P/P − P/1 .

• dihedral of order at least 16, and then ∂B×(P ) is the group of order 2
generated by the element

υP = P/P + P/1 − P/I − P/J ,

where I and J are non-central subgroups of order 2 of P , not conjugate
in P .

Proof: Lemma 5.2 and Lemma 5.5 show that ∂B×(P ) is trivial, when P has
normal p-rank 1, and P is not trivial, cyclic of order 2, or dihedral : indeed
then, the group P is cyclic of order at least 3, or generalized quaternion, or
semi-dihedral.

Now if P is trivial, then obviously B(P ) = Z, so B×(P ) = ∂B×(P ) =
{±P/P}. If P has order 2, then clearly B×(P ) consists of ±P/P and
±(P/P − P/1), and ∂B×(P ) = {P/P, P/P − P/1}. Finally, if P is di-
hedral, the set FP consists of the trivial group, and of two conjugacy classes
of subgroups H of order 2 of P , and NP (H) = HZ for each of these, where Z
is the centre of P . Thus

|FP | = 1 + 2
|P |

4
= 1 +

|P |

2
.
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Now with the notation of the proof of Lemma 5.6, one has that 2|A| ≡ 0 (|P |),
and 2|A| < |FP | = 2 + |P |. So either A = ∅, and in this case a = P/P , or
2|A| = |P |, which means that A is the whole set of non-trivial elements of FP .
In this case

a = P/P − 2(eP
I + eP

J ) ,

where I and J are non-central subgroups of order 2 of P , not conjugate in P .
It is then easy to check that

a = P/P + P/1 − (P/I + P/J) ,

so a is indeed in B(P ), hence in B×(P ). Moreover DefPP/Za is the identity

element of B×(P/Z), so a = fP
1
a, and a ∈ ∂B×(P ). This completes the

proof.

6. A morphism of biset functors

If k is any commutative ring, there is an obvious isomorphism of biset
functor from kB∗ = k ⊗Z B

∗ to Hom(B, k), which is defined for a group G
by sending the element α =

∑

i αi ⊗ ψi, where αi ∈ k and ψi ∈ B∗(G), to
the linear form α̃ : B(G) → k defined by α̃(G/H) =

∑

i ψi(G/H)αi.

6.1. Notation : Let {±1} = Z× be the group of units of the ring Z. The
unique group isomorphism from {±1} to Z/2Z will be denoted by u 7→ u+.

If G is a finite group, and if a ∈ B×(G), then recall that for each sub-
group S of G, the integer |aS| is equal to ±1. Define a map ǫG : B×(G) →
F2B

∗(G) by setting ǫG(a)(G/S) = |aS|+, for any a ∈ B×(G) and any sub-
group S of G.

6.2. Proposition : The maps ǫG define a injective morphism of biset
functors

ǫ : B× → F2B
∗ .

Proof: The injectivity of the map ǫG is obvious. Now let G and H be
finite groups, and let U be a finite (H,G)-biset. Also denote by U the
corresponding element of B(H ×Gop). If a ∈ B×(G), and if T is a subgroup
of H , then

|B×(U)(a)T | =
∏

u∈T\U/G

|aT u

| .

12



Thus

ǫH
(

B×(U)(a)
)

(H/T ) =





∏

u∈T\U/G

|aT u

|





+

=
∑

u∈T\U/G

|aT u

|+

=
∑

u∈T\U/G

ǫG(a)(G/T u)

= ǫG(a)(Uop/T )

= ǫG(a)(Uop ×H H/T )

= F2B
∗(U)

(

ǫG(a)
)

(H/T )

thus ǫH ◦B×(U) = F2B
∗(U) ◦ ǫG. Since both sides are additive with respect

to U , the same equality holds when U is an arbitrary element of B(H×Gop),
completing the proof.

7. Restriction to p-groups

The additional result that holds for finite p-groups (and not for arbitrary
finite groups) is the Ritter-Segal theorem, which says that the natural trans-
formation B → RQ of biset functors for p-groups, is surjective. By duality,
it follows that the natural transformation i : kR∗

Q → kB∗ is injective, for
any commutative ring k. The following gives a characterization of the image
i(kR∗

Q) inside kB∗ :

7.1. Proposition : Let p be a prime number, let P be a p-group, let k
be a commutative ring.Then the element ϕ ∈ kB∗(P ) lies in i

(

kR∗
Q(P )

)

if

and only if the element DefresP
T/Sϕ lies in i

(

kR∗
Q(T/S)

)

, for any section T/S
of P which is

• elementary abelian of rank 2, or non-abelian of order p3 and exponent p,
if p 6= 2.

• elementary abelian of rank 2, or dihedral of order at least 8, if p = 2.

Proof: Since the image of kR∗
Q is a subfunctor of kB∗, if ϕ ∈ i

(

kR∗
Q(P )

)

,

then DefresP
T/Sϕ ∈ i

(

kR∗
Q(T/S)

)

, for any section (T, S) of P .
Conversely, consider the exact sequence of biset functors over p-groups

0 → K → B → RQ → 0 .

13



Every evaluation of this sequence at a particular p-group is a split exact
sequence of (free) abelian groups. Hence by duality, for any ring k, there is
an exact sequence

0 → kR∗
Q → kB∗ → kK∗ → 0 .

With the identification kB∗ ∼= HomZ(B, k), this means that if P is a p-group,
the element ϕ ∈ RB∗(P ) lies in i

(

kR∗
Q(P )

)

if and only if ϕ
(

K(P )
)

= 0. Now
by Corollary 6.16 of [7], the group K(P ) is the set of linear combinations of
elements of the form IndinfPT/Sθ(κ), where T/S is a section of P , and θ is a
group isomorphism from one of the group listed in the proposition to T/S,
and κ is a specific element of K(T/S) in each case. The proposition follows,
because

ϕ
(

IndinfPT/Sθ(κ)
)

= (DefresP
T/Sϕ)

(

θ(κ)
)

,

and this is zero if DefresP
T/Sϕ lies in i

(

kR∗
Q(T/S)

)

.

7.2. Theorem : Let p be a prime number, and P be a finite p-group. The
image of the map ǫP is contained in i

(

F2R
∗
Q(P )

)

.

Proof: Let a ∈ B×(P ), and let T/S be any section of P . Since

DefresP
T/SiP (a) = iT/SDefresP

T/Sa ,

by Proposition 7.1, it is enough to check that the image of ǫP is contained
in i

(

F2R
∗
Q(P )

)

, when P is elementary abelian of rank 2 or non-abelian of
order p3 and exponent p if p is odd, or when P is elementary abelian of
rank 2 or dihedral if p = 2.

Now if N is a normal subgroup of P , one has that

fP
N iP (a) = InfPP/N

(

iP/N (f
P/N
1

DefPP/Na)
)

.

Thus by induction on the order of P , one can suppose a ∈ ∂B×(P ). But
if P is elementary abelian of rank 2, or if P has odd order, then ∂B×(P )
is trivial, by Lemma 5.2 and Corollary 5.7. Hence there is nothing more to
prove if p is odd. And for p = 2, the only case left is when P is dihedral. In
that case by Corollary 5.9, the group ∂B×(P ) has order 2, generated by the
element

υP =
∑

H∈[sP ]−{I,J}

eP
H − (eP

I + eP
J ) ,

where [sP ] is a set of representatives of conjugacy classes of subgroups of P ,
and where I and J are the elements of [sP ] which have order 2, and are non
central in P . Moreover the element θ(κ) mentioned above is equal to

(P/I ′ − P/I ′Z) − (P/J ′ − P/J ′Z) ,

14



where Z is the centre of P , and I ′ and J ′ are non-central subgroups of order 2
of P , not conjugate in P . Hence up to sign θ(κ) is equal to

δP = (P/I − P/IZ) − (P/J − P/JZ) .

Since ǫP (υP )(P/H) is equal to zero, except if H is conjugate to I or J , and
then ǫP (υP )(P/H) = 1, it follows that ǫP (υP )(δP ) = 1 − 1 = 0, as was to be
shown. This completes the proof.

7.3. Corollary : The p-biset functor B× is rational.

Proof: Indeed, it is isomorphic to a subfunctor of F2R
∗
Q
∼= HomZ(RQ,F2),

which is rational by Proposition 7.4 of [6].

7.4. Theorem : Let P be a p-group. Then B×(P ) is an elementary
abelian 2-group of rank equal to the number of isomorphism classes of rational
irreducible representations of P whose type is trivial, cyclic of order 2, or
dihedral. More precisely :

1. If p 6= 2, then B×(P ) = {±1}.

2. If p = 2, then let G be a genetic basis of P , and let H be the subset
of G consisting of elements Q such that NP (Q)/Q is trivial, cyclic of
order 2, or dihedral. If Q ∈ H, then ∂B×

(

NP (Q)/Q
)

has order 2,
generated by υNP (Q)/Q. Then the set

{TeninfPNP (Q)/QυNP (Q)/Q | Q ∈ H}

is an F2-basis of B×(P ).

Proof: This follows from the definition of a rational biset functor, and from
Corollary 5.9.

7.5. Remark : If P is abelian, then there is a unique genetic basis of P ,
consisting of subgroups Q such that P/Q is cyclic. So in that case, the rank
of B×(P ) is equal 1 plus the number of subgroups of index 2 in P : this gives
a new proof of Matsuda’s Theorem ([11]).

8. The functorial structure of B× for p-groups

In this section, I will describe the lattice of subfunctors of the p-biset
functor B×.
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8.1. The case p 6= 2. If p 6= 2, there is not much to say, since B×(P ) ∼= F2

for any p-group P . In this case, the functor B× is the constant functor ΓF2

introduced in Corollary 8.4 of [8]. It is also isomorphic to the simple func-
tor S1,F2

. In this case, the results of [6] and [7] lead to the following remark-
able version of Theorem 11.2 of [8]:

8.2. Proposition : If p 6= 2, the inclusion B× → F2R
∗
Q leads to a short

exact sequence of p-biset functors

0 → B× → F2R
∗
Q → Dtors → 0 ,

where Dtors is the torsion part of the Dade p-biset functor.

8.3. The case p = 2. There is a bilinear pairing

〈 , 〉 : F2R
∗
Q × F2RQ → F2 .

This means that for each 2-group P , there is a bilinear form

〈 , 〉P : F2R
∗
Q(P ) × F2RQ(P ) → F2 ,

with the property that for any 2-group Q, for any f ∈ HomCp(P,Q), for any
a ∈ F2R

∗
Q(P ) and any b ∈ F2RQ(Q), one has that

〈F2R
∗
Q(f)(a), b〉Q = 〈a,F2RQ(f op)(b)〉P .

Moreover this pairing is non-degenerate : this means that for any 2-group P ,
the pairing 〈 , 〉P is non-degenerate. In particular, each subfunctor F of
F2R

∗
Q is isomorphic to F2RQ/F

⊥, where F⊥ is the orthogonal of F for the
pairing 〈 , 〉.

In particular, the lattice of subfunctors of F2R
∗
Q is isomorphic to the

opposite lattice of subfunctors of F2RQ. Now since B× is isomorphic to a
subfunctor of F2RQ, its lattice of subfunctors is isomorphic to the opposite
lattice of subfunctors of F2RQ containing B♯ = (B×)⊥. By Theorem 4.4 of [4],
any subfunctor L of F2RQ is equal to the sum of subfunctors HQ it contains,
where Q is a 2-group of normal 2-rank 1, and HQ is the subfunctor of F2RQ

generated by the image ΦQ of the unique (up to isomorphism) irreducible
rational faithful QQ-module ΦQ in F2RQ.

In particular B♯ is the sum of the subfunctors HQ, where Q is a 2-group
of normal 2-rank 1 such that ΦQ ∈ B♯(Q). This means that 〈a,ΦQ〉Q = 0,
for any a ∈ B×(Q). Now ΦQ = f1ΦQ since ΦQ is faithful, so

〈a,ΦQ〉Q = 〈a, fQ
1

ΦQ〉Q = 〈fQ
1
a,ΦQ〉Q ,

16



because fQ
1

= (fQ
1

)op. Thus ΦQ ∈ B♯(Q) if and only if ΦQ is orthogonal
to ∂B×(Q). Since Q has normal 2-rank 1, this is always the case by Corol-
lary 5.9, except maybe if Q is trivial, cyclic of order 2, or dihedral (of order
at least 16). Now H1 = HC2

= F2RQ by Theorem 5.6 of [4]. Since B× is
not the zero subfunctor of F2RQ, it follows that HQ 6⊆ B♯, if Q is trivial or
cyclic of order 2. Now if Q is dihedral, then ΦQ is equal to QQ/I −QQ/IZ,
where I is a non-central subgroup of order 2 of Q, and Z is the centre of Q.
Now

ǫQ(υQ)
(

i(ΦQ)
)

= ǫQ(υQ)(Q/I −Q/IZ) = 1 − 0 = 1 ,

It follows that HQ 6⊆ B♯ if Q is dihedral. Finally B♯ is the sum of all sub-
functors HQ, when Q is cyclic of order at least 4, or generalized quaternion,
or semi-dihedral.

Recall from Theorem 6.2 of [4] that the poset of proper subfunctors of
F2RQ is isomorphic to the poset of closed subsets of the following graph :

•C4 •SD16 ◦D16

•Q8

������

���� yyrrrrrrr

rrrrrrr

•C8

��0000

0000
������

���� xxqqqqqqq

qqqqqqq

•SD32

������

����

◦D32

��2222

2222

•Q16

��0000

0000
������

���� xxrrrrrrr

rrrrrrr

•C16

��2222

2222
������

���� xxqqqqqqq

qqqqqqq

•SD64

������

����

◦D64

��2222

2222

•Q32

��0000

0000
������

���� xxqqqqqqq

qqqqqqq

•C32

��2222

2222
������

���� xxqqqqqqq

qqqqqqq

•SD128

������

����

◦D128

��2222

2222

. . .

��2222

2222
������

���� xxqqqqqqq

qqqqqqq

. . .

��2222

2222
������

���� xxqqqqqqq

qqqqqqq

. . .

������

����

. . .

��2222

2222

The vertices of this graph are the isomorphism classes of groups of normal
2-rank 1 and order at least 4, and there is an arrow from vertex Q to vertex R
if and only if HR ⊆ HQ. The vertices with a filled • are exactly labelled by
the groups Q for which HQ ⊆ B♯, and the vertices with a ◦ are labelled by
dihedral groups.

By the above remarks, the lattice of subobjects of B× is isomorphic to
the opposite lattice of subfunctors of F2RQ containing B♯. Thus :

8.4. Theorem : The p-biset functor B× is uniserial. It has an infinite
strictly increasing series of proper subfunctors

0 ⊂ L0 ⊂ L1 · · · ⊂ Ln ⊂ · · ·

where L0 is generated by the element υ1, and Li, for i > 0, is generated by
the element υD

2i+3
of B×(D2i+3). The functor L0 is isomorphic to the simple
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functor S1,F2
, and the quotient Li/Li−1, for i ≥ 1, is isomorphic to the simple

functor SD
2i+3 ,F2

.

Proof: Indeed L⊥
0 = B♯ +HD16

is the unique maximal proper subfunctor of
F2RQ. Thus L0 is isomorphic to the unique simple quotient of F2RQ, which
is S1,F2

by Proposition 5.1 of [4]. Similarly for i ≥ 1, the simple quotient
Li/Li−1 is isomorphic to the quotient

(B♯ +HD
2i+3

)/B♯ +HD
2i+4

) ,

which is a quotient of

(B♯ +HD
2i+3

)/B♯ ∼= HD
2i+3

/(B♯ ∩HD
2i+3

) .

But the only simple quotient of HD
2i+3

is SD
2i+3 ,F2

, by Proposition 5.1 of [4]
again.

8.5. Remark : Let P be a 2-group. By Theorem 5.12 of [4], the F2-
dimension of S1,F2

(P ) is equal to the number of isomorphism classes of ra-
tional irreducible representations of P whose type is 1 or C2, whereas the
F2-dimension of SD

2i+3 ,F2
(P ) is the number of isomorphism classes of ratio-

nal irreducible representations of P whose type is isomorphic to D2i+3 . This
gives a way to recover Theorem 7.4 : the F2-dimension of B×(P ) is equal
to the number of isomorphism classes of rational irreducible representations
of P whose type is trivial, cyclic of order 2, or dihedral.

8.6. The surjectivity of the exponential map. Let G be a finite group.
The exponential map expG : B(G) → B×(G) is defined in Section 7 of
Yalçin’s paper ([14]) by

expG(x) = (−1) ↑ x ,

where −1 = −1/1 ∈ B×(1), and where the exponentiation

(y, x) ∈ B×(G) × B(G) → B×(G)

is defined by extending the usual exponential map (Y,X) 7→ Y X , where X
and Y are G-sets, and Y X is the set of maps from X to Y , with G-action
given by (g · f)(x) = gf(g−1x).

Its possible to give another interpretation of this map : indeed B(G) is
naturally isomorphic to HomC(1, G), by considering any G-set as a (G, 1)-
biset. It is clear that if X is a finite G-set, and Y is a finite set, then

TX(Y ) = Y X .
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This can be extended by linearity, to show that for any x ∈ B(G)

(−1)x = B×(x)(−1) .

In particular the image Im(expG) of the exponential map expG is equal to
HomC(1, G)(−1). Denoting by I the sub-biset functor of B× generated by
−1 ∈ B×(1), it it now clear that Im(expG) = I(G) for any finite group G.

Now the restriction of the functor I to the category C2 is equal to L0,
which is isomorphic to the simple functor S1,F2

. Using Remark 5.13 of [4],
this shows finally the following :

8.7. Proposition : Let P be a finite 2-group. Then :

1. The F2-dimension of the image of the exponential map

expP : B(P ) → B×(P )

is equal to the number of isomorphism classes of absolutely irreducible
rational representations of P .

2. The map expP is surjective if and only if the group P has no irreducible
rational representation of dihedral type, or equivalently, no genetic sub-
group Q such that NP (Q)/Q is dihedral.

8.8. Proposition : Let p be a prime number. There is an exact sequence
of p-biset functors :

0 → B× → F2R
∗
Q → F2D

Ω
tors → 0 ,

where DΩ
tors is the torsion part of the functor DΩ of relative syzygies in the

Dade group.

Proof: In the case p 6= 2, this proposition is equivalent to Proposition 8.2,
because F2D

Ω
tors = F2Dtors

∼= Dtors in this case. And for p = 2, the 2-
functor DΩ

tors is a quotient of the functor R∗
Q, by Corollary 7.5 of [6] : there

is a surjective map π : R∗
Q → DΩ

tors, which is the restriction to R∗
Q of the

surjection Θ : B∗ → DΩ introduced in Theorem 1.7 of [5]. The F2-reduction
of π is a surjective map

F2π : F2R
∗
Q → F2D

Ω
tors .

To prove the proposition in this case, is is enough to show that the image
of B× in F2R

∗
Q is contained in the kernel of F2π, and that for any 2-group P ,

the F2-dimension of F2R
∗
Q(P ) is equal to the sum of the F2-dimensions of
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B×(P ) and F2D
Ω
tors(P ) : but by Corollary 7.6 of [6], there is a group isomor-

phism
DΩ

tors(P ) ∼= (Z/4Z)aP ⊕ (Z/2Z)bP ,

where aP is equal to the number of isomorphism classes of rational irreducible
representations of P whose type is generalized quaternion, and bP equal to
the number of isomorphism classes of rational irreducible representations of P
whose type is cyclic of order at least 3, or semi-dihedral. Thus

dimF2
F2D

Ω
tors(P ) = aP + bP .

Now since dimF2
B×(P ) is equal to the number of isomorphism classes of

rational irreducible representations of P whose type is cyclic of order at
most 2, or dihedral, it follows that dimF2

F2D
Ω
tors(P ) + dimF2

B×(P ) is equal
to the number of isomorphism classes of rational irreducible representations
of P , i.e. to dimF2

F2R
∗
Q(P ).

So the only thing to check to complete the proof, is that the image of B×

in F2R
∗
Q is contained in the kernel of F2π. Since B×, F2R

∗
Q and F2D

Ω
tors

are rational 2-biset functors, it suffices to check that if P is a 2-group of
normal 2-rank 1, and a ∈ ∂B×(P ), then the image of a in ∂F2R

∗
Q(P ) lies

in the kernel of F2π. There is nothing to do if P is generalized quaternion,
or semi-dihedral, or cyclic of order at least 3, for in this case ∂B×(P ) = 0
by Corollary 5.7. Now if P is cyclic of order at most 2, then DΩ(P ) = {0},
and the result follows. And if P is dihedral, then DΩ(P ) is torsion free by
Theorem 10.3 of [9], so DΩ

tors(P ) = {0} again.
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